241 lines
8.4 KiB
Java
241 lines
8.4 KiB
Java
![]() |
/*
|
||
|
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
package java.security.spec;
|
||
|
|
||
|
import java.math.BigInteger;
|
||
|
import java.util.Arrays;
|
||
|
|
||
|
/**
|
||
|
* This immutable class defines an elliptic curve (EC)
|
||
|
* characteristic 2 finite field.
|
||
|
*
|
||
|
* @see ECField
|
||
|
*
|
||
|
* @author Valerie Peng
|
||
|
*
|
||
|
* @since 1.5
|
||
|
*/
|
||
|
public class ECFieldF2m implements ECField {
|
||
|
|
||
|
private int m;
|
||
|
private int[] ks;
|
||
|
private BigInteger rp;
|
||
|
|
||
|
/**
|
||
|
* Creates an elliptic curve characteristic 2 finite
|
||
|
* field which has 2^{@code m} elements with normal basis.
|
||
|
* @param m with 2^{@code m} being the number of elements.
|
||
|
* @throws IllegalArgumentException if {@code m}
|
||
|
* is not positive.
|
||
|
*/
|
||
|
public ECFieldF2m(int m) {
|
||
|
if (m <= 0) {
|
||
|
throw new IllegalArgumentException("m is not positive");
|
||
|
}
|
||
|
this.m = m;
|
||
|
this.ks = null;
|
||
|
this.rp = null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates an elliptic curve characteristic 2 finite
|
||
|
* field which has 2^{@code m} elements with
|
||
|
* polynomial basis.
|
||
|
* The reduction polynomial for this field is based
|
||
|
* on {@code rp} whose i-th bit corresponds to
|
||
|
* the i-th coefficient of the reduction polynomial.<p>
|
||
|
* Note: A valid reduction polynomial is either a
|
||
|
* trinomial (X^{@code m} + X^{@code k} + 1
|
||
|
* with {@code m} > {@code k} >= 1) or a
|
||
|
* pentanomial (X^{@code m} + X^{@code k3}
|
||
|
* + X^{@code k2} + X^{@code k1} + 1 with
|
||
|
* {@code m} > {@code k3} > {@code k2}
|
||
|
* > {@code k1} >= 1).
|
||
|
* @param m with 2^{@code m} being the number of elements.
|
||
|
* @param rp the BigInteger whose i-th bit corresponds to
|
||
|
* the i-th coefficient of the reduction polynomial.
|
||
|
* @throws NullPointerException if {@code rp} is null.
|
||
|
* @throws IllegalArgumentException if {@code m}
|
||
|
* is not positive, or {@code rp} does not represent
|
||
|
* a valid reduction polynomial.
|
||
|
*/
|
||
|
public ECFieldF2m(int m, BigInteger rp) {
|
||
|
// check m and rp
|
||
|
this.m = m;
|
||
|
this.rp = rp;
|
||
|
if (m <= 0) {
|
||
|
throw new IllegalArgumentException("m is not positive");
|
||
|
}
|
||
|
int bitCount = this.rp.bitCount();
|
||
|
if (!this.rp.testBit(0) || !this.rp.testBit(m) ||
|
||
|
((bitCount != 3) && (bitCount != 5))) {
|
||
|
throw new IllegalArgumentException
|
||
|
("rp does not represent a valid reduction polynomial");
|
||
|
}
|
||
|
// convert rp into ks
|
||
|
BigInteger temp = this.rp.clearBit(0).clearBit(m);
|
||
|
this.ks = new int[bitCount-2];
|
||
|
for (int i = this.ks.length-1; i >= 0; i--) {
|
||
|
int index = temp.getLowestSetBit();
|
||
|
this.ks[i] = index;
|
||
|
temp = temp.clearBit(index);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates an elliptic curve characteristic 2 finite
|
||
|
* field which has 2^{@code m} elements with
|
||
|
* polynomial basis. The reduction polynomial for this
|
||
|
* field is based on {@code ks} whose content
|
||
|
* contains the order of the middle term(s) of the
|
||
|
* reduction polynomial.
|
||
|
* Note: A valid reduction polynomial is either a
|
||
|
* trinomial (X^{@code m} + X^{@code k} + 1
|
||
|
* with {@code m} > {@code k} >= 1) or a
|
||
|
* pentanomial (X^{@code m} + X^{@code k3}
|
||
|
* + X^{@code k2} + X^{@code k1} + 1 with
|
||
|
* {@code m} > {@code k3} > {@code k2}
|
||
|
* > {@code k1} >= 1), so {@code ks} should
|
||
|
* have length 1 or 3.
