2990 lines
120 KiB
Java
2990 lines
120 KiB
Java
![]() |
/*
|
||
|
* Copyright (C) 2010 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package android.app;
|
||
|
|
||
|
import android.animation.Animator;
|
||
|
import android.annotation.CallSuper;
|
||
|
import android.annotation.NonNull;
|
||
|
import android.annotation.Nullable;
|
||
|
import android.annotation.StringRes;
|
||
|
import android.compat.annotation.UnsupportedAppUsage;
|
||
|
import android.content.ComponentCallbacks2;
|
||
|
import android.content.Context;
|
||
|
import android.content.Intent;
|
||
|
import android.content.IntentSender;
|
||
|
import android.content.res.Configuration;
|
||
|
import android.content.res.Resources;
|
||
|
import android.content.res.TypedArray;
|
||
|
import android.os.Build;
|
||
|
import android.os.Build.VERSION_CODES;
|
||
|
import android.os.Bundle;
|
||
|
import android.os.Looper;
|
||
|
import android.os.Parcel;
|
||
|
import android.os.Parcelable;
|
||
|
import android.os.UserHandle;
|
||
|
import android.transition.Transition;
|
||
|
import android.transition.TransitionInflater;
|
||
|
import android.transition.TransitionSet;
|
||
|
import android.util.AndroidRuntimeException;
|
||
|
import android.util.ArrayMap;
|
||
|
import android.util.AttributeSet;
|
||
|
import android.util.DebugUtils;
|
||
|
import android.util.SparseArray;
|
||
|
import android.util.SuperNotCalledException;
|
||
|
import android.view.ContextMenu;
|
||
|
import android.view.ContextMenu.ContextMenuInfo;
|
||
|
import android.view.LayoutInflater;
|
||
|
import android.view.Menu;
|
||
|
import android.view.MenuInflater;
|
||
|
import android.view.MenuItem;
|
||
|
import android.view.View;
|
||
|
import android.view.View.OnCreateContextMenuListener;
|
||
|
import android.view.ViewGroup;
|
||
|
import android.widget.AdapterView;
|
||
|
|
||
|
import java.io.FileDescriptor;
|
||
|
import java.io.PrintWriter;
|
||
|
import java.lang.reflect.InvocationTargetException;
|
||
|
|
||
|
/**
|
||
|
* A Fragment is a piece of an application's user interface or behavior
|
||
|
* that can be placed in an {@link Activity}. Interaction with fragments
|
||
|
* is done through {@link FragmentManager}, which can be obtained via
|
||
|
* {@link Activity#getFragmentManager() Activity.getFragmentManager()} and
|
||
|
* {@link Fragment#getFragmentManager() Fragment.getFragmentManager()}.
|
||
|
*
|
||
|
* <p>The Fragment class can be used many ways to achieve a wide variety of
|
||
|
* results. In its core, it represents a particular operation or interface
|
||
|
* that is running within a larger {@link Activity}. A Fragment is closely
|
||
|
* tied to the Activity it is in, and can not be used apart from one. Though
|
||
|
* Fragment defines its own lifecycle, that lifecycle is dependent on its
|
||
|
* activity: if the activity is stopped, no fragments inside of it can be
|
||
|
* started; when the activity is destroyed, all fragments will be destroyed.
|
||
|
*
|
||
|
* <p>All subclasses of Fragment must include a public no-argument constructor.
|
||
|
* The framework will often re-instantiate a fragment class when needed,
|
||
|
* in particular during state restore, and needs to be able to find this
|
||
|
* constructor to instantiate it. If the no-argument constructor is not
|
||
|
* available, a runtime exception will occur in some cases during state
|
||
|
* restore.
|
||
|
*
|
||
|
* <p>Topics covered here:
|
||
|
* <ol>
|
||
|
* <li><a href="#OlderPlatforms">Older Platforms</a>
|
||
|
* <li><a href="#Lifecycle">Lifecycle</a>
|
||
|
* <li><a href="#Layout">Layout</a>
|
||
|
* <li><a href="#BackStack">Back Stack</a>
|
||
|
* </ol>
|
||
|
*
|
||
|
* <div class="special reference">
|
||
|
* <h3>Developer Guides</h3>
|
||
|
* <p>For more information about using fragments, read the
|
||
|
* <a href="{@docRoot}guide/components/fragments.html">Fragments</a> developer guide.</p>
|
||
|
* </div>
|
||
|
*
|
||
|
* <a name="OlderPlatforms"></a>
|
||
|
* <h3>Older Platforms</h3>
|
||
|
*
|
||
|
* While the Fragment API was introduced in
|
||
|
* {@link android.os.Build.VERSION_CODES#HONEYCOMB}, a version of the API
|
||
|
* at is also available for use on older platforms through
|
||
|
* {@link androidx.fragment.app.FragmentActivity}. See the blog post
|
||
|
* <a href="http://android-developers.blogspot.com/2011/03/fragments-for-all.html">
|
||
|
* Fragments For All</a> for more details.
|
||
|
*
|
||
|
* <a name="Lifecycle"></a>
|
||
|
* <h3>Lifecycle</h3>
|
||
|
*
|
||
|
* <p>Though a Fragment's lifecycle is tied to its owning activity, it has
|
||
|
* its own wrinkle on the standard activity lifecycle. It includes basic
|
||
|
* activity lifecycle methods such as {@link #onResume}, but also important
|
||
|
* are methods related to interactions with the activity and UI generation.
|
||
|
*
|
||
|
* <p>The core series of lifecycle methods that are called to bring a fragment
|
||
|
* up to resumed state (interacting with the user) are:
|
||
|
*
|
||
|
* <ol>
|
||
|
* <li> {@link #onAttach} called once the fragment is associated with its activity.
|
||
|
* <li> {@link #onCreate} called to do initial creation of the fragment.
|
||
|
* <li> {@link #onCreateView} creates and returns the view hierarchy associated
|
||
|
* with the fragment.
|
||
|
* <li> {@link #onActivityCreated} tells the fragment that its activity has
|
||
|
* completed its own {@link Activity#onCreate Activity.onCreate()}.
|
||
|
* <li> {@link #onViewStateRestored} tells the fragment that all of the saved
|
||
|
* state of its view hierarchy has been restored.
|
||
|
* <li> {@link #onStart} makes the fragment visible to the user (based on its
|
||
|
* containing activity being started).
|
||
|
* <li> {@link #onResume} makes the fragment begin interacting with the user
|
||
|
* (based on its containing activity being resumed).
|
||
|
* </ol>
|
||
|
*
|
||
|
* <p>As a fragment is no longer being used, it goes through a reverse
|
||
|
* series of callbacks:
|
||
|
*
|
||
|
* <ol>
|
||
|
* <li> {@link #onPause} fragment is no longer interacting with the user either
|
||
|
* because its activity is being paused or a fragment operation is modifying it
|
||
|
* in the activity.
|
||
|
* <li> {@link #onStop} fragment is no longer visible to the user either
|
||
|
* because its activity is being stopped or a fragment operation is modifying it
|
||
|
* in the activity.
|
||
|
* <li> {@link #onDestroyView} allows the fragment to clean up resources
|
||
|
* associated with its View.
|
||
|
* <li> {@link #onDestroy} called to do final cleanup of the fragment's state.
|
||
|
* <li> {@link #onDetach} called immediately prior to the fragment no longer
|
||
|
* being associated with its activity.
|
||
|
* </ol>
|
||
|
*
|
||
|
* <a name="Layout"></a>
|
||
|
* <h3>Layout</h3>
|
||
|
*
|
||
|
* <p>Fragments can be used as part of your application's layout, allowing
|
||
|
* you to better modularize your code and more easily adjust your user
|
||
|
* interface to the screen it is running on. As an example, we can look
|
||
|
* at a simple program consisting of a list of items, and display of the
|
||
|
* details of each item.</p>
|
||
|
*
|
||
|
* <p>An activity's layout XML can include <code><fragment></code> tags
|
||
|
* to embed fragment instances inside of the layout. For example, here is
|
||
|
* a simple layout that embeds one fragment:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/res/layout/fragment_layout.xml layout}
|
||
|
*
|
||
|
* <p>The layout is installed in the activity in the normal way:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentLayout.java
|
||
|
* main}
|
||
|
*
|
||
|
* <p>The titles fragment, showing a list of titles, is fairly simple, relying
|
||
|
* on {@link ListFragment} for most of its work. Note the implementation of
|
||
|
* clicking an item: depending on the current activity's layout, it can either
|
||
|
* create and display a new fragment to show the details in-place (more about
|
||
|
* this later), or start a new activity to show the details.</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentLayout.java
|
||
|
* titles}
|
||
|
*
|
||
|
* <p>The details fragment showing the contents of a selected item just
|
||
|
* displays a string of text based on an index of a string array built in to
|
||
|
* the app:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentLayout.java
|
||
|
* details}
|
||
|
*
|
||
|
* <p>In this case when the user clicks on a title, there is no details
|
||
|
* container in the current activity, so the titles fragment's click code will
|
||
|
* launch a new activity to display the details fragment:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentLayout.java
|
||
|
* details_activity}
|
||
|
*
|
||
|
* <p>However the screen may be large enough to show both the list of titles
|
||
|
* and details about the currently selected title. To use such a layout on
|
||
|
* a landscape screen, this alternative layout can be placed under layout-land:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/res/layout-land/fragment_layout.xml layout}
|
||
|
*
|
||
|
* <p>Note how the prior code will adjust to this alternative UI flow: the titles
|
||
|
* fragment will now embed the details fragment inside of this activity, and the
|
||
|
* details activity will finish itself if it is running in a configuration
|
||
|
* where the details can be shown in-place.
|
||
|
*
|
||
|
* <p>When a configuration change causes the activity hosting these fragments
|
||
|
* to restart, its new instance may use a different layout that doesn't
|
||
|
* include the same fragments as the previous layout. In this case all of
|
||
|
* the previous fragments will still be instantiated and running in the new
|
||
|
* instance. However, any that are no longer associated with a <fragment>
|
||
|
* tag in the view hierarchy will not have their content view created
|
||
|
* and will return false from {@link #isInLayout}. (The code here also shows
|
||
|
* how you can determine if a fragment placed in a container is no longer
|
||
|
* running in a layout with that container and avoid creating its view hierarchy
|
||
|
* in that case.)
|
||
|
*
|
||
|
* <p>The attributes of the <fragment> tag are used to control the
|
||
|
* LayoutParams provided when attaching the fragment's view to the parent
|
||
|
* container. They can also be parsed by the fragment in {@link #onInflate}
|
||
|
* as parameters.
|
||
|
*
|
||
|
* <p>The fragment being instantiated must have some kind of unique identifier
|
||
|
* so that it can be re-associated with a previous instance if the parent
|
||
|
* activity needs to be destroyed and recreated. This can be provided these
|
||
|
* ways:
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>If nothing is explicitly supplied, the view ID of the container will
|
||
|
* be used.
|
||
|
* <li><code>android:tag</code> can be used in <fragment> to provide
|
||
|
* a specific tag name for the fragment.
|
||
|
* <li><code>android:id</code> can be used in <fragment> to provide
|
||
|
* a specific identifier for the fragment.
|
||
|
* </ul>
|
||
|
*
|
||
|
* <a name="BackStack"></a>
|
||
|
* <h3>Back Stack</h3>
|
||
|
*
|
||
|
* <p>The transaction in which fragments are modified can be placed on an
|
||
|
* internal back-stack of the owning activity. When the user presses back
|
||
|
* in the activity, any transactions on the back stack are popped off before
|
||
|
* the activity itself is finished.
|
||
|
*
|
||
|
* <p>For example, consider this simple fragment that is instantiated with
|
||
|
* an integer argument and displays that in a TextView in its UI:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentStack.java
|
||
|
* fragment}
|
||
|
*
|
||
|
* <p>A function that creates a new instance of the fragment, replacing
|
||
|
* whatever current fragment instance is being shown and pushing that change
|
||
|
* on to the back stack could be written as:
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentStack.java
|
||
|
* add_stack}
|
||
|
*
|
||
|
* <p>After each call to this function, a new entry is on the stack, and
|
||
|
* pressing back will pop it to return the user to whatever previous state
|
||
|
* the activity UI was in.
|
||
|
*
|
||
|
* <p>
|
||
|
* Fragments appearing or disappearing do not generate system events for accessibility, so set a
|
||
|
* title on your fragments with {@link View#setAccessibilityPaneTitle(CharSequence)} to notify
|
||
|
* accessibility users of these UI transitions.
|
||
|
*
|
||
|
* @deprecated Use the <a href="{@docRoot}jetpack">Jetpack Fragment Library</a>
|
||
|
* {@link androidx.fragment.app.Fragment} for consistent behavior across all devices
|
||
|
* and access to <a href="{@docRoot}topic/libraries/architecture/lifecycle.html">Lifecycle</a>.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public class Fragment implements ComponentCallbacks2, OnCreateContextMenuListener {
|
||
|
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 115609023)
|
||
|
private static final ArrayMap<String, Class<?>> sClassMap =
|
||
|
new ArrayMap<String, Class<?>>();
|
||
|
|
||
|
static final int INVALID_STATE = -1; // Invalid state used as a null value.
|
||
|
static final int INITIALIZING = 0; // Not yet created.
|
||
|
static final int CREATED = 1; // Created.
|
||
|
static final int ACTIVITY_CREATED = 2; // The activity has finished its creation.
|
||
|
static final int STOPPED = 3; // Fully created, not started.
|
||
|
static final int STARTED = 4; // Created and started, not resumed.
|
||
|
static final int RESUMED = 5; // Created started and resumed.
|
||
|
|
||
|
private static final Transition USE_DEFAULT_TRANSITION = new TransitionSet();
|
||
|
|
||
|
int mState = INITIALIZING;
|
||
|
|
||
|
// When instantiated from saved state, this is the saved state.
|
||
|
@UnsupportedAppUsage
|
||
|
Bundle mSavedFragmentState;
|
||
|
SparseArray<Parcelable> mSavedViewState;
|
||
|
|
||
|
// Index into active fragment array.
|
||
|
@UnsupportedAppUsage
|
||
|
int mIndex = -1;
|
||
|
|
||
|
// Internal unique name for this fragment;
|
||
|
@UnsupportedAppUsage
|
||
|
String mWho;
|
||
|
|
||
|
// Construction arguments;
|
||
|
Bundle mArguments;
|
||
|
|
||
|
// Target fragment.
|
||
|
Fragment mTarget;
|
||
|
|
||
|
// For use when retaining a fragment: this is the index of the last mTarget.
|
||
|
int mTargetIndex = -1;
|
||
|
|
||
|
// Target request code.
