script-astra/Android/Sdk/sources/android-35/android/net/sntp/Timestamp64.java

189 lines
7.1 KiB
Java
Raw Permalink Normal View History

2025-01-20 15:15:20 +00:00
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net.sntp;
import android.text.TextUtils;
import com.android.internal.annotations.VisibleForTesting;
import java.time.Instant;
import java.util.Objects;
import java.util.Random;
/**
* The 64-bit type ("timestamp") that NTP uses to represent a point in time. It only holds the
* lowest 32-bits of the number of seconds since 1900-01-01 00:00:00. Consequently, to turn an
* instance into an unambiguous point in time the era number must be known. Era zero runs from
* 1900-01-01 00:00:00 to a date in 2036.
*
* It stores sub-second values using a 32-bit fixed point type, so it can resolve values smaller
* than a nanosecond, but is imprecise (i.e. it truncates).
*
* See also <a href=https://www.eecis.udel.edu/~mills/y2k.html>NTP docs</a>.
*
* @hide
*/
public final class Timestamp64 {
public static final Timestamp64 ZERO = fromComponents(0, 0);
static final int SUB_MILLIS_BITS_TO_RANDOMIZE = 32 - 10;
// Number of seconds between Jan 1, 1900 and Jan 1, 1970
// 70 years plus 17 leap days
static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
static final long MAX_SECONDS_IN_ERA = 0xFFFF_FFFFL;
static final long SECONDS_IN_ERA = MAX_SECONDS_IN_ERA + 1;
static final int NANOS_PER_SECOND = 1_000_000_000;
/** Creates a {@link Timestamp64} from the seconds and fraction components. */
public static Timestamp64 fromComponents(long eraSeconds, int fractionBits) {
return new Timestamp64(eraSeconds, fractionBits);
}
/** Creates a {@link Timestamp64} by decoding a string in the form "e4dc720c.4d4fc9eb". */
public static Timestamp64 fromString(String string) {
final int requiredLength = 17;
if (string.length() != requiredLength || string.charAt(8) != '.') {
throw new IllegalArgumentException(string);
}
String eraSecondsString = string.substring(0, 8);
String fractionString = string.substring(9);
long eraSeconds = Long.parseLong(eraSecondsString, 16);
// Use parseLong() because the type is unsigned. Integer.parseInt() will reject 0x70000000
// or above as being out of range.
long fractionBitsAsLong = Long.parseLong(fractionString, 16);
if (fractionBitsAsLong < 0 || fractionBitsAsLong > 0xFFFFFFFFL) {
throw new IllegalArgumentException("Invalid fractionBits:" + fractionString);
}
return new Timestamp64(eraSeconds, (int) fractionBitsAsLong);
}
/**
* Converts an {@link Instant} into a {@link Timestamp64}. This is lossy: Timestamp64 only
* contains the number of seconds in a given era, but the era is not stored. Also, sub-second
* values are not stored precisely.
*/
public static Timestamp64 fromInstant(Instant instant) {
long ntpEraSeconds = instant.getEpochSecond() + OFFSET_1900_TO_1970;
if (ntpEraSeconds < 0) {
ntpEraSeconds = SECONDS_IN_ERA - (-ntpEraSeconds % SECONDS_IN_ERA);
}
ntpEraSeconds %= SECONDS_IN_ERA;
long nanos = instant.getNano();
int fractionBits = nanosToFractionBits(nanos);
return new Timestamp64(ntpEraSeconds, fractionBits);
}
private final long mEraSeconds;
private final int mFractionBits;
private Timestamp64(long eraSeconds, int fractionBits) {
if (eraSeconds < 0 || eraSeconds > MAX_SECONDS_IN_ERA) {
throw new IllegalArgumentException(
"Invalid parameters. seconds=" + eraSeconds + ", fraction=" + fractionBits);
}
this.mEraSeconds = eraSeconds;
this.mFractionBits = fractionBits;
}
/** Returns the number of seconds in the NTP era. */
public long getEraSeconds() {
return mEraSeconds;
}
/** Returns the fraction of a second as 32-bit, unsigned fixed-point bits. */
public int getFractionBits() {
return mFractionBits;
}
@Override
public String toString() {
return TextUtils.formatSimple("%08x.%08x", mEraSeconds, mFractionBits);
}
/** Returns the instant represented by this value in the specified NTP era. */
public Instant toInstant(int ntpEra) {
long secondsSinceEpoch = mEraSeconds - OFFSET_1900_TO_1970;
secondsSinceEpoch += ntpEra * SECONDS_IN_ERA;
int nanos = fractionBitsToNanos(mFractionBits);
return Instant.ofEpochSecond(secondsSinceEpoch, nanos);
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Timestamp64 that = (Timestamp64) o;
return mEraSeconds == that.mEraSeconds && mFractionBits == that.mFractionBits;
}
@Override
public int hashCode() {
return Objects.hash(mEraSeconds, mFractionBits);
}
static int fractionBitsToNanos(int fractionBits) {
long fractionBitsLong = fractionBits & 0xFFFF_FFFFL;
return (int) ((fractionBitsLong * NANOS_PER_SECOND) >>> 32);
}
static int nanosToFractionBits(long nanos) {
if (nanos > NANOS_PER_SECOND) {
throw new IllegalArgumentException();
}
return (int) ((nanos << 32) / NANOS_PER_SECOND);
}
/**
* Randomizes the fraction bits that represent sub-millisecond values. i.e. the randomization
* won't change the number of milliseconds represented after truncation. This is used to
* implement the part of the NTP spec that calls for clients with millisecond accuracy clocks
* to send randomized LSB values rather than zeros.
*/
public Timestamp64 randomizeSubMillis(Random random) {
int randomizedFractionBits =
randomizeLowestBits(random, this.mFractionBits, SUB_MILLIS_BITS_TO_RANDOMIZE);
return new Timestamp64(mEraSeconds, randomizedFractionBits);
}
/**
* Randomizes the specified number of LSBs in {@code value} by using replacement bits from
* {@code Random.getNextInt()}.
*/
@VisibleForTesting
public static int randomizeLowestBits(Random random, int value, int bitsToRandomize) {
if (bitsToRandomize < 1 || bitsToRandomize >= Integer.SIZE) {
// There's no point in randomizing all bits or none of the bits.
throw new IllegalArgumentException(Integer.toString(bitsToRandomize));
}
int upperBitMask = 0xFFFF_FFFF << bitsToRandomize;
int lowerBitMask = ~upperBitMask;
int randomValue = random.nextInt();
return (value & upperBitMask) | (randomValue & lowerBitMask);
}
}