548 lines
18 KiB
Java
548 lines
18 KiB
Java
![]() |
// Protocol Buffers - Google's data interchange format
|
||
|
// Copyright 2008 Google Inc. All rights reserved.
|
||
|
// https://developers.google.com/protocol-buffers/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
package com.google.protobuf.nano;
|
||
|
|
||
|
import com.google.protobuf.nano.MapFactories.MapFactory;
|
||
|
|
||
|
import java.io.IOException;
|
||
|
import java.nio.charset.Charset;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Map;
|
||
|
import java.util.Map.Entry;
|
||
|
|
||
|
/**
|
||
|
* The classes contained within are used internally by the Protocol Buffer
|
||
|
* library and generated message implementations. They are public only because
|
||
|
* those generated messages do not reside in the {@code protobuf} package.
|
||
|
* Others should not use this class directly.
|
||
|
*
|
||
|
* @author kenton@google.com (Kenton Varda)
|
||
|
*/
|
||
|
public final class InternalNano {
|
||
|
|
||
|
public static final int TYPE_DOUBLE = 1;
|
||
|
public static final int TYPE_FLOAT = 2;
|
||
|
public static final int TYPE_INT64 = 3;
|
||
|
public static final int TYPE_UINT64 = 4;
|
||
|
public static final int TYPE_INT32 = 5;
|
||
|
public static final int TYPE_FIXED64 = 6;
|
||
|
public static final int TYPE_FIXED32 = 7;
|
||
|
public static final int TYPE_BOOL = 8;
|
||
|
public static final int TYPE_STRING = 9;
|
||
|
public static final int TYPE_GROUP = 10;
|
||
|
public static final int TYPE_MESSAGE = 11;
|
||
|
public static final int TYPE_BYTES = 12;
|
||
|
public static final int TYPE_UINT32 = 13;
|
||
|
public static final int TYPE_ENUM = 14;
|
||
|
public static final int TYPE_SFIXED32 = 15;
|
||
|
public static final int TYPE_SFIXED64 = 16;
|
||
|
public static final int TYPE_SINT32 = 17;
|
||
|
public static final int TYPE_SINT64 = 18;
|
||
|
|
||
|
static final Charset UTF_8 = Charset.forName("UTF-8");
|
||
|
static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1");
|
||
|
|
||
|
private InternalNano() {}
|
||
|
|
||
|
/**
|
||
|
* An object to provide synchronization when lazily initializing static fields
|
||
|
* of {@link MessageNano} subclasses.
|
||
|
* <p>
|
||
|
* To enable earlier versions of ProGuard to inline short methods from a
|
||
|
* generated MessageNano subclass to the call sites, that class must not have
|
||
|
* a class initializer, which will be created if there is any static variable
|
||
|
* initializers. To lazily initialize the static variables in a thread-safe
|
||
|
* manner, the initialization code will synchronize on this object.
|
||
|
*/
|
||
|
public static final Object LAZY_INIT_LOCK = new Object();
|
||
|
|
||
|
/**
|
||
|
* Helper called by generated code to construct default values for string
|
||
|
* fields.
|
||
|
* <p>
|
||
|
* The protocol compiler does not actually contain a UTF-8 decoder -- it
|
||
|
* just pushes UTF-8-encoded text around without touching it. The one place
|
||
|
* where this presents a problem is when generating Java string literals.
|
||
|
* Unicode characters in the string literal would normally need to be encoded
|
||
|
* using a Unicode escape sequence, which would require decoding them.
|
||
|
* To get around this, protoc instead embeds the UTF-8 bytes into the
|
||
|
* generated code and leaves it to the runtime library to decode them.
|
||
|
* <p>
|
||
|
* It gets worse, though. If protoc just generated a byte array, like:
|
||
|
* new byte[] {0x12, 0x34, 0x56, 0x78}
|
||
|
* Java actually generates *code* which allocates an array and then fills
|
||
|
* in each value. This is much less efficient than just embedding the bytes
|
||
|
* directly into the bytecode. To get around this, we need another
|
||
|
* work-around. String literals are embedded directly, so protoc actually
|
||
|
* generates a string literal corresponding to the bytes. The easiest way
|
||
|
* to do this is to use the ISO-8859-1 character set, which corresponds to
|
||
|
* the first 256 characters of the Unicode range. Protoc can then use
|
||
|
* good old CEscape to generate the string.