|
||
|
int mTargetRequestCode;
|
||
|
|
||
|
// True if the fragment is in the list of added fragments.
|
||
|
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
|
||
|
boolean mAdded;
|
||
|
|
||
|
// If set this fragment is being removed from its activity.
|
||
|
boolean mRemoving;
|
||
|
|
||
|
// Set to true if this fragment was instantiated from a layout file.
|
||
|
boolean mFromLayout;
|
||
|
|
||
|
// Set to true when the view has actually been inflated in its layout.
|
||
|
boolean mInLayout;
|
||
|
|
||
|
// True if this fragment has been restored from previously saved state.
|
||
|
boolean mRestored;
|
||
|
|
||
|
// True if performCreateView has been called and a matching call to performDestroyView
|
||
|
// has not yet happened.
|
||
|
boolean mPerformedCreateView;
|
||
|
|
||
|
// Number of active back stack entries this fragment is in.
|
||
|
int mBackStackNesting;
|
||
|
|
||
|
// The fragment manager we are associated with. Set as soon as the
|
||
|
// fragment is used in a transaction; cleared after it has been removed
|
||
|
// from all transactions.
|
||
|
@UnsupportedAppUsage
|
||
|
FragmentManagerImpl mFragmentManager;
|
||
|
|
||
|
// Activity this fragment is attached to.
|
||
|
@UnsupportedAppUsage
|
||
|
FragmentHostCallback mHost;
|
||
|
|
||
|
// Private fragment manager for child fragments inside of this one.
|
||
|
@UnsupportedAppUsage
|
||
|
FragmentManagerImpl mChildFragmentManager;
|
||
|
|
||
|
// For use when restoring fragment state and descendant fragments are retained.
|
||
|
// This state is set by FragmentState.instantiate and cleared in onCreate.
|
||
|
FragmentManagerNonConfig mChildNonConfig;
|
||
|
|
||
|
// If this Fragment is contained in another Fragment, this is that container.
|
||
|
Fragment mParentFragment;
|
||
|
|
||
|
// The optional identifier for this fragment -- either the container ID if it
|
||
|
// was dynamically added to the view hierarchy, or the ID supplied in
|
||
|
// layout.
|
||
|
@UnsupportedAppUsage
|
||
|
int mFragmentId;
|
||
|
|
||
|
// When a fragment is being dynamically added to the view hierarchy, this
|
||
|
// is the identifier of the parent container it is being added to.
|
||
|
int mContainerId;
|
||
|
|
||
|
// The optional named tag for this fragment -- usually used to find
|
||
|
// fragments that are not part of the layout.
|
||
|
String mTag;
|
||
|
|
||
|
// Set to true when the app has requested that this fragment be hidden
|
||
|
// from the user.
|
||
|
boolean mHidden;
|
||
|
|
||
|
// Set to true when the app has requested that this fragment be detached.
|
||
|
boolean mDetached;
|
||
|
|
||
|
// If set this fragment would like its instance retained across
|
||
|
// configuration changes.
|
||
|
boolean mRetainInstance;
|
||
|
|
||
|
// If set this fragment is being retained across the current config change.
|
||
|
boolean mRetaining;
|
||
|
|
||
|
// If set this fragment has menu items to contribute.
|
||
|
boolean mHasMenu;
|
||
|
|
||
|
// Set to true to allow the fragment's menu to be shown.
|
||
|
boolean mMenuVisible = true;
|
||
|
|
||
|
// Used to verify that subclasses call through to super class.
|
||
|
boolean mCalled;
|
||
|
|
||
|
// The parent container of the fragment after dynamically added to UI.
|
||
|
ViewGroup mContainer;
|
||
|
|
||
|
// The View generated for this fragment.
|
||
|
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 115609023)
|
||
|
View mView;
|
||
|
|
||
|
// Whether this fragment should defer starting until after other fragments
|
||
|
// have been started and their loaders are finished.
|
||
|
boolean mDeferStart;
|
||
|
|
||
|
// Hint provided by the app that this fragment is currently visible to the user.
|
||
|
boolean mUserVisibleHint = true;
|
||
|
|
||
|
LoaderManagerImpl mLoaderManager;
|
||
|
@UnsupportedAppUsage
|
||
|
boolean mLoadersStarted;
|
||
|
boolean mCheckedForLoaderManager;
|
||
|
|
||
|
// The animation and transition information for the fragment. This will be null
|
||
|
// unless the elements are explicitly accessed and should remain null for Fragments
|
||
|
// without Views.
|
||
|
AnimationInfo mAnimationInfo;
|
||
|
|
||
|
// True if the View was added, and its animation has yet to be run. This could
|
||
|
// also indicate that the fragment view hasn't been made visible, even if there is no
|
||
|
// animation for this fragment.
|
||
|
boolean mIsNewlyAdded;
|
||
|
|
||
|
// True if mHidden has been changed and the animation should be scheduled.
|
||
|
boolean mHiddenChanged;
|
||
|
|
||
|
// The cached value from onGetLayoutInflater(Bundle) that will be returned from
|
||
|
// getLayoutInflater()
|
||
|
LayoutInflater mLayoutInflater;
|
||
|
|
||
|
// Keep track of whether or not this Fragment has run performCreate(). Retained instance
|
||
|
// fragments can have mRetaining set to true without going through creation, so we must
|
||
|
// track it separately.
|
||
|
boolean mIsCreated;
|
||
|
|
||
|
/**
|
||
|
* State information that has been retrieved from a fragment instance
|
||
|
* through {@link FragmentManager#saveFragmentInstanceState(Fragment)
|
||
|
* FragmentManager.saveFragmentInstanceState}.
|
||
|
*
|
||
|
* @deprecated Use {@link androidx.fragment.app.Fragment.SavedState}
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public static class SavedState implements Parcelable {
|
||
|
final Bundle mState;
|
||
|
|
||
|
SavedState(Bundle state) {
|
||
|
mState = state;
|
||
|
}
|
||
|
|
||
|
SavedState(Parcel in, ClassLoader loader) {
|
||
|
mState = in.readBundle();
|
||
|
if (loader != null && mState != null) {
|
||
|
mState.setClassLoader(loader);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public int describeContents() {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void writeToParcel(Parcel dest, int flags) {
|
||
|
dest.writeBundle(mState);
|
||
|
}
|
||
|
|
||
|
public static final Parcelable.ClassLoaderCreator<SavedState> CREATOR
|
||
|
= new Parcelable.ClassLoaderCreator<SavedState>() {
|
||
|
public SavedState createFromParcel(Parcel in) {
|
||
|
return new SavedState(in, null);
|
||
|
}
|
||
|
|
||
|
public SavedState createFromParcel(Parcel in, ClassLoader loader) {
|
||
|
return new SavedState(in, loader);
|
||
|
}
|
||
|
|
||
|
public SavedState[] newArray(int size) {
|
||
|
return new SavedState[size];
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Thrown by {@link Fragment#instantiate(Context, String, Bundle)} when
|
||
|
* there is an instantiation failure.
|
||
|
*
|
||
|
* @deprecated Use {@link androidx.fragment.app.Fragment.InstantiationException}
|
||
|
*/
|
||
|
@Deprecated
|
||
|
static public class InstantiationException extends AndroidRuntimeException {
|
||
|
public InstantiationException(String msg, Exception cause) {
|
||
|
super(msg, cause);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default constructor. <strong>Every</strong> fragment must have an
|
||
|
* empty constructor, so it can be instantiated when restoring its
|
||
|
* activity's state. It is strongly recommended that subclasses do not
|
||
|
* have other constructors with parameters, since these constructors
|
||
|
* will not be called when the fragment is re-instantiated; instead,
|
||
|
* arguments can be supplied by the caller with {@link #setArguments}
|
||
|
* and later retrieved by the Fragment with {@link #getArguments}.
|
||
|
*
|
||
|
* <p>Applications should generally not implement a constructor. Prefer
|
||
|
* {@link #onAttach(Context)} instead. It is the first place application code can run where
|
||
|
* the fragment is ready to be used - the point where the fragment is actually associated with
|
||
|
* its context. Some applications may also want to implement {@link #onInflate} to retrieve
|
||
|
* attributes from a layout resource, although note this happens when the fragment is attached.
|
||
|
*/
|
||
|
public Fragment() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like {@link #instantiate(Context, String, Bundle)} but with a null
|
||
|
* argument Bundle.
|
||
|
*/
|
||
|
public static Fragment instantiate(Context context, String fname) {
|
||
|
return instantiate(context, fname, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a new instance of a Fragment with the given class name. This is
|
||
|
* the same as calling its empty constructor.
|
||
|
*
|
||
|
* @param context The calling context being used to instantiate the fragment.
|
||
|
* This is currently just used to get its ClassLoader.
|
||
|
* @param fname The class name of the fragment to instantiate.
|
||
|
* @param args Bundle of arguments to supply to the fragment, which it
|
||
|
* can retrieve with {@link #getArguments()}. May be null.
|
||
|
* @return Returns a new fragment instance.
|
||
|
* @throws InstantiationException If there is a failure in instantiating
|
||
|
* the given fragment class. This is a runtime exception; it is not
|
||
|
* normally expected to happen.
|
||
|
*/
|
||
|
public static Fragment instantiate(Context context, String fname, @Nullable Bundle args) {
|
||
|
try {
|
||
|
Class<?> clazz = sClassMap.get(fname);
|
||
|
if (clazz == null) {
|
||
|
// Class not found in the cache, see if it's real, and try to add it
|
||
|
clazz = context.getClassLoader().loadClass(fname);
|
||
|
if (!Fragment.class.isAssignableFrom(clazz)) {
|
||
|
throw new InstantiationException("Trying to instantiate a class " + fname
|
||
|
+ " that is not a Fragment", new ClassCastException());
|
||
|
}
|
||
|
sClassMap.put(fname, clazz);
|
||
|
}
|
||
|
Fragment f = (Fragment) clazz.getConstructor().newInstance();
|
||
|
if (args != null) {
|
||
|
args.setClassLoader(f.getClass().getClassLoader());
|
||
|
f.setArguments(args);
|
||
|
}
|
||
|
return f;
|
||
|
} catch (ClassNotFoundException e) {
|
||
|
throw new InstantiationException("Unable to instantiate fragment " + fname
|
||
|
+ ": make sure class name exists, is public, and has an"
|
||
|
+ " empty constructor that is public", e);
|
||
|
} catch (java.lang.InstantiationException e) {
|
||
|
throw new InstantiationException("Unable to instantiate fragment " + fname
|
||
|
+ ": make sure class name exists, is public, and has an"
|
||
|
+ " empty constructor that is public", e);
|
||
|
} catch (IllegalAccessException e) {
|
||
|
throw new InstantiationException("Unable to instantiate fragment " + fname
|
||
|
+ ": make sure class name exists, is public, and has an"
|
||
|
+ " empty constructor that is public", e);
|
||
|
} catch (NoSuchMethodException e) {
|
||
|
throw new InstantiationException("Unable to instantiate fragment " + fname
|
||
|
+ ": could not find Fragment constructor", e);
|
||
|
} catch (InvocationTargetException e) {
|
||
|
throw new InstantiationException("Unable to instantiate fragment " + fname
|
||
|
+ ": calling Fragment constructor caused an exception", e);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final void restoreViewState(Bundle savedInstanceState) {
|
||
|
if (mSavedViewState != null) {
|
||
|
mView.restoreHierarchyState(mSavedViewState);
|
||
|
mSavedViewState = null;
|
||
|
}
|
||
|
mCalled = false;
|
||
|
onViewStateRestored(savedInstanceState);
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onViewStateRestored()");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final void setIndex(int index, Fragment parent) {
|
||
|
mIndex = index;
|
||
|
if (parent != null) {
|
||
|
mWho = parent.mWho + ":" + mIndex;
|
||
|
} else {
|
||
|
mWho = "android:fragment:" + mIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final boolean isInBackStack() {
|
||
|
return mBackStackNesting > 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Subclasses can not override equals().
|
||
|
*/
|
||
|
@Override final public boolean equals(@Nullable Object o) {
|
||
|
return super.equals(o);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Subclasses can not override hashCode().
|
||
|
*/
|
||
|
@Override final public int hashCode() {
|
||
|
return super.hashCode();
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public String toString() {
|
||
|
StringBuilder sb = new StringBuilder(128);
|
||
|
DebugUtils.buildShortClassTag(this, sb);
|
||
|
if (mIndex >= 0) {
|
||
|
sb.append(" #");
|
||
|
sb.append(mIndex);
|
||
|
}
|
||
|
if (mFragmentId != 0) {
|
||
|
sb.append(" id=0x");
|
||
|
sb.append(Integer.toHexString(mFragmentId));
|
||
|
}
|
||
|
if (mTag != null) {
|
||
|
sb.append(" ");
|
||
|
sb.append(mTag);
|
||
|
}
|
||
|
sb.append('}');
|
||
|
return sb.toString();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the identifier this fragment is known by. This is either
|
||
|
* the android:id value supplied in a layout or the container view ID
|
||
|
* supplied when adding the fragment.
|
||
|
*/
|
||
|
final public int getId() {
|
||
|
return mFragmentId;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the tag name of the fragment, if specified.
|
||
|
*/
|
||
|
final public String getTag() {
|
||
|
return mTag;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Supply the construction arguments for this fragment.
|
||
|
* The arguments supplied here will be retained across fragment destroy and
|
||
|
* creation.
|
||
|
*
|
||
|
* <p>This method cannot be called if the fragment is added to a FragmentManager and
|
||
|
* if {@link #isStateSaved()} would return true. Prior to {@link Build.VERSION_CODES#O},
|
||
|
* this method may only be called if the fragment has not yet been added to a FragmentManager.
|
||
|
* </p>
|
||
|
*/
|
||
|
public void setArguments(Bundle args) {
|
||
|
// The isStateSaved requirement below was only added in Android O and is compatible
|
||
|
// because it loosens previous requirements rather than making them more strict.
|
||
|
// See method javadoc.
|
||
|
if (mIndex >= 0 && isStateSaved()) {
|
||
|
throw new IllegalStateException("Fragment already active");
|
||
|
}
|
||
|
mArguments = args;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the arguments supplied to {@link #setArguments}, if any.
|
||
|
*/
|
||
|
final public Bundle getArguments() {
|
||
|
return mArguments;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if this fragment is added and its state has already been saved
|
||
|
* by its host. Any operations that would change saved state should not be performed
|
||
|
* if this method returns true, and some operations such as {@link #setArguments(Bundle)}
|
||
|
* will fail.