|
||
|
* @param m with 2^{@code m} being the number of elements.
|
||
|
* @param ks the order of the middle term(s) of the
|
||
|
* reduction polynomial. Contents of this array are copied
|
||
|
* to protect against subsequent modification.
|
||
|
* @throws NullPointerException if {@code ks} is null.
|
||
|
* @throws IllegalArgumentException if{@code m}
|
||
|
* is not positive, or the length of {@code ks}
|
||
|
* is neither 1 nor 3, or values in {@code ks}
|
||
|
* are not between {@code m}-1 and 1 (inclusive)
|
||
|
* and in descending order.
|
||
|
*/
|
||
|
public ECFieldF2m(int m, int[] ks) {
|
||
|
// check m and ks
|
||
|
this.m = m;
|
||
|
this.ks = ks.clone();
|
||
|
if (m <= 0) {
|
||
|
throw new IllegalArgumentException("m is not positive");
|
||
|
}
|
||
|
if ((this.ks.length != 1) && (this.ks.length != 3)) {
|
||
|
throw new IllegalArgumentException
|
||
|
("length of ks is neither 1 nor 3");
|
||
|
}
|
||
|
for (int i = 0; i < this.ks.length; i++) {
|
||
|
if ((this.ks[i] < 1) || (this.ks[i] > m-1)) {
|
||
|
throw new IllegalArgumentException
|
||
|
("ks["+ i + "] is out of range");
|
||
|
}
|
||
|
if ((i != 0) && (this.ks[i] >= this.ks[i-1])) {
|
||
|
throw new IllegalArgumentException
|
||
|
("values in ks are not in descending order");
|
||
|
}
|
||
|
}
|
||
|
// convert ks into rp
|
||
|
this.rp = BigInteger.ONE;
|
||
|
this.rp = rp.setBit(m);
|
||
|
for (int j = 0; j < this.ks.length; j++) {
|
||
|
rp = rp.setBit(this.ks[j]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the field size in bits which is {@code m}
|
||
|
* for this characteristic 2 finite field.
|
||
|
* @return the field size in bits.
|
||
|
*/
|
||
|
public int getFieldSize() {
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the value {@code m} of this characteristic
|
||
|
* 2 finite field.
|
||
|
* @return {@code m} with 2^{@code m} being the
|
||
|
* number of elements.
|
||
|
*/
|
||
|
public int getM() {
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a BigInteger whose i-th bit corresponds to the
|
||
|
* i-th coefficient of the reduction polynomial for polynomial
|
||
|
* basis or null for normal basis.
|
||
|
* @return a BigInteger whose i-th bit corresponds to the
|
||
|
* i-th coefficient of the reduction polynomial for polynomial
|
||
|
* basis or null for normal basis.
|
||
|
*/
|
||
|
public BigInteger getReductionPolynomial() {
|
||
|
return rp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an integer array which contains the order of the
|
||
|
* middle term(s) of the reduction polynomial for polynomial
|
||
|
* basis or null for normal basis.
|
||
|
* @return an integer array which contains the order of the
|
||
|
* middle term(s) of the reduction polynomial for polynomial
|
||
|
* basis or null for normal basis. A new array is returned
|
||
|
* each time this method is called.
|
||
|
*/
|
||
|
public int[] getMidTermsOfReductionPolynomial() {
|
||
|
if (ks == null) {
|
||
|
return null;
|
||
|
} else {
|
||
|
return ks.clone();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compares this finite field for equality with the
|
||
|
* specified object.
|
||
|
* @param obj the object to be compared.
|
||
|
* @return true if {@code obj} is an instance
|
||
|
* of ECFieldF2m and both {@code m} and the reduction
|
||
|
* polynomial match, false otherwise.
|
||
|
*/
|
||
|
public boolean equals(Object obj) {
|
||
|
if (this == obj) return true;
|
||
|
|
||
|
return obj instanceof ECFieldF2m other
|
||
|
// no need to compare rp here since ks and rp
|
||
|
// should be equivalent
|
||
|
&& (m == other.m)
|
||
|
&& (Arrays.equals(ks, other.ks));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a hash code value for this characteristic 2
|
||
|
* finite field.
|
||
|
* @return a hash code value.
|
||
|
*/
|
||
|
public int hashCode() {
|
||
|
int value = m << 5;
|
||
|
value += (rp==null? 0:rp.hashCode());
|
||
|
// no need to involve ks here since ks and rp
|
||
|
// should be equivalent.
|
||
|
return value;
|
||
|
}
|
||
|
}
|