|
||
|
* <p>
|
||
|
* So we have a string literal which represents a set of bytes which
|
||
|
* represents another string. This function -- stringDefaultValue --
|
||
|
* converts from the generated string to the string we actually want. The
|
||
|
* generated code calls this automatically.
|
||
|
*/
|
||
|
public static String stringDefaultValue(String bytes) {
|
||
|
return new String(bytes.getBytes(ISO_8859_1), InternalNano.UTF_8);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Helper called by generated code to construct default values for bytes
|
||
|
* fields.
|
||
|
* <p>
|
||
|
* This is a lot like {@link #stringDefaultValue}, but for bytes fields.
|
||
|
* In this case we only need the second of the two hacks -- allowing us to
|
||
|
* embed raw bytes as a string literal with ISO-8859-1 encoding.
|
||
|
*/
|
||
|
public static byte[] bytesDefaultValue(String bytes) {
|
||
|
return bytes.getBytes(ISO_8859_1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Helper function to convert a string into UTF-8 while turning the
|
||
|
* UnsupportedEncodingException to a RuntimeException.
|
||
|
*/
|
||
|
public static byte[] copyFromUtf8(final String text) {
|
||
|
return text.getBytes(InternalNano.UTF_8);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated int field equality; null-value and 0-length fields are
|
||
|
* considered equal.
|
||
|
*/
|
||
|
public static boolean equals(int[] field1, int[] field2) {
|
||
|
if (field1 == null || field1.length == 0) {
|
||
|
return field2 == null || field2.length == 0;
|
||
|
} else {
|
||
|
return Arrays.equals(field1, field2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated long field equality; null-value and 0-length fields are
|
||
|
* considered equal.
|
||
|
*/
|
||
|
public static boolean equals(long[] field1, long[] field2) {
|
||
|
if (field1 == null || field1.length == 0) {
|
||
|
return field2 == null || field2.length == 0;
|
||
|
} else {
|
||
|
return Arrays.equals(field1, field2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated float field equality; null-value and 0-length fields are
|
||
|
* considered equal.
|
||
|
*/
|
||
|
public static boolean equals(float[] field1, float[] field2) {
|
||
|
if (field1 == null || field1.length == 0) {
|
||
|
return field2 == null || field2.length == 0;
|
||
|
} else {
|
||
|
return Arrays.equals(field1, field2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated double field equality; null-value and 0-length fields are
|
||
|
* considered equal.
|
||
|
*/
|
||
|
public static boolean equals(double[] field1, double[] field2) {
|
||
|
if (field1 == null || field1.length == 0) {
|
||
|
return field2 == null || field2.length == 0;
|
||
|
} else {
|
||
|
return Arrays.equals(field1, field2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated boolean field equality; null-value and 0-length fields are
|
||
|
* considered equal.
|
||
|
*/
|
||
|
public static boolean equals(boolean[] field1, boolean[] field2) {
|
||
|
if (field1 == null || field1.length == 0) {
|
||
|
return field2 == null || field2.length == 0;
|
||
|
} else {
|
||
|
return Arrays.equals(field1, field2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated bytes field equality. Only non-null elements are tested.
|
||
|
* Returns true if the two fields have the same sequence of non-null
|
||
|
* elements. Null-value fields and fields of any length with only null
|
||
|
* elements are considered equal.