|
||
|
*
|
||
|
* @return true if this fragment's state has already been saved by its host
|
||
|
*/
|
||
|
public final boolean isStateSaved() {
|
||
|
if (mFragmentManager == null) {
|
||
|
return false;
|
||
|
}
|
||
|
return mFragmentManager.isStateSaved();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the initial saved state that this Fragment should restore itself
|
||
|
* from when first being constructed, as returned by
|
||
|
* {@link FragmentManager#saveFragmentInstanceState(Fragment)
|
||
|
* FragmentManager.saveFragmentInstanceState}.
|
||
|
*
|
||
|
* @param state The state the fragment should be restored from.
|
||
|
*/
|
||
|
public void setInitialSavedState(SavedState state) {
|
||
|
if (mIndex >= 0) {
|
||
|
throw new IllegalStateException("Fragment already active");
|
||
|
}
|
||
|
mSavedFragmentState = state != null && state.mState != null
|
||
|
? state.mState : null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Optional target for this fragment. This may be used, for example,
|
||
|
* if this fragment is being started by another, and when done wants to
|
||
|
* give a result back to the first. The target set here is retained
|
||
|
* across instances via {@link FragmentManager#putFragment
|
||
|
* FragmentManager.putFragment()}.
|
||
|
*
|
||
|
* @param fragment The fragment that is the target of this one.
|
||
|
* @param requestCode Optional request code, for convenience if you
|
||
|
* are going to call back with {@link #onActivityResult(int, int, Intent)}.
|
||
|
*/
|
||
|
public void setTargetFragment(Fragment fragment, int requestCode) {
|
||
|
// Don't allow a caller to set a target fragment in another FragmentManager,
|
||
|
// but there's a snag: people do set target fragments before fragments get added.
|
||
|
// We'll have the FragmentManager check that for validity when we move
|
||
|
// the fragments to a valid state.
|
||
|
final FragmentManager mine = getFragmentManager();
|
||
|
final FragmentManager theirs = fragment != null ? fragment.getFragmentManager() : null;
|
||
|
if (mine != null && theirs != null && mine != theirs) {
|
||
|
throw new IllegalArgumentException("Fragment " + fragment
|
||
|
+ " must share the same FragmentManager to be set as a target fragment");
|
||
|
}
|
||
|
|
||
|
// Don't let someone create a cycle.
|
||
|
for (Fragment check = fragment; check != null; check = check.getTargetFragment()) {
|
||
|
if (check == this) {
|
||
|
throw new IllegalArgumentException("Setting " + fragment + " as the target of "
|
||
|
+ this + " would create a target cycle");
|
||
|
}
|
||
|
}
|
||
|
mTarget = fragment;
|
||
|
mTargetRequestCode = requestCode;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the target fragment set by {@link #setTargetFragment}.
|
||
|
*/
|
||
|
final public Fragment getTargetFragment() {
|
||
|
return mTarget;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the target request code set by {@link #setTargetFragment}.
|
||
|
*/
|
||
|
final public int getTargetRequestCode() {
|
||
|
return mTargetRequestCode;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the {@link Context} this fragment is currently associated with.
|
||
|
*/
|
||
|
public Context getContext() {
|
||
|
return mHost == null ? null : mHost.getContext();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the Activity this fragment is currently associated with.
|
||
|
*/
|
||
|
final public Activity getActivity() {
|
||
|
return mHost == null ? null : mHost.getActivity();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the host object of this fragment. May return {@code null} if the fragment
|
||
|
* isn't currently being hosted.
|
||
|
*/
|
||
|
@Nullable
|
||
|
final public Object getHost() {
|
||
|
return mHost == null ? null : mHost.onGetHost();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return <code>getActivity().getResources()</code>.
|
||
|
*/
|
||
|
final public Resources getResources() {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
return mHost.getContext().getResources();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return a localized, styled CharSequence from the application's package's
|
||
|
* default string table.
|
||
|
*
|
||
|
* @param resId Resource id for the CharSequence text
|
||
|
*/
|
||
|
public final CharSequence getText(@StringRes int resId) {
|
||
|
return getResources().getText(resId);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return a localized string from the application's package's
|
||
|
* default string table.
|
||
|
*
|
||
|
* @param resId Resource id for the string
|
||
|
*/
|
||
|
public final String getString(@StringRes int resId) {
|
||
|
return getResources().getString(resId);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return a localized formatted string from the application's package's
|
||
|
* default string table, substituting the format arguments as defined in
|
||
|
* {@link java.util.Formatter} and {@link java.lang.String#format}.
|
||
|
*
|
||
|
* @param resId Resource id for the format string
|
||
|
* @param formatArgs The format arguments that will be used for substitution.
|
||
|
*/
|
||
|
|
||
|
public final String getString(@StringRes int resId, Object... formatArgs) {
|
||
|
return getResources().getString(resId, formatArgs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the FragmentManager for interacting with fragments associated
|
||
|
* with this fragment's activity. Note that this will be non-null slightly
|
||
|
* before {@link #getActivity()}, during the time from when the fragment is
|
||
|
* placed in a {@link FragmentTransaction} until it is committed and
|
||
|
* attached to its activity.
|
||
|
*
|
||
|
* <p>If this Fragment is a child of another Fragment, the FragmentManager
|
||
|
* returned here will be the parent's {@link #getChildFragmentManager()}.
|
||
|
*/
|
||
|
final public FragmentManager getFragmentManager() {
|
||
|
return mFragmentManager;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return a private FragmentManager for placing and managing Fragments
|
||
|
* inside of this Fragment.
|
||
|
*/
|
||
|
final public FragmentManager getChildFragmentManager() {
|
||
|
if (mChildFragmentManager == null) {
|
||
|
instantiateChildFragmentManager();
|
||
|
if (mState >= RESUMED) {
|
||
|
mChildFragmentManager.dispatchResume();
|
||
|
} else if (mState >= STARTED) {
|
||
|
mChildFragmentManager.dispatchStart();
|
||
|
} else if (mState >= ACTIVITY_CREATED) {
|
||
|
mChildFragmentManager.dispatchActivityCreated();
|
||
|
} else if (mState >= CREATED) {
|
||
|
mChildFragmentManager.dispatchCreate();
|
||
|
}
|
||
|
}
|
||
|
return mChildFragmentManager;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the parent Fragment containing this Fragment. If this Fragment
|
||
|
* is attached directly to an Activity, returns null.
|
||
|
*/
|
||
|
final public Fragment getParentFragment() {
|
||
|
return mParentFragment;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if the fragment is currently added to its activity.
|
||
|
*/
|
||
|
final public boolean isAdded() {
|
||
|
return mHost != null && mAdded;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if the fragment has been explicitly detached from the UI.
|
||
|
* That is, {@link FragmentTransaction#detach(Fragment)
|
||
|
* FragmentTransaction.detach(Fragment)} has been used on it.
|
||
|
*/
|
||
|
final public boolean isDetached() {
|
||
|
return mDetached;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if this fragment is currently being removed from its
|
||
|
* activity. This is <em>not</em> whether its activity is finishing, but
|
||
|
* rather whether it is in the process of being removed from its activity.
|
||
|
*/
|
||
|
final public boolean isRemoving() {
|
||
|
return mRemoving;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if the layout is included as part of an activity view
|
||
|
* hierarchy via the <fragment> tag. This will always be true when
|
||
|
* fragments are created through the <fragment> tag, <em>except</em>
|
||
|
* in the case where an old fragment is restored from a previous state and
|
||
|
* it does not appear in the layout of the current state.
|
||
|
*/
|
||
|
final public boolean isInLayout() {
|
||
|
return mInLayout;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if the fragment is in the resumed state. This is true
|
||
|
* for the duration of {@link #onResume()} and {@link #onPause()} as well.
|
||
|
*/
|
||
|
final public boolean isResumed() {
|
||
|
return mState >= RESUMED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if the fragment is currently visible to the user. This means
|
||
|
* it: (1) has been added, (2) has its view attached to the window, and
|
||
|
* (3) is not hidden.
|
||
|
*/
|
||
|
final public boolean isVisible() {
|
||
|
return isAdded() && !isHidden() && mView != null
|
||
|
&& mView.getWindowToken() != null && mView.getVisibility() == View.VISIBLE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true if the fragment has been hidden. By default fragments
|
||
|
* are shown. You can find out about changes to this state with
|
||
|
* {@link #onHiddenChanged}. Note that the hidden state is orthogonal
|
||
|
* to other states -- that is, to be visible to the user, a fragment
|
||
|
* must be both started and not hidden.
|
||
|
*/
|
||
|
final public boolean isHidden() {
|
||
|
return mHidden;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the hidden state (as returned by {@link #isHidden()} of
|
||
|
* the fragment has changed. Fragments start out not hidden; this will
|
||
|
* be called whenever the fragment changes state from that.
|
||
|
* @param hidden True if the fragment is now hidden, false otherwise.
|
||
|
*/
|
||
|
public void onHiddenChanged(boolean hidden) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Control whether a fragment instance is retained across Activity
|
||
|
* re-creation (such as from a configuration change). This can only
|
||
|
* be used with fragments not in the back stack. If set, the fragment
|
||
|
* lifecycle will be slightly different when an activity is recreated:
|
||
|
* <ul>
|
||
|
* <li> {@link #onDestroy()} will not be called (but {@link #onDetach()} still
|
||
|
* will be, because the fragment is being detached from its current activity).
|
||
|
* <li> {@link #onCreate(Bundle)} will not be called since the fragment
|
||
|
* is not being re-created.
|
||
|
* <li> {@link #onAttach(Activity)} and {@link #onActivityCreated(Bundle)} <b>will</b>
|
||
|
* still be called.
|
||
|
* </ul>
|
||
|
*/
|
||
|
public void setRetainInstance(boolean retain) {
|
||
|
mRetainInstance = retain;
|
||
|
}
|
||
|
|
||
|
final public boolean getRetainInstance() {
|
||
|
return mRetainInstance;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Report that this fragment would like to participate in populating
|
||
|
* the options menu by receiving a call to {@link #onCreateOptionsMenu}
|
||
|
* and related methods.
|
||
|
*
|
||
|
* @param hasMenu If true, the fragment has menu items to contribute.
|
||
|
*/
|
||
|
public void setHasOptionsMenu(boolean hasMenu) {
|
||
|
if (mHasMenu != hasMenu) {
|
||
|
mHasMenu = hasMenu;
|
||
|
if (isAdded() && !isHidden()) {
|
||
|
mFragmentManager.invalidateOptionsMenu();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set a hint for whether this fragment's menu should be visible. This
|
||
|
* is useful if you know that a fragment has been placed in your view
|
||
|
* hierarchy so that the user can not currently seen it, so any menu items
|
||
|
* it has should also not be shown.
|
||
|
*
|
||
|
* @param menuVisible The default is true, meaning the fragment's menu will
|
||
|
* be shown as usual. If false, the user will not see the menu.
|
||
|
*/
|
||
|
public void setMenuVisibility(boolean menuVisible) {
|
||
|
if (mMenuVisible != menuVisible) {
|
||
|
mMenuVisible = menuVisible;
|
||
|
if (mHasMenu && isAdded() && !isHidden()) {
|
||
|
mFragmentManager.invalidateOptionsMenu();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set a hint to the system about whether this fragment's UI is currently visible
|
||
|
* to the user. This hint defaults to true and is persistent across fragment instance
|
||
|
* state save and restore.
|
||
|
*
|
||
|
* <p>An app may set this to false to indicate that the fragment's UI is
|
||
|
* scrolled out of visibility or is otherwise not directly visible to the user.
|
||
|
* This may be used by the system to prioritize operations such as fragment lifecycle updates
|
||
|
* or loader ordering behavior.</p>
|
||
|
*
|
||
|
* <p><strong>Note:</strong> This method may be called outside of the fragment lifecycle
|
||
|
* and thus has no ordering guarantees with regard to fragment lifecycle method calls.</p>
|
||
|
*
|
||
|
* <p><strong>Note:</strong> Prior to Android N there was a platform bug that could cause
|
||
|
* <code>setUserVisibleHint</code> to bring a fragment up to the started state before its
|
||
|
* <code>FragmentTransaction</code> had been committed. As some apps relied on this behavior,
|
||
|
* it is preserved for apps that declare a <code>targetSdkVersion</code> of 23 or lower.</p>
|
||
|
*
|
||
|
* @param isVisibleToUser true if this fragment's UI is currently visible to the user (default),
|
||
|
* false if it is not.
|
||
|
*/
|
||
|
public void setUserVisibleHint(boolean isVisibleToUser) {
|
||
|
// Prior to Android N we were simply checking if this fragment had a FragmentManager
|
||
|
// set before we would trigger a deferred start. Unfortunately this also gets set before
|
||
|
// a fragment transaction is committed, so if setUserVisibleHint was called before a
|
||
|
// transaction commit, we would start the fragment way too early. FragmentPagerAdapter
|
||
|
// triggers this situation.
|
||
|
// Unfortunately some apps relied on this timing in overrides of setUserVisibleHint
|
||
|
// on their own fragments, and expected, however erroneously, that after a call to
|
||
|
// super.setUserVisibleHint their onStart methods had been run.
|
||
|
// We preserve this behavior for apps targeting old platform versions below.
|
||
|
boolean useBrokenAddedCheck = false;
|
||
|
Context context = getContext();
|
||
|
if (mFragmentManager != null && mFragmentManager.mHost != null) {
|
||
|
context = mFragmentManager.mHost.getContext();
|
||
|
}
|
||
|
if (context != null) {
|
||
|
useBrokenAddedCheck = context.getApplicationInfo().targetSdkVersion <= VERSION_CODES.M;
|
||
|
}
|
||
|
|
||
|
final boolean performDeferredStart;
|
||
|
if (useBrokenAddedCheck) {
|
||
|
performDeferredStart = !mUserVisibleHint && isVisibleToUser && mState < STARTED
|
||
|
&& mFragmentManager != null;
|
||
|
} else {
|
||
|
performDeferredStart = !mUserVisibleHint && isVisibleToUser && mState < STARTED
|
||
|
&& mFragmentManager != null && isAdded();
|
||
|
}
|
||
|
|
||
|
if (performDeferredStart) {
|
||
|
mFragmentManager.performPendingDeferredStart(this);
|
||
|
}
|
||
|
|
||
|
mUserVisibleHint = isVisibleToUser;
|
||
|
mDeferStart = mState < STARTED && !isVisibleToUser;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return The current value of the user-visible hint on this fragment.
|
||
|
* @see #setUserVisibleHint(boolean)
|
||
|
*/
|
||
|
public boolean getUserVisibleHint() {
|
||
|
return mUserVisibleHint;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the LoaderManager for this fragment, creating it if needed.
|
||
|
*
|
||
|
* @deprecated Use {@link androidx.fragment.app.Fragment#getLoaderManager()}
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public LoaderManager getLoaderManager() {
|
||
|
if (mLoaderManager != null) {
|
||
|
return mLoaderManager;
|
||
|
}
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
mCheckedForLoaderManager = true;
|
||
|
mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, true);
|
||
|
return mLoaderManager;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call {@link Activity#startActivity(Intent)} from the fragment's
|
||
|
* containing Activity.
|
||
|
*
|
||
|
* @param intent The intent to start.
|
||
|
*/
|
||
|
public void startActivity(Intent intent) {
|
||
|
startActivity(intent, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call {@link Activity#startActivity(Intent, Bundle)} from the fragment's
|
||
|
* containing Activity.
|
||
|
*
|
||
|
* @param intent The intent to start.
|
||
|
* @param options Additional options for how the Activity should be started.
|
||
|
* See {@link android.content.Context#startActivity(Intent, Bundle)}
|
||
|
* Context.startActivity(Intent, Bundle)} for more details.
|
||
|
*/
|
||
|
public void startActivity(Intent intent, Bundle options) {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
if (options != null) {
|
||
|
mHost.onStartActivityFromFragment(this, intent, -1, options);
|
||
|
} else {
|
||
|
// Note we want to go through this call for compatibility with
|
||
|
// applications that may have overridden the method.
|
||
|
mHost.onStartActivityFromFragment(this, intent, -1, null /*options*/);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call {@link Activity#startActivityForResult(Intent, int)} from the fragment's
|
||
|
* containing Activity.
|
||
|
*/
|
||
|
public void startActivityForResult(Intent intent, int requestCode) {
|
||
|
startActivityForResult(intent, requestCode, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call {@link Activity#startActivityForResult(Intent, int, Bundle)} from the fragment's
|
||
|
* containing Activity.
|
||
|
*/
|
||
|
public void startActivityForResult(Intent intent, int requestCode, Bundle options) {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
mHost.onStartActivityFromFragment(this, intent, requestCode, options);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @hide
|
||
|
* Call {@link Activity#startActivityForResultAsUser(Intent, int, UserHandle)} from the
|
||
|
* fragment's containing Activity.
|
||
|
*/
|
||
|
public void startActivityForResultAsUser(
|
||
|
Intent intent, int requestCode, Bundle options, UserHandle user) {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
mHost.onStartActivityAsUserFromFragment(this, intent, requestCode, options, user);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call {@link Activity#startIntentSenderForResult(IntentSender, int, Intent, int, int, int,
|
||
|
* Bundle)} from the fragment's containing Activity.
|
||
|
*/
|
||
|
public void startIntentSenderForResult(IntentSender intent, int requestCode,
|
||
|
@Nullable Intent fillInIntent, int flagsMask, int flagsValues, int extraFlags,
|
||
|
Bundle options) throws IntentSender.SendIntentException {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
mHost.onStartIntentSenderFromFragment(this, intent, requestCode, fillInIntent, flagsMask,
|
||
|
flagsValues, extraFlags, options);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Receive the result from a previous call to
|
||
|
* {@link #startActivityForResult(Intent, int)}. This follows the
|
||
|
* related Activity API as described there in
|
||
|
* {@link Activity#onActivityResult(int, int, Intent)}.
|
||
|
*
|
||
|
* @param requestCode The integer request code originally supplied to
|
||
|
* startActivityForResult(), allowing you to identify who this
|
||
|
* result came from.
|
||
|
* @param resultCode The integer result code returned by the child activity
|
||
|
* through its setResult().
|
||
|
* @param data An Intent, which can return result data to the caller
|
||
|
* (various data can be attached to Intent "extras").
|
||
|
*/
|
||
|
public void onActivityResult(int requestCode, int resultCode, Intent data) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Requests permissions to be granted to this application. These permissions
|
||
|
* must be requested in your manifest, they should not be granted to your app,
|
||
|
* and they should have protection level {@link android.content.pm.PermissionInfo
|
||
|
* #PROTECTION_DANGEROUS dangerous}, regardless whether they are declared by
|
||
|
* the platform or a third-party app.
|
||
|
* <p>
|
||
|
* Normal permissions {@link android.content.pm.PermissionInfo#PROTECTION_NORMAL}
|
||
|
* are granted at install time if requested in the manifest. Signature permissions
|
||
|
* {@link android.content.pm.PermissionInfo#PROTECTION_SIGNATURE} are granted at
|
||
|
* install time if requested in the manifest and the signature of your app matches
|
||
|
* the signature of the app declaring the permissions.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* Call {@link #shouldShowRequestPermissionRationale(String)} before calling this API
|
||
|
* to check if the system recommends to show a rationale UI before asking for a permission.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* If your app does not have the requested permissions the user will be presented
|
||
|
* with UI for accepting them. After the user has accepted or rejected the
|
||
|
* requested permissions you will receive a callback on {@link
|
||
|
* #onRequestPermissionsResult(int, String[], int[])} reporting whether the
|
||
|
* permissions were granted or not.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* Note that requesting a permission does not guarantee it will be granted and
|
||
|
* your app should be able to run without having this permission.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* This method may start an activity allowing the user to choose which permissions
|
||
|
* to grant and which to reject. Hence, you should be prepared that your activity
|
||
|
* may be paused and resumed. Further, granting some permissions may require
|
||
|
* a restart of you application. In such a case, the system will recreate the
|
||
|
* activity stack before delivering the result to {@link
|
||
|
* #onRequestPermissionsResult(int, String[], int[])}.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* When checking whether you have a permission you should use {@link
|
||
|
* android.content.Context#checkSelfPermission(String)}.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* Calling this API for permissions already granted to your app would show UI
|
||
|
* to the user to decide whether the app can still hold these permissions. This
|
||
|
* can be useful if the way your app uses data guarded by the permissions
|
||
|
* changes significantly.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* You cannot request a permission if your activity sets {@link
|
||
|
* android.R.styleable#AndroidManifestActivity_noHistory noHistory} to
|
||
|
* <code>true</code> because in this case the activity would not receive
|
||
|
* result callbacks including {@link #onRequestPermissionsResult(int, String[], int[])}.
|
||
|
* </p>
|
||
|
*
|
||
|
* @param permissions The requested permissions. Must me non-null and not empty.
|
||
|
* @param requestCode Application specific request code to match with a result
|
||
|
* reported to {@link #onRequestPermissionsResult(int, String[], int[])}.
|
||
|
* Should be >= 0.
|
||
|
*
|
||
|
* @see #onRequestPermissionsResult(int, String[], int[])
|
||
|
* @see android.content.Context#checkSelfPermission(String)
|
||
|
*/
|
||
|
public final void requestPermissions(@NonNull String[] permissions, int requestCode) {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
|
||
|
}
|
||
|
mHost.onRequestPermissionsFromFragment(this, permissions,requestCode);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Callback for the result from requesting permissions. This method
|
||
|
* is invoked for every call on {@link #requestPermissions(String[], int)}.
|
||
|
* <p>
|
||
|
* <strong>Note:</strong> It is possible that the permissions request interaction
|
||
|
* with the user is interrupted. In this case you will receive empty permissions
|
||
|
* and results arrays which should be treated as a cancellation.
|
||
|
* </p>
|
||
|
*
|
||
|
* @param requestCode The request code passed in {@link #requestPermissions(String[], int)}.
|
||
|
* @param permissions The requested permissions. Never null.
|
||
|
* @param grantResults The grant results for the corresponding permissions
|
||
|
* which is either {@link android.content.pm.PackageManager#PERMISSION_GRANTED}
|
||
|
* or {@link android.content.pm.PackageManager#PERMISSION_DENIED}. Never null.
|
||
|
*
|
||
|
* @see #requestPermissions(String[], int)
|
||
|
*/
|
||
|
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,
|
||
|
@NonNull int[] grantResults) {
|
||
|
/* callback - do nothing */
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Gets whether you should show UI with rationale before requesting a permission.
|
||
|
*
|
||
|
* @param permission A permission your app wants to request.
|
||
|
* @return Whether you should show permission rationale UI.
|
||
|
*
|
||
|
* @see Context#checkSelfPermission(String)
|
||
|
* @see #requestPermissions(String[], int)
|
||
|
* @see #onRequestPermissionsResult(int, String[], int[])
|
||
|
*/
|
||
|
public boolean shouldShowRequestPermissionRationale(@NonNull String permission) {
|
||
|
if (mHost != null) {
|
||
|
return mHost.getContext().getPackageManager()
|
||
|
.shouldShowRequestPermissionRationale(permission);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the LayoutInflater used to inflate Views of this Fragment. The default
|
||
|
* implementation will throw an exception if the Fragment is not attached.
|
||
|
*
|
||
|
* @return The LayoutInflater used to inflate Views of this Fragment.
|
||
|
*/
|
||
|
public LayoutInflater onGetLayoutInflater(Bundle savedInstanceState) {
|
||
|
if (mHost == null) {
|
||
|
throw new IllegalStateException("onGetLayoutInflater() cannot be executed until the "
|
||
|
+ "Fragment is attached to the FragmentManager.");
|
||
|
}
|
||
|
final LayoutInflater result = mHost.onGetLayoutInflater();
|
||
|
if (mHost.onUseFragmentManagerInflaterFactory()) {
|
||
|
getChildFragmentManager(); // Init if needed; use raw implementation below.
|
||
|
result.setPrivateFactory(mChildFragmentManager.getLayoutInflaterFactory());
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the cached LayoutInflater used to inflate Views of this Fragment. If
|
||
|
* {@link #onGetLayoutInflater(Bundle)} has not been called {@link #onGetLayoutInflater(Bundle)}
|
||
|
* will be called with a {@code null} argument and that value will be cached.
|
||
|
* <p>
|
||
|
* The cached LayoutInflater will be replaced immediately prior to
|
||
|
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)} and cleared immediately after
|
||
|
* {@link #onDetach()}.
|
||
|
*
|
||
|
* @return The LayoutInflater used to inflate Views of this Fragment.
|
||
|
*/
|
||
|
public final LayoutInflater getLayoutInflater() {
|
||
|
if (mLayoutInflater == null) {
|
||
|
return performGetLayoutInflater(null);
|
||
|
}
|
||
|
return mLayoutInflater;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calls {@link #onGetLayoutInflater(Bundle)} and caches the result for use by
|
||
|
* {@link #getLayoutInflater()}.
|
||
|
*
|
||
|
* @param savedInstanceState If the fragment is being re-created from
|
||
|
* a previous saved state, this is the state.
|
||
|
* @return The LayoutInflater used to inflate Views of this Fragment.
|
||
|
*/
|
||
|
LayoutInflater performGetLayoutInflater(Bundle savedInstanceState) {
|
||
|
LayoutInflater layoutInflater = onGetLayoutInflater(savedInstanceState);
|
||
|
mLayoutInflater = layoutInflater;
|
||
|
return mLayoutInflater;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @deprecated Use {@link #onInflate(Context, AttributeSet, Bundle)} instead.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
@CallSuper
|
||
|
public void onInflate(AttributeSet attrs, Bundle savedInstanceState) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a fragment is being created as part of a view layout
|
||
|
* inflation, typically from setting the content view of an activity. This
|
||
|
* may be called immediately after the fragment is created from a <fragment>
|
||
|
* tag in a layout file. Note this is <em>before</em> the fragment's
|
||
|
* {@link #onAttach(Activity)} has been called; all you should do here is
|
||
|
* parse the attributes and save them away.
|
||
|
*
|
||
|
* <p>This is called every time the fragment is inflated, even if it is
|
||
|
* being inflated into a new instance with saved state. It typically makes
|
||
|
* sense to re-parse the parameters each time, to allow them to change with
|
||
|
* different configurations.</p>
|
||
|
*
|
||
|
* <p>Here is a typical implementation of a fragment that can take parameters
|
||
|
* both through attributes supplied here as well from {@link #getArguments()}:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentArguments.java
|
||
|
* fragment}
|
||
|
*
|
||
|
* <p>Note that parsing the XML attributes uses a "styleable" resource. The
|
||
|
* declaration for the styleable used here is:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/res/values/attrs.xml fragment_arguments}
|
||
|
*
|
||
|
* <p>The fragment can then be declared within its activity's content layout
|
||
|
* through a tag like this:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/res/layout/fragment_arguments.xml from_attributes}
|
||
|
*
|
||
|
* <p>This fragment can also be created dynamically from arguments given
|
||
|
* at runtime in the arguments Bundle; here is an example of doing so at
|
||
|
* creation of the containing activity:</p>
|
||
|
*
|
||
|
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentArguments.java
|
||
|
* create}
|
||
|
*
|
||
|
* @param context The Context that is inflating this fragment.
|
||
|
* @param attrs The attributes at the tag where the fragment is
|
||
|
* being created.
|
||
|
* @param savedInstanceState If the fragment is being re-created from
|
||
|
* a previous saved state, this is the state.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onInflate(Context context, AttributeSet attrs, Bundle savedInstanceState) {
|
||
|
onInflate(attrs, savedInstanceState);
|
||
|
mCalled = true;
|
||
|
|
||
|
TypedArray a = context.obtainStyledAttributes(attrs,
|
||
|
com.android.internal.R.styleable.Fragment);
|
||
|
setEnterTransition(loadTransition(context, a, getEnterTransition(), null,
|
||
|
com.android.internal.R.styleable.Fragment_fragmentEnterTransition));
|
||
|
setReturnTransition(loadTransition(context, a, getReturnTransition(),
|
||
|
USE_DEFAULT_TRANSITION,
|
||
|
com.android.internal.R.styleable.Fragment_fragmentReturnTransition));
|
||
|
setExitTransition(loadTransition(context, a, getExitTransition(), null,
|
||
|
com.android.internal.R.styleable.Fragment_fragmentExitTransition));
|
||
|
|
||
|
setReenterTransition(loadTransition(context, a, getReenterTransition(),
|
||
|
USE_DEFAULT_TRANSITION,
|
||
|
com.android.internal.R.styleable.Fragment_fragmentReenterTransition));
|
||
|
setSharedElementEnterTransition(loadTransition(context, a,
|
||
|
getSharedElementEnterTransition(), null,
|
||
|
com.android.internal.R.styleable.Fragment_fragmentSharedElementEnterTransition));
|
||
|
setSharedElementReturnTransition(loadTransition(context, a,
|
||
|
getSharedElementReturnTransition(), USE_DEFAULT_TRANSITION,
|
||
|
com.android.internal.R.styleable.Fragment_fragmentSharedElementReturnTransition));
|
||
|
boolean isEnterSet;
|
||
|
boolean isReturnSet;
|
||
|
if (mAnimationInfo == null) {
|
||
|
isEnterSet = false;
|
||
|
isReturnSet = false;
|
||
|
} else {
|
||
|
isEnterSet = mAnimationInfo.mAllowEnterTransitionOverlap != null;
|
||
|
isReturnSet = mAnimationInfo.mAllowReturnTransitionOverlap != null;
|
||
|
}
|
||
|
if (!isEnterSet) {
|
||
|
setAllowEnterTransitionOverlap(a.getBoolean(
|
||
|
com.android.internal.R.styleable.Fragment_fragmentAllowEnterTransitionOverlap,
|
||
|
true));
|
||
|
}
|
||
|
if (!isReturnSet) {
|
||
|
setAllowReturnTransitionOverlap(a.getBoolean(
|
||
|
com.android.internal.R.styleable.Fragment_fragmentAllowReturnTransitionOverlap,
|
||
|
true));
|
||
|
}
|
||
|
a.recycle();
|
||
|
|
||
|
final Activity hostActivity = mHost == null ? null : mHost.getActivity();
|
||
|
if (hostActivity != null) {
|
||
|
mCalled = false;
|
||
|
onInflate(hostActivity, attrs, savedInstanceState);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @deprecated Use {@link #onInflate(Context, AttributeSet, Bundle)} instead.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
@CallSuper
|
||
|
public void onInflate(Activity activity, AttributeSet attrs, Bundle savedInstanceState) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a fragment is attached as a child of this fragment.