|
||
|
*/
|
||
|
public static boolean equals(byte[][] field1, byte[][] field2) {
|
||
|
int index1 = 0;
|
||
|
int length1 = field1 == null ? 0 : field1.length;
|
||
|
int index2 = 0;
|
||
|
int length2 = field2 == null ? 0 : field2.length;
|
||
|
while (true) {
|
||
|
while (index1 < length1 && field1[index1] == null) {
|
||
|
index1++;
|
||
|
}
|
||
|
while (index2 < length2 && field2[index2] == null) {
|
||
|
index2++;
|
||
|
}
|
||
|
boolean atEndOf1 = index1 >= length1;
|
||
|
boolean atEndOf2 = index2 >= length2;
|
||
|
if (atEndOf1 && atEndOf2) {
|
||
|
// no more non-null elements to test in both arrays
|
||
|
return true;
|
||
|
} else if (atEndOf1 != atEndOf2) {
|
||
|
// one of the arrays have extra non-null elements
|
||
|
return false;
|
||
|
} else if (!Arrays.equals(field1[index1], field2[index2])) {
|
||
|
// element mismatch
|
||
|
return false;
|
||
|
}
|
||
|
index1++;
|
||
|
index2++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks repeated string/message field equality. Only non-null elements are
|
||
|
* tested. Returns true if the two fields have the same sequence of non-null
|
||
|
* elements. Null-value fields and fields of any length with only null
|
||
|
* elements are considered equal.
|
||
|
*/
|
||
|
public static boolean equals(Object[] field1, Object[] field2) {
|
||
|
int index1 = 0;
|
||
|
int length1 = field1 == null ? 0 : field1.length;
|
||
|
int index2 = 0;
|
||
|
int length2 = field2 == null ? 0 : field2.length;
|
||
|
while (true) {
|
||
|
while (index1 < length1 && field1[index1] == null) {
|
||
|
index1++;
|
||
|
}
|
||
|
while (index2 < length2 && field2[index2] == null) {
|
||
|
index2++;
|
||
|
}
|
||
|
boolean atEndOf1 = index1 >= length1;
|
||
|
boolean atEndOf2 = index2 >= length2;
|
||
|
if (atEndOf1 && atEndOf2) {
|
||
|
// no more non-null elements to test in both arrays
|
||
|
return true;
|
||
|
} else if (atEndOf1 != atEndOf2) {
|
||
|
// one of the arrays have extra non-null elements
|
||
|
return false;
|
||
|
} else if (!field1[index1].equals(field2[index2])) {
|
||
|
// element mismatch
|
||
|
return false;
|
||
|
}
|
||
|
index1++;
|
||
|
index2++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated int field. Null-value and 0-length
|
||
|
* fields have the same hash code.
|
||
|
*/
|
||
|
public static int hashCode(int[] field) {
|
||
|
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated long field. Null-value and 0-length
|
||
|
* fields have the same hash code.
|
||
|
*/
|
||
|
public static int hashCode(long[] field) {
|
||
|
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated float field. Null-value and 0-length
|
||
|
* fields have the same hash code.
|
||
|
*/
|
||
|
public static int hashCode(float[] field) {
|
||
|
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated double field. Null-value and 0-length
|
||
|
* fields have the same hash code.
|
||
|
*/
|
||
|
public static int hashCode(double[] field) {
|
||
|
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated boolean field. Null-value and 0-length
|
||
|
* fields have the same hash code.
|
||
|
*/
|
||
|
public static int hashCode(boolean[] field) {
|
||
|
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated bytes field. Only the sequence of all
|
||
|
* non-null elements are used in the computation. Null-value fields and fields
|
||
|
* of any length with only null elements have the same hash code.
|
||
|
*/
|
||
|
public static int hashCode(byte[][] field) {
|
||
|
int result = 0;
|
||
|
for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) {
|
||
|
byte[] element = field[i];
|
||
|
if (element != null) {
|
||
|
result = 31 * result + Arrays.hashCode(element);
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the hash code of a repeated string/message field. Only the
|
||
|
* sequence of all non-null elements are used in the computation. Null-value
|
||
|
* fields and fields of any length with only null elements have the same hash
|
||
|
* code.