|
||
|
*
|
||
|
* <p>This is called after the attached fragment's <code>onAttach</code> and before
|
||
|
* the attached fragment's <code>onCreate</code> if the fragment has not yet had a previous
|
||
|
* call to <code>onCreate</code>.</p>
|
||
|
*
|
||
|
* @param childFragment child fragment being attached
|
||
|
*/
|
||
|
public void onAttachFragment(Fragment childFragment) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a fragment is first attached to its context.
|
||
|
* {@link #onCreate(Bundle)} will be called after this.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onAttach(Context context) {
|
||
|
mCalled = true;
|
||
|
final Activity hostActivity = mHost == null ? null : mHost.getActivity();
|
||
|
if (hostActivity != null) {
|
||
|
mCalled = false;
|
||
|
onAttach(hostActivity);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @deprecated Use {@link #onAttach(Context)} instead.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
@CallSuper
|
||
|
public void onAttach(Activity activity) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a fragment loads an animation.
|
||
|
*/
|
||
|
public Animator onCreateAnimator(int transit, boolean enter, int nextAnim) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to do initial creation of a fragment. This is called after
|
||
|
* {@link #onAttach(Activity)} and before
|
||
|
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}, but is not called if the fragment
|
||
|
* instance is retained across Activity re-creation (see {@link #setRetainInstance(boolean)}).
|
||
|
*
|
||
|
* <p>Note that this can be called while the fragment's activity is
|
||
|
* still in the process of being created. As such, you can not rely
|
||
|
* on things like the activity's content view hierarchy being initialized
|
||
|
* at this point. If you want to do work once the activity itself is
|
||
|
* created, see {@link #onActivityCreated(Bundle)}.
|
||
|
*
|
||
|
* <p>If your app's <code>targetSdkVersion</code> is {@link android.os.Build.VERSION_CODES#M}
|
||
|
* or lower, child fragments being restored from the savedInstanceState are restored after
|
||
|
* <code>onCreate</code> returns. When targeting {@link android.os.Build.VERSION_CODES#N} or
|
||
|
* above and running on an N or newer platform version
|
||
|
* they are restored by <code>Fragment.onCreate</code>.</p>
|
||
|
*
|
||
|
* @param savedInstanceState If the fragment is being re-created from
|
||
|
* a previous saved state, this is the state.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onCreate(@Nullable Bundle savedInstanceState) {
|
||
|
mCalled = true;
|
||
|
final Context context = getContext();
|
||
|
final int version = context != null ? context.getApplicationInfo().targetSdkVersion : 0;
|
||
|
if (version >= Build.VERSION_CODES.N) {
|
||
|
restoreChildFragmentState(savedInstanceState, true);
|
||
|
if (mChildFragmentManager != null
|
||
|
&& !mChildFragmentManager.isStateAtLeast(Fragment.CREATED)) {
|
||
|
mChildFragmentManager.dispatchCreate();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void restoreChildFragmentState(@Nullable Bundle savedInstanceState, boolean provideNonConfig) {
|
||
|
if (savedInstanceState != null) {
|
||
|
Parcelable p = savedInstanceState.getParcelable(Activity.FRAGMENTS_TAG);
|
||
|
if (p != null) {
|
||
|
if (mChildFragmentManager == null) {
|
||
|
instantiateChildFragmentManager();
|
||
|
}
|
||
|
mChildFragmentManager.restoreAllState(p, provideNonConfig ? mChildNonConfig : null);
|
||
|
mChildNonConfig = null;
|
||
|
mChildFragmentManager.dispatchCreate();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to have the fragment instantiate its user interface view.
|
||
|
* This is optional, and non-graphical fragments can return null (which
|
||
|
* is the default implementation). This will be called between
|
||
|
* {@link #onCreate(Bundle)} and {@link #onActivityCreated(Bundle)}.
|
||
|
*
|
||
|
* <p>If you return a View from here, you will later be called in
|
||
|
* {@link #onDestroyView} when the view is being released.
|
||
|
*
|
||
|
* @param inflater The LayoutInflater object that can be used to inflate
|
||
|
* any views in the fragment,
|
||
|
* @param container If non-null, this is the parent view that the fragment's
|
||
|
* UI should be attached to. The fragment should not add the view itself,
|
||
|
* but this can be used to generate the LayoutParams of the view.
|
||
|
* @param savedInstanceState If non-null, this fragment is being re-constructed
|
||
|
* from a previous saved state as given here.
|
||
|
*
|
||
|
* @return Return the View for the fragment's UI, or null.
|
||
|
*/
|
||
|
@Nullable
|
||
|
public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container,
|
||
|
Bundle savedInstanceState) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called immediately after {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}
|
||
|
* has returned, but before any saved state has been restored in to the view.
|
||
|
* This gives subclasses a chance to initialize themselves once
|
||
|
* they know their view hierarchy has been completely created. The fragment's
|
||
|
* view hierarchy is not however attached to its parent at this point.
|
||
|
* @param view The View returned by {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}.
|
||
|
* @param savedInstanceState If non-null, this fragment is being re-constructed
|
||
|
* from a previous saved state as given here.
|
||
|
*/
|
||
|
public void onViewCreated(View view, @Nullable Bundle savedInstanceState) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the root view for the fragment's layout (the one returned by {@link #onCreateView}),
|
||
|
* if provided.
|
||
|
*
|
||
|
* @return The fragment's root view, or null if it has no layout.
|
||
|
*/
|
||
|
@Nullable
|
||
|
public View getView() {
|
||
|
return mView;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the fragment's activity has been created and this
|
||
|
* fragment's view hierarchy instantiated. It can be used to do final
|
||
|
* initialization once these pieces are in place, such as retrieving
|
||
|
* views or restoring state. It is also useful for fragments that use
|
||
|
* {@link #setRetainInstance(boolean)} to retain their instance,
|
||
|
* as this callback tells the fragment when it is fully associated with
|
||
|
* the new activity instance. This is called after {@link #onCreateView}
|
||
|
* and before {@link #onViewStateRestored(Bundle)}.
|
||
|
*
|
||
|
* @param savedInstanceState If the fragment is being re-created from
|
||
|
* a previous saved state, this is the state.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onActivityCreated(@Nullable Bundle savedInstanceState) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when all saved state has been restored into the view hierarchy
|
||
|
* of the fragment. This can be used to do initialization based on saved
|
||
|
* state that you are letting the view hierarchy track itself, such as
|
||
|
* whether check box widgets are currently checked. This is called
|
||
|
* after {@link #onActivityCreated(Bundle)} and before
|
||
|
* {@link #onStart()}.
|
||
|
*
|
||
|
* @param savedInstanceState If the fragment is being re-created from
|
||
|
* a previous saved state, this is the state.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onViewStateRestored(Bundle savedInstanceState) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the Fragment is visible to the user. This is generally
|
||
|
* tied to {@link Activity#onStart() Activity.onStart} of the containing
|
||
|
* Activity's lifecycle.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onStart() {
|
||
|
mCalled = true;
|
||
|
|
||
|
if (!mLoadersStarted) {
|
||
|
mLoadersStarted = true;
|
||
|
if (!mCheckedForLoaderManager) {
|
||
|
mCheckedForLoaderManager = true;
|
||
|
mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, false);
|
||
|
} else if (mLoaderManager != null) {
|
||
|
mLoaderManager.doStart();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the fragment is visible to the user and actively running.
|
||
|
* This is generally
|
||
|
* tied to {@link Activity#onResume() Activity.onResume} of the containing
|
||
|
* Activity's lifecycle.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onResume() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to ask the fragment to save its current dynamic state, so it
|
||
|
* can later be reconstructed in a new instance of its process is
|
||
|
* restarted. If a new instance of the fragment later needs to be
|
||
|
* created, the data you place in the Bundle here will be available
|
||
|
* in the Bundle given to {@link #onCreate(Bundle)},
|
||
|
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}, and
|
||
|
* {@link #onActivityCreated(Bundle)}.
|
||
|
*
|
||
|
* <p>This corresponds to {@link Activity#onSaveInstanceState(Bundle)
|
||
|
* Activity.onSaveInstanceState(Bundle)} and most of the discussion there
|
||
|
* applies here as well. Note however: <em>this method may be called
|
||
|
* at any time before {@link #onDestroy()}</em>. There are many situations
|
||
|
* where a fragment may be mostly torn down (such as when placed on the
|
||
|
* back stack with no UI showing), but its state will not be saved until
|
||
|
* its owning activity actually needs to save its state.
|
||
|
*
|
||
|
* @param outState Bundle in which to place your saved state.
|
||
|
*/
|
||
|
public void onSaveInstanceState(Bundle outState) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the Fragment's activity changes from fullscreen mode to multi-window mode and
|
||
|
* visa-versa. This is generally tied to {@link Activity#onMultiWindowModeChanged} of the
|
||
|
* containing Activity. This method provides the same configuration that will be sent in the
|
||
|
* following {@link #onConfigurationChanged(Configuration)} call after the activity enters this
|
||
|
* mode.
|
||
|
*
|
||
|
* @param isInMultiWindowMode True if the activity is in multi-window mode.
|
||
|
* @param newConfig The new configuration of the activity with the state
|
||
|
* {@param isInMultiWindowMode}.
|
||
|
*/
|
||
|
public void onMultiWindowModeChanged(boolean isInMultiWindowMode, Configuration newConfig) {
|
||
|
onMultiWindowModeChanged(isInMultiWindowMode);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the Fragment's activity changes from fullscreen mode to multi-window mode and
|
||
|
* visa-versa. This is generally tied to {@link Activity#onMultiWindowModeChanged} of the
|
||
|
* containing Activity.
|
||
|
*
|
||
|
* @param isInMultiWindowMode True if the activity is in multi-window mode.
|
||
|
*
|
||
|
* @deprecated Use {@link #onMultiWindowModeChanged(boolean, Configuration)} instead.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public void onMultiWindowModeChanged(boolean isInMultiWindowMode) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called by the system when the activity changes to and from picture-in-picture mode. This is
|
||
|
* generally tied to {@link Activity#onPictureInPictureModeChanged} of the containing Activity.
|
||
|
* This method provides the same configuration that will be sent in the following
|
||
|
* {@link #onConfigurationChanged(Configuration)} call after the activity enters this mode.
|
||
|
*
|
||
|
* @param isInPictureInPictureMode True if the activity is in picture-in-picture mode.
|
||
|
* @param newConfig The new configuration of the activity with the state
|
||
|
* {@param isInPictureInPictureMode}.
|
||
|
*/
|
||
|
public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode,
|
||
|
Configuration newConfig) {
|
||
|
onPictureInPictureModeChanged(isInPictureInPictureMode);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called by the system when the activity changes to and from picture-in-picture mode. This is
|
||
|
* generally tied to {@link Activity#onPictureInPictureModeChanged} of the containing Activity.
|
||
|
*
|
||
|
* @param isInPictureInPictureMode True if the activity is in picture-in-picture mode.
|
||
|
*
|
||
|
* @deprecated Use {@link #onPictureInPictureModeChanged(boolean, Configuration)} instead.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode) {
|
||
|
}
|
||
|
|
||
|
@CallSuper
|
||
|
public void onConfigurationChanged(Configuration newConfig) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the Fragment is no longer resumed. This is generally
|
||
|
* tied to {@link Activity#onPause() Activity.onPause} of the containing
|
||
|
* Activity's lifecycle.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onPause() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the Fragment is no longer started. This is generally
|
||
|
* tied to {@link Activity#onStop() Activity.onStop} of the containing
|
||
|
* Activity's lifecycle.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onStop() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
@CallSuper
|
||
|
public void onLowMemory() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
@CallSuper
|
||
|
public void onTrimMemory(int level) {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the view previously created by {@link #onCreateView} has
|
||
|
* been detached from the fragment. The next time the fragment needs
|
||
|
* to be displayed, a new view will be created. This is called
|
||
|
* after {@link #onStop()} and before {@link #onDestroy()}. It is called
|
||
|
* <em>regardless</em> of whether {@link #onCreateView} returned a
|
||
|
* non-null view. Internally it is called after the view's state has
|
||
|
* been saved but before it has been removed from its parent.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onDestroyView() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the fragment is no longer in use. This is called
|
||
|
* after {@link #onStop()} and before {@link #onDetach()}.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onDestroy() {
|
||
|
mCalled = true;
|
||
|
//Log.v("foo", "onDestroy: mCheckedForLoaderManager=" + mCheckedForLoaderManager
|
||
|
// + " mLoaderManager=" + mLoaderManager);
|
||
|
if (!mCheckedForLoaderManager) {
|
||
|
mCheckedForLoaderManager = true;
|
||
|
mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, false);
|
||
|
}
|
||
|
if (mLoaderManager != null) {
|
||
|
mLoaderManager.doDestroy();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called by the fragment manager once this fragment has been removed,
|
||
|
* so that we don't have any left-over state if the application decides
|
||
|
* to re-use the instance. This only clears state that the framework
|
||
|
* internally manages, not things the application sets.
|
||
|
*/
|
||
|
void initState() {
|
||
|
mIndex = -1;
|
||
|
mWho = null;
|
||
|
mAdded = false;
|
||
|
mRemoving = false;
|
||
|
mFromLayout = false;
|
||
|
mInLayout = false;
|
||
|
mRestored = false;
|
||
|
mBackStackNesting = 0;
|
||
|
mFragmentManager = null;
|
||
|
mChildFragmentManager = null;
|
||
|
mHost = null;
|
||
|
mFragmentId = 0;
|
||
|
mContainerId = 0;
|
||
|
mTag = null;
|
||
|
mHidden = false;
|
||
|
mDetached = false;
|
||
|
mRetaining = false;
|
||
|
mLoaderManager = null;
|
||
|
mLoadersStarted = false;
|
||
|
mCheckedForLoaderManager = false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the fragment is no longer attached to its activity. This is called after
|
||
|
* {@link #onDestroy()}, except in the cases where the fragment instance is retained across
|
||
|
* Activity re-creation (see {@link #setRetainInstance(boolean)}), in which case it is called
|
||
|
* after {@link #onStop()}.
|
||
|
*/
|
||
|
@CallSuper
|
||
|
public void onDetach() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Initialize the contents of the Activity's standard options menu. You
|
||
|
* should place your menu items in to <var>menu</var>. For this method
|
||
|
* to be called, you must have first called {@link #setHasOptionsMenu}. See
|
||
|
* {@link Activity#onCreateOptionsMenu(Menu) Activity.onCreateOptionsMenu}
|
||
|
* for more information.
|
||
|
*
|
||
|
* @param menu The options menu in which you place your items.
|
||
|
*
|
||
|
* @see #setHasOptionsMenu
|
||
|
* @see #onPrepareOptionsMenu
|
||
|
* @see #onOptionsItemSelected
|
||
|
*/
|
||
|
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Prepare the Screen's standard options menu to be displayed. This is
|
||
|
* called right before the menu is shown, every time it is shown. You can
|
||
|
* use this method to efficiently enable/disable items or otherwise
|
||
|
* dynamically modify the contents. See
|
||
|
* {@link Activity#onPrepareOptionsMenu(Menu) Activity.onPrepareOptionsMenu}
|
||
|
* for more information.
|
||
|
*
|
||
|
* @param menu The options menu as last shown or first initialized by
|
||
|
* onCreateOptionsMenu().
|
||
|
*
|
||
|
* @see #setHasOptionsMenu
|
||
|
* @see #onCreateOptionsMenu
|
||
|
*/
|
||
|
public void onPrepareOptionsMenu(Menu menu) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when this fragment's option menu items are no longer being
|
||
|
* included in the overall options menu. Receiving this call means that
|
||
|
* the menu needed to be rebuilt, but this fragment's items were not
|
||
|
* included in the newly built menu (its {@link #onCreateOptionsMenu(Menu, MenuInflater)}
|
||
|
* was not called).
|
||
|
*/
|
||
|
public void onDestroyOptionsMenu() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever an item in your options menu is selected.
|
||
|
* The default implementation simply returns false to have the normal
|
||
|
* processing happen (calling the item's Runnable or sending a message to
|
||
|
* its Handler as appropriate). You can use this method for any items
|
||
|
* for which you would like to do processing without those other
|
||
|
* facilities.
|
||
|
*
|
||
|
* <p>Derived classes should call through to the base class for it to
|
||
|
* perform the default menu handling.
|
||
|
*
|
||
|
* @param item The menu item that was selected.
|
||
|
*
|
||
|
* @return boolean Return false to allow normal menu processing to
|
||
|
* proceed, true to consume it here.
|
||
|
*
|
||
|
* @see #onCreateOptionsMenu
|
||
|
*/
|
||
|
public boolean onOptionsItemSelected(MenuItem item) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever the options menu is being closed (either by the user canceling
|
||
|
* the menu with the back/menu button, or when an item is selected).
|
||
|
*
|
||
|
* @param menu The options menu as last shown or first initialized by
|
||
|
* onCreateOptionsMenu().
|
||
|
*/
|
||
|
public void onOptionsMenuClosed(Menu menu) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a context menu for the {@code view} is about to be shown.
|
||
|
* Unlike {@link #onCreateOptionsMenu}, this will be called every
|
||
|
* time the context menu is about to be shown and should be populated for
|
||
|
* the view (or item inside the view for {@link AdapterView} subclasses,
|
||
|
* this can be found in the {@code menuInfo})).
|
||
|
* <p>
|
||
|
* Use {@link #onContextItemSelected(android.view.MenuItem)} to know when an
|
||
|
* item has been selected.
|
||
|
* <p>
|
||
|
* The default implementation calls up to
|
||
|
* {@link Activity#onCreateContextMenu Activity.onCreateContextMenu}, though
|
||
|
* you can not call this implementation if you don't want that behavior.
|
||
|
* <p>
|
||
|
* It is not safe to hold onto the context menu after this method returns.
|
||
|
* {@inheritDoc}
|
||
|
*/
|
||
|
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo) {
|
||
|
getActivity().onCreateContextMenu(menu, v, menuInfo);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Registers a context menu to be shown for the given view (multiple views
|
||
|
* can show the context menu). This method will set the
|
||
|
* {@link OnCreateContextMenuListener} on the view to this fragment, so
|
||
|
* {@link #onCreateContextMenu(ContextMenu, View, ContextMenuInfo)} will be
|
||
|
* called when it is time to show the context menu.
|
||
|
*
|
||
|
* @see #unregisterForContextMenu(View)
|
||
|
* @param view The view that should show a context menu.
|
||
|
*/
|
||
|
public void registerForContextMenu(View view) {
|
||
|
view.setOnCreateContextMenuListener(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Prevents a context menu to be shown for the given view. This method will
|
||
|
* remove the {@link OnCreateContextMenuListener} on the view.
|
||
|
*
|
||
|
* @see #registerForContextMenu(View)
|
||
|
* @param view The view that should stop showing a context menu.
|
||
|
*/
|
||
|
public void unregisterForContextMenu(View view) {
|
||
|
view.setOnCreateContextMenuListener(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever an item in a context menu is selected. The
|
||
|
* default implementation simply returns false to have the normal processing
|
||
|
* happen (calling the item's Runnable or sending a message to its Handler
|
||
|
* as appropriate). You can use this method for any items for which you
|
||
|
* would like to do processing without those other facilities.
|
||
|
* <p>
|
||
|
* Use {@link MenuItem#getMenuInfo()} to get extra information set by the
|
||
|
* View that added this menu item.
|
||
|
* <p>
|
||
|
* Derived classes should call through to the base class for it to perform
|
||
|
* the default menu handling.
|
||
|
*
|
||
|
* @param item The context menu item that was selected.
|
||
|
* @return boolean Return false to allow normal context menu processing to
|
||
|
* proceed, true to consume it here.
|
||
|
*/
|
||
|
public boolean onContextItemSelected(MenuItem item) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* When custom transitions are used with Fragments, the enter transition callback
|
||
|
* is called when this Fragment is attached or detached when not popping the back stack.
|
||
|
*
|
||
|
* @param callback Used to manipulate the shared element transitions on this Fragment
|
||
|
* when added not as a pop from the back stack.
|
||
|
*/
|
||
|
public void setEnterSharedElementCallback(SharedElementCallback callback) {
|
||
|
if (callback == null) {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return; // already a null callback
|
||
|
}
|
||
|
callback = SharedElementCallback.NULL_CALLBACK;
|
||
|
}
|
||
|
ensureAnimationInfo().mEnterTransitionCallback = callback;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* When custom transitions are used with Fragments, the exit transition callback
|
||
|
* is called when this Fragment is attached or detached when popping the back stack.
|
||
|
*
|
||
|
* @param callback Used to manipulate the shared element transitions on this Fragment
|
||
|
* when added as a pop from the back stack.
|
||
|
*/
|
||
|
public void setExitSharedElementCallback(SharedElementCallback callback) {
|
||
|
if (callback == null) {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return; // already a null callback
|
||
|
}
|
||
|
callback = SharedElementCallback.NULL_CALLBACK;
|
||
|
}
|
||
|
ensureAnimationInfo().mExitTransitionCallback = callback;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the Transition that will be used to move Views into the initial scene. The entering
|
||
|
* Views will be those that are regular Views or ViewGroups that have
|
||
|
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
|
||
|
* {@link android.transition.Visibility} as entering is governed by changing visibility from
|
||
|
* {@link View#INVISIBLE} to {@link View#VISIBLE}. If <code>transition</code> is null,
|
||
|
* entering Views will remain unaffected.
|
||
|
*
|
||
|
* @param transition The Transition to use to move Views into the initial Scene.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentEnterTransition
|
||
|
*/
|
||
|
public void setEnterTransition(Transition transition) {
|
||
|
if (shouldChangeTransition(transition, null)) {
|
||
|
ensureAnimationInfo().mEnterTransition = transition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the Transition that will be used to move Views into the initial scene. The entering
|
||
|
* Views will be those that are regular Views or ViewGroups that have
|
||
|
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
|
||
|
* {@link android.transition.Visibility} as entering is governed by changing visibility from
|
||
|
* {@link View#INVISIBLE} to {@link View#VISIBLE}.
|
||
|
*
|
||
|
* @return the Transition to use to move Views into the initial Scene.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentEnterTransition
|
||
|
*/
|
||
|
public Transition getEnterTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mEnterTransition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the Transition that will be used to move Views out of the scene when the Fragment is
|
||
|
* preparing to be removed, hidden, or detached because of popping the back stack. The exiting
|
||
|
* Views will be those that are regular Views or ViewGroups that have
|
||
|
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
|
||
|
* {@link android.transition.Visibility} as entering is governed by changing visibility from
|
||
|
* {@link View#VISIBLE} to {@link View#INVISIBLE}. If <code>transition</code> is null,
|
||
|
* entering Views will remain unaffected. If nothing is set, the default will be to
|
||
|
* use the same value as set in {@link #setEnterTransition(android.transition.Transition)}.
|
||
|
*
|
||
|
* @param transition The Transition to use to move Views out of the Scene when the Fragment
|
||
|
* is preparing to close.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentExitTransition
|
||
|
*/
|
||
|
public void setReturnTransition(Transition transition) {
|
||
|
if (shouldChangeTransition(transition, USE_DEFAULT_TRANSITION)) {
|
||
|
ensureAnimationInfo().mReturnTransition = transition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the Transition that will be used to move Views out of the scene when the Fragment is
|
||
|
* preparing to be removed, hidden, or detached because of popping the back stack. The exiting
|
||
|
* Views will be those that are regular Views or ViewGroups that have
|
||
|
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
|
||
|
* {@link android.transition.Visibility} as entering is governed by changing visibility from
|
||
|
* {@link View#VISIBLE} to {@link View#INVISIBLE}. If <code>transition</code> is null,
|
||
|
* entering Views will remain unaffected.
|
||
|
*
|
||
|
* @return the Transition to use to move Views out of the Scene when the Fragment
|
||
|
* is preparing to close.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentExitTransition
|
||
|
*/
|
||
|
public Transition getReturnTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mReturnTransition == USE_DEFAULT_TRANSITION ? getEnterTransition()
|
||
|
: mAnimationInfo.mReturnTransition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the Transition that will be used to move Views out of the scene when the
|
||
|
* fragment is removed, hidden, or detached when not popping the back stack.
|
||
|
* The exiting Views will be those that are regular Views or ViewGroups that
|
||
|
* have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
|
||
|
* {@link android.transition.Visibility} as exiting is governed by changing visibility
|
||
|
* from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null, the views will
|
||
|
* remain unaffected.
|
||
|
*
|
||
|
* @param transition The Transition to use to move Views out of the Scene when the Fragment
|
||
|
* is being closed not due to popping the back stack.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentExitTransition
|
||
|
*/
|
||
|
public void setExitTransition(Transition transition) {
|
||
|
if (shouldChangeTransition(transition, null)) {
|
||
|
ensureAnimationInfo().mExitTransition = transition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the Transition that will be used to move Views out of the scene when the
|
||
|
* fragment is removed, hidden, or detached when not popping the back stack.
|
||
|
* The exiting Views will be those that are regular Views or ViewGroups that
|
||
|
* have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
|
||
|
* {@link android.transition.Visibility} as exiting is governed by changing visibility
|
||
|
* from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null, the views will
|
||
|
* remain unaffected.
|
||
|
*
|
||
|
* @return the Transition to use to move Views out of the Scene when the Fragment
|
||
|
* is being closed not due to popping the back stack.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentExitTransition
|
||
|
*/
|
||
|
public Transition getExitTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mExitTransition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the Transition that will be used to move Views in to the scene when returning due
|
||
|
* to popping a back stack. The entering Views will be those that are regular Views
|
||
|
* or ViewGroups that have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions
|
||
|
* will extend {@link android.transition.Visibility} as exiting is governed by changing
|
||
|
* visibility from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null,
|
||
|
* the views will remain unaffected. If nothing is set, the default will be to use the same
|
||
|
* transition as {@link #setExitTransition(android.transition.Transition)}.
|
||
|
*
|
||
|
* @param transition The Transition to use to move Views into the scene when reentering from a
|
||
|
* previously-started Activity.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentReenterTransition
|
||
|
*/
|
||
|
public void setReenterTransition(Transition transition) {
|
||
|
if (shouldChangeTransition(transition, USE_DEFAULT_TRANSITION)) {
|
||
|
ensureAnimationInfo().mReenterTransition = transition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the Transition that will be used to move Views in to the scene when returning due
|
||
|
* to popping a back stack. The entering Views will be those that are regular Views
|
||
|
* or ViewGroups that have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions
|
||
|
* will extend {@link android.transition.Visibility} as exiting is governed by changing
|
||
|
* visibility from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null,
|
||
|
* the views will remain unaffected. If nothing is set, the default will be to use the same
|
||
|
* transition as {@link #setExitTransition(android.transition.Transition)}.
|
||
|
*
|
||
|
* @return the Transition to use to move Views into the scene when reentering from a
|
||
|
* previously-started Activity.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentReenterTransition
|
||
|
*/
|
||
|
public Transition getReenterTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mReenterTransition == USE_DEFAULT_TRANSITION ? getExitTransition()
|
||
|
: mAnimationInfo.mReenterTransition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the Transition that will be used for shared elements transferred into the content
|
||
|
* Scene. Typical Transitions will affect size and location, such as
|
||
|
* {@link android.transition.ChangeBounds}. A null
|
||
|
* value will cause transferred shared elements to blink to the final position.
|
||
|
*
|
||
|
* @param transition The Transition to use for shared elements transferred into the content
|
||
|
* Scene.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentSharedElementEnterTransition
|
||
|
*/
|
||
|
public void setSharedElementEnterTransition(Transition transition) {
|
||
|
if (shouldChangeTransition(transition, null)) {
|
||
|
ensureAnimationInfo().mSharedElementEnterTransition = transition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the Transition that will be used for shared elements transferred into the content
|
||
|
* Scene. Typical Transitions will affect size and location, such as
|
||
|
* {@link android.transition.ChangeBounds}. A null
|
||
|
* value will cause transferred shared elements to blink to the final position.