|
||
|
*/
|
||
|
public static int hashCode(Object[] field) {
|
||
|
int result = 0;
|
||
|
for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) {
|
||
|
Object element = field[i];
|
||
|
if (element != null) {
|
||
|
result = 31 * result + element.hashCode();
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
private static Object primitiveDefaultValue(int type) {
|
||
|
switch (type) {
|
||
|
case TYPE_BOOL:
|
||
|
return Boolean.FALSE;
|
||
|
case TYPE_BYTES:
|
||
|
return WireFormatNano.EMPTY_BYTES;
|
||
|
case TYPE_STRING:
|
||
|
return "";
|
||
|
case TYPE_FLOAT:
|
||
|
return Float.valueOf(0);
|
||
|
case TYPE_DOUBLE:
|
||
|
return Double.valueOf(0);
|
||
|
case TYPE_ENUM:
|
||
|
case TYPE_FIXED32:
|
||
|
case TYPE_INT32:
|
||
|
case TYPE_UINT32:
|
||
|
case TYPE_SINT32:
|
||
|
case TYPE_SFIXED32:
|
||
|
return Integer.valueOf(0);
|
||
|
case TYPE_INT64:
|
||
|
case TYPE_UINT64:
|
||
|
case TYPE_SINT64:
|
||
|
case TYPE_FIXED64:
|
||
|
case TYPE_SFIXED64:
|
||
|
return Long.valueOf(0L);
|
||
|
case TYPE_MESSAGE:
|
||
|
case TYPE_GROUP:
|
||
|
default:
|
||
|
throw new IllegalArgumentException(
|
||
|
"Type: " + type + " is not a primitive type.");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Merges the map entry into the map field. Note this is only supposed to
|
||
|
* be called by generated messages.
|
||
|
*
|
||
|
* @param map the map field; may be null, in which case a map will be
|
||
|
* instantiated using the {@link MapFactories.MapFactory}
|
||
|
* @param input the input byte buffer
|
||
|
* @param keyType key type, as defined in InternalNano.TYPE_*
|
||
|
* @param valueType value type, as defined in InternalNano.TYPE_*
|
||
|
* @param value an new instance of the value, if the value is a TYPE_MESSAGE;
|
||
|
* otherwise this parameter can be null and will be ignored.
|
||
|
* @param keyTag wire tag for the key
|
||
|
* @param valueTag wire tag for the value
|
||
|
* @return the map field
|
||
|
* @throws IOException
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public static final <K, V> Map<K, V> mergeMapEntry(
|
||
|
CodedInputByteBufferNano input,
|
||
|
Map<K, V> map,
|
||
|
MapFactory mapFactory,
|
||
|
int keyType,
|
||
|
int valueType,
|
||
|
V value,
|
||
|
int keyTag,
|
||
|
int valueTag) throws IOException {
|
||
|
map = mapFactory.forMap(map);
|
||
|
final int length = input.readRawVarint32();
|
||
|
final int oldLimit = input.pushLimit(length);
|
||
|
K key = null;
|
||
|
while (true) {
|
||
|
int tag = input.readTag();
|
||
|
if (tag == 0) {
|
||
|
break;
|
||
|
}
|
||
|
if (tag == keyTag) {
|
||
|
key = (K) input.readPrimitiveField(keyType);
|
||
|
} else if (tag == valueTag) {
|
||
|
if (valueType == TYPE_MESSAGE) {
|
||
|
input.readMessage((MessageNano) value);
|
||
|
} else {
|
||
|
value = (V) input.readPrimitiveField(valueType);
|
||
|
}
|
||
|
} else {
|
||
|
if (!input.skipField(tag)) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
input.checkLastTagWas(0);
|
||
|
input.popLimit(oldLimit);
|
||
|
|
||
|
if (key == null) {
|
||
|
// key can only be primitive types.
|
||
|
key = (K) primitiveDefaultValue(keyType);
|
||
|
}
|
||
|
|
||
|
if (value == null) {
|
||
|
// message type value will be initialized by code-gen.