|
||
|
*
|
||
|
* @return The Transition to use for shared elements transferred into the content
|
||
|
* Scene.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentSharedElementEnterTransition
|
||
|
*/
|
||
|
public Transition getSharedElementEnterTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mSharedElementEnterTransition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the Transition that will be used for shared elements transferred back during a
|
||
|
* pop of the back stack. This Transition acts in the leaving Fragment.
|
||
|
* Typical Transitions will affect size and location, such as
|
||
|
* {@link android.transition.ChangeBounds}. A null
|
||
|
* value will cause transferred shared elements to blink to the final position.
|
||
|
* If no value is set, the default will be to use the same value as
|
||
|
* {@link #setSharedElementEnterTransition(android.transition.Transition)}.
|
||
|
*
|
||
|
* @param transition The Transition to use for shared elements transferred out of the content
|
||
|
* Scene.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentSharedElementReturnTransition
|
||
|
*/
|
||
|
public void setSharedElementReturnTransition(Transition transition) {
|
||
|
if (shouldChangeTransition(transition, USE_DEFAULT_TRANSITION)) {
|
||
|
ensureAnimationInfo().mSharedElementReturnTransition = transition;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the Transition that will be used for shared elements transferred back during a
|
||
|
* pop of the back stack. This Transition acts in the leaving Fragment.
|
||
|
* Typical Transitions will affect size and location, such as
|
||
|
* {@link android.transition.ChangeBounds}. A null
|
||
|
* value will cause transferred shared elements to blink to the final position.
|
||
|
* If no value is set, the default will be to use the same value as
|
||
|
* {@link #setSharedElementEnterTransition(android.transition.Transition)}.
|
||
|
*
|
||
|
* @return The Transition to use for shared elements transferred out of the content
|
||
|
* Scene.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentSharedElementReturnTransition
|
||
|
*/
|
||
|
public Transition getSharedElementReturnTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mSharedElementReturnTransition == USE_DEFAULT_TRANSITION
|
||
|
? getSharedElementEnterTransition()
|
||
|
: mAnimationInfo.mSharedElementReturnTransition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets whether the exit transition and enter transition overlap or not.
|
||
|
* When true, the enter transition will start as soon as possible. When false, the
|
||
|
* enter transition will wait until the exit transition completes before starting.
|
||
|
*
|
||
|
* @param allow true to start the enter transition when possible or false to
|
||
|
* wait until the exiting transition completes.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentAllowEnterTransitionOverlap
|
||
|
*/
|
||
|
public void setAllowEnterTransitionOverlap(boolean allow) {
|
||
|
ensureAnimationInfo().mAllowEnterTransitionOverlap = allow;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns whether the exit transition and enter transition overlap or not.
|
||
|
* When true, the enter transition will start as soon as possible. When false, the
|
||
|
* enter transition will wait until the exit transition completes before starting.
|
||
|
*
|
||
|
* @return true when the enter transition should start as soon as possible or false to
|
||
|
* when it should wait until the exiting transition completes.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentAllowEnterTransitionOverlap
|
||
|
*/
|
||
|
public boolean getAllowEnterTransitionOverlap() {
|
||
|
return (mAnimationInfo == null || mAnimationInfo.mAllowEnterTransitionOverlap == null)
|
||
|
? true : mAnimationInfo.mAllowEnterTransitionOverlap;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets whether the return transition and reenter transition overlap or not.
|
||
|
* When true, the reenter transition will start as soon as possible. When false, the
|
||
|
* reenter transition will wait until the return transition completes before starting.
|
||
|
*
|
||
|
* @param allow true to start the reenter transition when possible or false to wait until the
|
||
|
* return transition completes.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentAllowReturnTransitionOverlap
|
||
|
*/
|
||
|
public void setAllowReturnTransitionOverlap(boolean allow) {
|
||
|
ensureAnimationInfo().mAllowReturnTransitionOverlap = allow;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns whether the return transition and reenter transition overlap or not.
|
||
|
* When true, the reenter transition will start as soon as possible. When false, the
|
||
|
* reenter transition will wait until the return transition completes before starting.
|
||
|
*
|
||
|
* @return true to start the reenter transition when possible or false to wait until the
|
||
|
* return transition completes.
|
||
|
* @attr ref android.R.styleable#Fragment_fragmentAllowReturnTransitionOverlap
|
||
|
*/
|
||
|
public boolean getAllowReturnTransitionOverlap() {
|
||
|
return (mAnimationInfo == null || mAnimationInfo.mAllowReturnTransitionOverlap == null)
|
||
|
? true : mAnimationInfo.mAllowReturnTransitionOverlap;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Postpone the entering Fragment transition until {@link #startPostponedEnterTransition()}
|
||
|
* or {@link FragmentManager#executePendingTransactions()} has been called.
|
||
|
* <p>
|
||
|
* This method gives the Fragment the ability to delay Fragment animations
|
||
|
* until all data is loaded. Until then, the added, shown, and
|
||
|
* attached Fragments will be INVISIBLE and removed, hidden, and detached Fragments won't
|
||
|
* be have their Views removed. The transaction runs when all postponed added Fragments in the
|
||
|
* transaction have called {@link #startPostponedEnterTransition()}.
|
||
|
* <p>
|
||
|
* This method should be called before being added to the FragmentTransaction or
|
||
|
* in {@link #onCreate(Bundle)}, {@link #onAttach(Context)}, or
|
||
|
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}}.
|
||
|
* {@link #startPostponedEnterTransition()} must be called to allow the Fragment to
|
||
|
* start the transitions.
|
||
|
* <p>
|
||
|
* When a FragmentTransaction is started that may affect a postponed FragmentTransaction,
|
||
|
* based on which containers are in their operations, the postponed FragmentTransaction
|
||
|
* will have its start triggered. The early triggering may result in faulty or nonexistent
|
||
|
* animations in the postponed transaction. FragmentTransactions that operate only on
|
||
|
* independent containers will not interfere with each other's postponement.
|
||
|
* <p>
|
||
|
* Calling postponeEnterTransition on Fragments with a null View will not postpone the
|
||
|
* transition. Likewise, postponement only works if FragmentTransaction optimizations are
|
||
|
* enabled.
|
||
|
*
|
||
|
* @see Activity#postponeEnterTransition()
|
||
|
* @see FragmentTransaction#setReorderingAllowed(boolean)
|
||
|
*/
|
||
|
public void postponeEnterTransition() {
|
||
|
ensureAnimationInfo().mEnterTransitionPostponed = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Begin postponed transitions after {@link #postponeEnterTransition()} was called.
|
||
|
* If postponeEnterTransition() was called, you must call startPostponedEnterTransition()
|
||
|
* or {@link FragmentManager#executePendingTransactions()} to complete the FragmentTransaction.
|
||
|
* If postponement was interrupted with {@link FragmentManager#executePendingTransactions()},
|
||
|
* before {@code startPostponedEnterTransition()}, animations may not run or may execute
|
||
|
* improperly.
|
||
|
*
|
||
|
* @see Activity#startPostponedEnterTransition()
|
||
|
*/
|
||
|
public void startPostponedEnterTransition() {
|
||
|
if (mFragmentManager == null || mFragmentManager.mHost == null) {
|
||
|
ensureAnimationInfo().mEnterTransitionPostponed = false;
|
||
|
} else if (Looper.myLooper() != mFragmentManager.mHost.getHandler().getLooper()) {
|
||
|
mFragmentManager.mHost.getHandler().
|
||
|
postAtFrontOfQueue(this::callStartTransitionListener);
|
||
|
} else {
|
||
|
callStartTransitionListener();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calls the start transition listener. This must be called on the UI thread.
|
||
|
*/
|
||
|
private void callStartTransitionListener() {
|
||
|
final OnStartEnterTransitionListener listener;
|
||
|
if (mAnimationInfo == null) {
|
||
|
listener = null;
|
||
|
} else {
|
||
|
mAnimationInfo.mEnterTransitionPostponed = false;
|
||
|
listener = mAnimationInfo.mStartEnterTransitionListener;
|
||
|
mAnimationInfo.mStartEnterTransitionListener = null;
|
||
|
}
|
||
|
if (listener != null) {
|
||
|
listener.onStartEnterTransition();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if mAnimationInfo is not null or the transition differs from the default value.
|
||
|
* This is broken out to ensure mAnimationInfo is properly locked when checking.
|
||
|
*/
|
||
|
private boolean shouldChangeTransition(Transition transition, Transition defaultValue) {
|
||
|
if (transition == defaultValue) {
|
||
|
return mAnimationInfo != null;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Print the Fragments's state into the given stream.
|
||
|
*
|
||
|
* @param prefix Text to print at the front of each line.
|
||
|
* @param fd The raw file descriptor that the dump is being sent to.
|
||
|
* @param writer The PrintWriter to which you should dump your state. This will be
|
||
|
* closed for you after you return.
|
||
|
* @param args additional arguments to the dump request.
|
||
|
*/
|
||
|
public void dump(String prefix, FileDescriptor fd, PrintWriter writer, String[] args) {
|
||
|
writer.print(prefix); writer.print("mFragmentId=#");
|
||
|
writer.print(Integer.toHexString(mFragmentId));
|
||
|
writer.print(" mContainerId=#");
|
||
|
writer.print(Integer.toHexString(mContainerId));
|
||
|
writer.print(" mTag="); writer.println(mTag);
|
||
|
writer.print(prefix); writer.print("mState="); writer.print(mState);
|
||
|
writer.print(" mIndex="); writer.print(mIndex);
|
||
|
writer.print(" mWho="); writer.print(mWho);
|
||
|
writer.print(" mBackStackNesting="); writer.println(mBackStackNesting);
|
||
|
writer.print(prefix); writer.print("mAdded="); writer.print(mAdded);
|
||
|
writer.print(" mRemoving="); writer.print(mRemoving);
|
||
|
writer.print(" mFromLayout="); writer.print(mFromLayout);
|
||
|
writer.print(" mInLayout="); writer.println(mInLayout);
|
||
|
writer.print(prefix); writer.print("mHidden="); writer.print(mHidden);
|
||
|
writer.print(" mDetached="); writer.print(mDetached);
|
||
|
writer.print(" mMenuVisible="); writer.print(mMenuVisible);
|
||
|
writer.print(" mHasMenu="); writer.println(mHasMenu);
|
||
|
writer.print(prefix); writer.print("mRetainInstance="); writer.print(mRetainInstance);
|
||
|
writer.print(" mRetaining="); writer.print(mRetaining);
|
||
|
writer.print(" mUserVisibleHint="); writer.println(mUserVisibleHint);
|
||
|
if (mFragmentManager != null) {
|
||
|
writer.print(prefix); writer.print("mFragmentManager=");
|
||
|
writer.println(mFragmentManager);
|
||
|
}
|
||
|
if (mHost != null) {
|
||
|
writer.print(prefix); writer.print("mHost=");
|
||
|
writer.println(mHost);
|
||
|
}
|
||
|
if (mParentFragment != null) {
|
||
|
writer.print(prefix); writer.print("mParentFragment=");
|
||
|
writer.println(mParentFragment);
|
||
|
}
|
||
|
if (mArguments != null) {
|
||
|
writer.print(prefix); writer.print("mArguments="); writer.println(mArguments);
|
||
|
}
|
||
|
if (mSavedFragmentState != null) {
|
||
|
writer.print(prefix); writer.print("mSavedFragmentState=");
|
||
|
writer.println(mSavedFragmentState);
|
||
|
}
|
||
|
if (mSavedViewState != null) {
|
||
|
writer.print(prefix); writer.print("mSavedViewState=");
|
||
|
writer.println(mSavedViewState);
|
||
|
}
|
||
|
if (mTarget != null) {
|
||
|
writer.print(prefix); writer.print("mTarget="); writer.print(mTarget);
|
||
|
writer.print(" mTargetRequestCode=");
|
||
|
writer.println(mTargetRequestCode);
|
||
|
}
|
||
|
if (getNextAnim() != 0) {
|
||
|
writer.print(prefix); writer.print("mNextAnim="); writer.println(getNextAnim());
|
||
|
}
|
||
|
if (mContainer != null) {
|
||
|
writer.print(prefix); writer.print("mContainer="); writer.println(mContainer);
|
||
|
}
|
||
|
if (mView != null) {
|
||
|
writer.print(prefix); writer.print("mView="); writer.println(mView);
|
||
|
}
|
||
|
if (getAnimatingAway() != null) {
|
||
|
writer.print(prefix); writer.print("mAnimatingAway=");
|
||
|
writer.println(getAnimatingAway());
|
||
|
writer.print(prefix); writer.print("mStateAfterAnimating=");
|
||
|
writer.println(getStateAfterAnimating());
|
||
|
}
|
||
|
if (mLoaderManager != null) {
|
||
|
writer.print(prefix); writer.println("Loader Manager:");
|
||
|
mLoaderManager.dump(prefix + " ", fd, writer, args);
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
writer.print(prefix); writer.println("Child " + mChildFragmentManager + ":");
|
||
|
mChildFragmentManager.dump(prefix + " ", fd, writer, args);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Fragment findFragmentByWho(String who) {
|
||
|
if (who.equals(mWho)) {
|
||
|
return this;
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
return mChildFragmentManager.findFragmentByWho(who);
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
void instantiateChildFragmentManager() {
|
||
|
mChildFragmentManager = new FragmentManagerImpl();
|
||
|
mChildFragmentManager.attachController(mHost, new FragmentContainer() {
|
||
|
@Override
|
||
|
@Nullable
|
||
|
public <T extends View> T onFindViewById(int id) {
|
||
|
if (mView == null) {
|
||
|
throw new IllegalStateException("Fragment does not have a view");
|
||
|
}
|
||
|
return mView.findViewById(id);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public boolean onHasView() {
|
||
|
return (mView != null);
|
||
|
}
|
||
|
}, this);
|
||
|
}
|
||
|
|
||
|
void performCreate(Bundle savedInstanceState) {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.noteStateNotSaved();
|
||
|
}
|
||
|
mState = CREATED;
|
||
|
mCalled = false;
|
||
|
onCreate(savedInstanceState);
|
||
|
mIsCreated = true;
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onCreate()");
|
||
|
}
|
||
|
final Context context = getContext();
|
||
|
final int version = context != null ? context.getApplicationInfo().targetSdkVersion : 0;
|
||
|
if (version < Build.VERSION_CODES.N) {
|
||
|
restoreChildFragmentState(savedInstanceState, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
View performCreateView(LayoutInflater inflater, ViewGroup container,
|
||
|
Bundle savedInstanceState) {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.noteStateNotSaved();
|
||
|
}
|
||
|
mPerformedCreateView = true;
|
||
|
return onCreateView(inflater, container, savedInstanceState);
|
||
|
}
|
||
|
|
||
|
void performActivityCreated(Bundle savedInstanceState) {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.noteStateNotSaved();
|
||
|
}
|
||
|
mState = ACTIVITY_CREATED;
|
||
|
mCalled = false;
|
||
|
onActivityCreated(savedInstanceState);
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onActivityCreated()");
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchActivityCreated();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performStart() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.noteStateNotSaved();
|
||
|
mChildFragmentManager.execPendingActions();
|
||
|
}
|
||
|
mState = STARTED;
|
||
|
mCalled = false;
|
||
|
onStart();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onStart()");
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchStart();
|
||
|
}
|
||
|
if (mLoaderManager != null) {
|
||
|
mLoaderManager.doReportStart();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performResume() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.noteStateNotSaved();
|
||
|
mChildFragmentManager.execPendingActions();
|
||
|
}
|
||
|
mState = RESUMED;
|
||
|
mCalled = false;
|
||
|
onResume();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onResume()");
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchResume();
|
||
|
mChildFragmentManager.execPendingActions();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void noteStateNotSaved() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.noteStateNotSaved();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@Deprecated
|
||
|
void performMultiWindowModeChanged(boolean isInMultiWindowMode) {
|
||
|
onMultiWindowModeChanged(isInMultiWindowMode);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchMultiWindowModeChanged(isInMultiWindowMode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performMultiWindowModeChanged(boolean isInMultiWindowMode, Configuration newConfig) {
|
||
|
onMultiWindowModeChanged(isInMultiWindowMode, newConfig);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchMultiWindowModeChanged(isInMultiWindowMode, newConfig);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@Deprecated
|
||
|
void performPictureInPictureModeChanged(boolean isInPictureInPictureMode) {
|
||
|
onPictureInPictureModeChanged(isInPictureInPictureMode);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchPictureInPictureModeChanged(isInPictureInPictureMode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performPictureInPictureModeChanged(boolean isInPictureInPictureMode,
|
||
|
Configuration newConfig) {
|
||
|
onPictureInPictureModeChanged(isInPictureInPictureMode, newConfig);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchPictureInPictureModeChanged(isInPictureInPictureMode,
|
||
|
newConfig);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performConfigurationChanged(Configuration newConfig) {
|
||
|
onConfigurationChanged(newConfig);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchConfigurationChanged(newConfig);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performLowMemory() {
|
||
|
onLowMemory();
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchLowMemory();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performTrimMemory(int level) {
|
||
|
onTrimMemory(level);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchTrimMemory(level);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
boolean performCreateOptionsMenu(Menu menu, MenuInflater inflater) {
|
||
|
boolean show = false;
|
||
|
if (!mHidden) {
|
||
|
if (mHasMenu && mMenuVisible) {
|
||
|
show = true;
|
||
|
onCreateOptionsMenu(menu, inflater);
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
show |= mChildFragmentManager.dispatchCreateOptionsMenu(menu, inflater);
|
||
|
}
|
||
|
}
|
||
|
return show;
|
||
|
}
|
||
|
|
||
|
boolean performPrepareOptionsMenu(Menu menu) {
|
||
|
boolean show = false;
|
||
|
if (!mHidden) {
|
||
|
if (mHasMenu && mMenuVisible) {
|
||
|
show = true;
|
||
|
onPrepareOptionsMenu(menu);
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
show |= mChildFragmentManager.dispatchPrepareOptionsMenu(menu);
|
||
|
}
|
||
|
}
|
||
|
return show;
|
||
|
}
|
||
|
|
||
|
boolean performOptionsItemSelected(MenuItem item) {
|
||
|
if (!mHidden) {
|
||
|
if (mHasMenu && mMenuVisible) {
|
||
|
if (onOptionsItemSelected(item)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
if (mChildFragmentManager.dispatchOptionsItemSelected(item)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
boolean performContextItemSelected(MenuItem item) {
|
||
|
if (!mHidden) {
|
||
|
if (onContextItemSelected(item)) {
|
||
|
return true;
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
if (mChildFragmentManager.dispatchContextItemSelected(item)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void performOptionsMenuClosed(Menu menu) {
|
||
|
if (!mHidden) {
|
||
|
if (mHasMenu && mMenuVisible) {
|
||
|
onOptionsMenuClosed(menu);
|
||
|
}
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchOptionsMenuClosed(menu);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performSaveInstanceState(Bundle outState) {
|
||
|
onSaveInstanceState(outState);
|
||
|
if (mChildFragmentManager != null) {
|
||
|
Parcelable p = mChildFragmentManager.saveAllState();
|
||
|
if (p != null) {
|
||
|
outState.putParcelable(Activity.FRAGMENTS_TAG, p);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performPause() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchPause();
|
||
|
}
|
||
|
mState = STARTED;
|
||
|
mCalled = false;
|
||
|
onPause();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onPause()");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performStop() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchStop();
|
||
|
}
|
||
|
mState = STOPPED;
|
||
|
mCalled = false;
|
||
|
onStop();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onStop()");
|
||
|
}
|
||
|
|
||
|
if (mLoadersStarted) {
|
||
|
mLoadersStarted = false;
|
||
|
if (!mCheckedForLoaderManager) {
|
||
|
mCheckedForLoaderManager = true;
|
||
|
mLoaderManager = mHost.getLoaderManager(mWho, mLoadersStarted, false);
|
||
|
}
|
||
|
if (mLoaderManager != null) {
|
||
|
if (mHost.getRetainLoaders()) {
|
||
|
mLoaderManager.doRetain();
|
||
|
} else {
|
||
|
mLoaderManager.doStop();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void performDestroyView() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchDestroyView();
|
||
|
}
|
||
|
mState = CREATED;
|
||
|
mCalled = false;
|
||
|
onDestroyView();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onDestroyView()");
|
||
|
}
|
||
|
if (mLoaderManager != null) {
|
||
|
mLoaderManager.doReportNextStart();
|
||
|
}
|
||
|
mPerformedCreateView = false;
|
||
|
}
|
||
|
|
||
|
void performDestroy() {
|
||
|
if (mChildFragmentManager != null) {
|
||
|
mChildFragmentManager.dispatchDestroy();
|
||
|
}
|
||
|
mState = INITIALIZING;
|
||
|
mCalled = false;
|
||
|
mIsCreated = false;
|
||
|
onDestroy();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onDestroy()");
|
||
|
}
|
||
|
mChildFragmentManager = null;
|
||
|
}
|
||
|
|
||
|
void performDetach() {
|
||
|
mCalled = false;
|
||
|
onDetach();
|
||
|
mLayoutInflater = null;
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException("Fragment " + this
|
||
|
+ " did not call through to super.onDetach()");
|
||
|
}
|
||
|
|
||
|
// Destroy the child FragmentManager if we still have it here.
|
||
|
// We won't unless we're retaining our instance and if we do,
|
||
|
// our child FragmentManager instance state will have already been saved.
|
||
|
if (mChildFragmentManager != null) {
|
||
|
if (!mRetaining) {
|
||
|
throw new IllegalStateException("Child FragmentManager of " + this + " was not "
|
||
|
+ " destroyed and this fragment is not retaining instance");
|
||
|
}
|
||
|
mChildFragmentManager.dispatchDestroy();
|
||
|
mChildFragmentManager = null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void setOnStartEnterTransitionListener(OnStartEnterTransitionListener listener) {
|
||
|
ensureAnimationInfo();
|
||
|
if (listener == mAnimationInfo.mStartEnterTransitionListener) {
|
||
|
return;
|
||
|
}
|
||
|
if (listener != null && mAnimationInfo.mStartEnterTransitionListener != null) {
|
||
|
throw new IllegalStateException("Trying to set a replacement " +
|
||
|
"startPostponedEnterTransition on " + this);
|
||
|
}
|
||
|
if (mAnimationInfo.mEnterTransitionPostponed) {
|
||
|
mAnimationInfo.mStartEnterTransitionListener = listener;
|
||
|
}
|
||
|
if (listener != null) {
|
||
|
listener.startListening();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private static Transition loadTransition(Context context, TypedArray typedArray,
|
||
|
Transition currentValue, Transition defaultValue, int id) {
|
||
|
if (currentValue != defaultValue) {
|
||
|
return currentValue;
|
||
|
}
|
||
|
int transitionId = typedArray.getResourceId(id, 0);
|
||
|
Transition transition = defaultValue;
|
||
|
if (transitionId != 0 && transitionId != com.android.internal.R.transition.no_transition) {
|
||
|
TransitionInflater inflater = TransitionInflater.from(context);
|
||
|
transition = inflater.inflateTransition(transitionId);
|
||
|
if (transition instanceof TransitionSet &&
|
||
|
((TransitionSet)transition).getTransitionCount() == 0) {
|
||
|
transition = null;
|
||
|
}
|
||
|
}
|
||
|
return transition;
|
||
|
}
|
||
|
|
||
|
private AnimationInfo ensureAnimationInfo() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
mAnimationInfo = new AnimationInfo();
|
||
|
}
|
||
|
return mAnimationInfo;
|
||
|
}
|
||
|
|
||
|
int getNextAnim() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return 0;
|
||
|
}
|
||
|
return mAnimationInfo.mNextAnim;
|
||
|
}
|
||
|
|
||
|
void setNextAnim(int animResourceId) {
|
||
|
if (mAnimationInfo == null && animResourceId == 0) {
|
||
|
return; // no change!
|
||
|
}
|
||
|
ensureAnimationInfo().mNextAnim = animResourceId;
|
||
|
}
|
||
|
|
||
|
int getNextTransition() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return 0;
|
||
|
}
|
||
|
return mAnimationInfo.mNextTransition;
|
||
|
}
|
||
|
|
||
|
void setNextTransition(int nextTransition, int nextTransitionStyle) {
|
||
|
if (mAnimationInfo == null && nextTransition == 0 && nextTransitionStyle == 0) {
|
||
|
return; // no change!
|
||
|
}
|
||
|
ensureAnimationInfo();
|
||
|
mAnimationInfo.mNextTransition = nextTransition;
|
||
|
mAnimationInfo.mNextTransitionStyle = nextTransitionStyle;
|
||
|
}
|
||
|
|
||
|
int getNextTransitionStyle() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return 0;
|
||
|
}
|
||
|
return mAnimationInfo.mNextTransitionStyle;
|
||
|
}
|
||
|
|
||
|
SharedElementCallback getEnterTransitionCallback() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return SharedElementCallback.NULL_CALLBACK;
|
||
|
}
|
||
|
return mAnimationInfo.mEnterTransitionCallback;
|
||
|
}
|
||
|
|
||
|
SharedElementCallback getExitTransitionCallback() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return SharedElementCallback.NULL_CALLBACK;
|
||
|
}
|
||
|
return mAnimationInfo.mExitTransitionCallback;
|
||
|
}
|
||
|
|
||
|
Animator getAnimatingAway() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return null;
|
||
|
}
|
||
|
return mAnimationInfo.mAnimatingAway;
|
||
|
}
|
||
|
|
||
|
void setAnimatingAway(Animator animator) {
|
||
|
ensureAnimationInfo().mAnimatingAway = animator;
|
||
|
}
|
||
|
|
||
|
int getStateAfterAnimating() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return 0;
|
||
|
}
|
||
|
return mAnimationInfo.mStateAfterAnimating;
|
||
|
}
|
||
|
|
||
|
void setStateAfterAnimating(int state) {
|
||
|
ensureAnimationInfo().mStateAfterAnimating = state;
|
||
|
}
|
||
|
|
||
|
boolean isPostponed() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return false;
|
||
|
}
|
||
|
return mAnimationInfo.mEnterTransitionPostponed;
|
||
|
}
|
||
|
|
||
|
boolean isHideReplaced() {
|
||
|
if (mAnimationInfo == null) {
|
||
|
return false;
|
||
|
}
|
||
|
return mAnimationInfo.mIsHideReplaced;
|
||
|
}
|
||
|
|
||
|
void setHideReplaced(boolean replaced) {
|
||
|
ensureAnimationInfo().mIsHideReplaced = replaced;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Used internally to be notified when {@link #startPostponedEnterTransition()} has
|
||
|
* been called. This listener will only be called once and then be removed from the
|
||
|
* listeners.
|
||
|
*/
|
||
|
interface OnStartEnterTransitionListener {
|
||
|
void onStartEnterTransition();
|
||
|
void startListening();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Contains all the animation and transition information for a fragment. This will only
|
||
|
* be instantiated for Fragments that have Views.
|
||
|
*/
|
||
|
static class AnimationInfo {
|
||
|
// Non-null if the fragment's view hierarchy is currently animating away,
|
||
|
// meaning we need to wait a bit on completely destroying it. This is the
|
||
|
// animation that is running.
|
||
|
Animator mAnimatingAway;
|
||
|
|
||
|
// If mAnimatingAway != null, this is the state we should move to once the
|
||
|
// animation is done.
|
||
|
int mStateAfterAnimating;
|
||
|
|
||
|
// If app has requested a specific animation, this is the one to use.
|
||
|
int mNextAnim;
|
||
|
|
||
|
// If app has requested a specific transition, this is the one to use.
|
||
|
int mNextTransition;
|
||
|
|
||
|
// If app has requested a specific transition style, this is the one to use.
|
||
|
int mNextTransitionStyle;
|
||
|
|
||
|
private Transition mEnterTransition = null;
|
||
|
private Transition mReturnTransition = USE_DEFAULT_TRANSITION;
|
||
|
private Transition mExitTransition = null;
|
||
|
private Transition mReenterTransition = USE_DEFAULT_TRANSITION;
|
||
|
private Transition mSharedElementEnterTransition = null;
|
||
|
private Transition mSharedElementReturnTransition = USE_DEFAULT_TRANSITION;
|
||
|
private Boolean mAllowReturnTransitionOverlap;
|
||
|
private Boolean mAllowEnterTransitionOverlap;
|
||
|
|
||
|
SharedElementCallback mEnterTransitionCallback = SharedElementCallback.NULL_CALLBACK;
|
||
|
SharedElementCallback mExitTransitionCallback = SharedElementCallback.NULL_CALLBACK;
|
||
|
|
||
|
// True when postponeEnterTransition has been called and startPostponeEnterTransition
|
||
|
// hasn't been called yet.
|
||
|
boolean mEnterTransitionPostponed;
|
||
|
|
||
|
// Listener to wait for startPostponeEnterTransition. After being called, it will
|
||
|
// be set to null
|
||
|
OnStartEnterTransitionListener mStartEnterTransitionListener;
|
||
|
|
||
|
// True if the View was hidden, but the transition is handling the hide
|
||
|
boolean mIsHideReplaced;
|
||
|
}
|
||
|
}
|