|
||
|
value = (V) primitiveDefaultValue(valueType);
|
||
|
}
|
||
|
|
||
|
map.put(key, value);
|
||
|
return map;
|
||
|
}
|
||
|
|
||
|
public static <K, V> void serializeMapField(
|
||
|
CodedOutputByteBufferNano output,
|
||
|
Map<K, V> map, int number, int keyType, int valueType)
|
||
|
throws IOException {
|
||
|
for (Entry<K, V> entry: map.entrySet()) {
|
||
|
K key = entry.getKey();
|
||
|
V value = entry.getValue();
|
||
|
if (key == null || value == null) {
|
||
|
throw new IllegalStateException(
|
||
|
"keys and values in maps cannot be null");
|
||
|
}
|
||
|
int entrySize =
|
||
|
CodedOutputByteBufferNano.computeFieldSize(1, keyType, key) +
|
||
|
CodedOutputByteBufferNano.computeFieldSize(2, valueType, value);
|
||
|
output.writeTag(number, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
|
||
|
output.writeRawVarint32(entrySize);
|
||
|
output.writeField(1, keyType, key);
|
||
|
output.writeField(2, valueType, value);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static <K, V> int computeMapFieldSize(
|
||
|
Map<K, V> map, int number, int keyType, int valueType) {
|
||
|
int size = 0;
|
||
|
int tagSize = CodedOutputByteBufferNano.computeTagSize(number);
|
||
|
for (Entry<K, V> entry: map.entrySet()) {
|
||
|
K key = entry.getKey();
|
||
|
V value = entry.getValue();
|
||
|
if (key == null || value == null) {
|
||
|
throw new IllegalStateException(
|
||
|
"keys and values in maps cannot be null");
|
||
|
}
|
||
|
int entrySize =
|
||
|
CodedOutputByteBufferNano.computeFieldSize(1, keyType, key) +
|
||
|
CodedOutputByteBufferNano.computeFieldSize(2, valueType, value);
|
||
|
size += tagSize + entrySize
|
||
|
+ CodedOutputByteBufferNano.computeRawVarint32Size(entrySize);
|
||
|
}
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks whether two {@link Map} are equal. We don't use the default equals
|
||
|
* method of {@link Map} because it compares by identity not by content for
|
||
|
* byte arrays.
|
||
|
*/
|
||
|
public static <K, V> boolean equals(Map<K, V> a, Map<K, V> b) {
|
||
|
if (a == b) {
|
||
|
return true;
|
||
|
}
|
||
|
if (a == null) {
|
||
|
return b.size() == 0;
|
||
|
}
|
||
|
if (b == null) {
|
||
|
return a.size() == 0;
|
||
|
}
|
||
|
if (a.size() != b.size()) {
|
||
|
return false;
|
||
|
}
|
||
|
for (Entry<K, V> entry : a.entrySet()) {
|
||
|
if (!b.containsKey(entry.getKey())) {
|
||
|
return false;
|
||
|
}
|
||
|
if (!equalsMapValue(entry.getValue(), b.get(entry.getKey()))) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private static boolean equalsMapValue(Object a, Object b) {
|
||
|
if (a == null || b == null) {
|
||
|
throw new IllegalStateException(
|
||
|
"keys and values in maps cannot be null");
|
||
|
}
|
||
|
if (a instanceof byte[] && b instanceof byte[]) {
|
||
|
return Arrays.equals((byte[]) a, (byte[]) b);
|
||
|
}
|
||
|
return a.equals(b);
|
||
|
}
|
||
|
|
||
|
public static <K, V> int hashCode(Map<K, V> map) {
|
||
|
if (map == null) {
|
||
|
return 0;
|
||
|
}
|
||
|
int result = 0;
|
||
|
for (Entry<K, V> entry : map.entrySet()) {
|
||
|
result += hashCodeForMap(entry.getKey())
|
||
|
^ hashCodeForMap(entry.getValue());
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
private static int hashCodeForMap(Object o) {
|
||
|
if (o instanceof byte[]) {
|
||
|
return Arrays.hashCode((byte[]) o);
|
||
|
}
|
||
|
return o.hashCode();
|
||
|
}
|
||
|
|
||
|
// This avoids having to make FieldArray public.
|
||
|
public static void cloneUnknownFieldData(ExtendableMessageNano original,
|
||
|
ExtendableMessageNano cloned) {
|
||
|
if (original.unknownFieldData != null) {
|
||
|
cloned.unknownFieldData = (FieldArray) original.unknownFieldData.clone();
|
||
|
}
|
||
|
}
|
||
|
}
|