1244 lines
43 KiB
Java
1244 lines
43 KiB
Java
![]() |
/*
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This file is available under and governed by the GNU General Public
|
||
|
* License version 2 only, as published by the Free Software Foundation.
|
||
|
* However, the following notice accompanied the original version of this
|
||
|
* file:
|
||
|
*
|
||
|
* Written by Josh Bloch of Google Inc. and released to the public domain,
|
||
|
* as explained at http://creativecommons.org/publicdomain/zero/1.0/.
|
||
|
*/
|
||
|
|
||
|
package java.util;
|
||
|
|
||
|
import java.io.Serializable;
|
||
|
import java.util.function.Consumer;
|
||
|
import java.util.function.Predicate;
|
||
|
import jdk.internal.access.SharedSecrets;
|
||
|
|
||
|
/**
|
||
|
* Resizable-array implementation of the {@link Deque} interface. Array
|
||
|
* deques have no capacity restrictions; they grow as necessary to support
|
||
|
* usage. They are not thread-safe; in the absence of external
|
||
|
* synchronization, they do not support concurrent access by multiple threads.
|
||
|
* Null elements are prohibited. This class is likely to be faster than
|
||
|
* {@link Stack} when used as a stack, and faster than {@link LinkedList}
|
||
|
* when used as a queue.
|
||
|
*
|
||
|
* <p>Most {@code ArrayDeque} operations run in amortized constant time.
|
||
|
* Exceptions include
|
||
|
* {@link #remove(Object) remove},
|
||
|
* {@link #removeFirstOccurrence removeFirstOccurrence},
|
||
|
* {@link #removeLastOccurrence removeLastOccurrence},
|
||
|
* {@link #contains contains},
|
||
|
* {@link #iterator iterator.remove()},
|
||
|
* and the bulk operations, all of which run in linear time.
|
||
|
*
|
||
|
* <p>The iterators returned by this class's {@link #iterator() iterator}
|
||
|
* method are <em>fail-fast</em>: If the deque is modified at any time after
|
||
|
* the iterator is created, in any way except through the iterator's own
|
||
|
* {@code remove} method, the iterator will generally throw a {@link
|
||
|
* ConcurrentModificationException}. Thus, in the face of concurrent
|
||
|
* modification, the iterator fails quickly and cleanly, rather than risking
|
||
|
* arbitrary, non-deterministic behavior at an undetermined time in the
|
||
|
* future.
|
||
|
*
|
||
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
|
||
|
* as it is, generally speaking, impossible to make any hard guarantees in the
|
||
|
* presence of unsynchronized concurrent modification. Fail-fast iterators
|
||
|
* throw {@code ConcurrentModificationException} on a best-effort basis.
|
||
|
* Therefore, it would be wrong to write a program that depended on this
|
||
|
* exception for its correctness: <i>the fail-fast behavior of iterators
|
||
|
* should be used only to detect bugs.</i>
|
||
|
*
|
||
|
* <p>This class and its iterator implement all of the <em>optional</em> methods of the
|
||
|
* {@link Collection}, {@link SequencedCollection}, and {@link Iterator} interfaces.
|
||
|
*
|
||
|
* <p>This class is a member of the
|
||
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
||
|
* Java Collections Framework</a>.
|
||
|
*
|
||
|
* @author Josh Bloch and Doug Lea
|
||
|
* @param <E> the type of elements held in this deque
|
||
|
* @since 1.6
|
||
|
*/
|
||
|
public class ArrayDeque<E> extends AbstractCollection<E>
|
||
|
implements Deque<E>, Cloneable, Serializable
|
||
|
{
|
||
|
/*
|
||
|
* VMs excel at optimizing simple array loops where indices are
|
||
|
* incrementing or decrementing over a valid slice, e.g.
|
||
|
*
|
||
|
* for (int i = start; i < end; i++) ... elements[i]
|
||
|
*
|
||
|
* Because in a circular array, elements are in general stored in
|
||
|
* two disjoint such slices, we help the VM by writing unusual
|
||
|
* nested loops for all traversals over the elements. Having only
|
||
|
* one hot inner loop body instead of two or three eases human
|
||
|
* maintenance and encourages VM loop inlining into the caller.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* The array in which the elements of the deque are stored.
|
||
|
* All array cells not holding deque elements are always null.
|
||
|
* The array always has at least one null slot (at tail).
|
||
|
*/
|
||
|
transient Object[] elements;
|
||
|
|
||
|
/**
|
||
|
* The index of the element at the head of the deque (which is the
|
||
|
* element that would be removed by remove() or pop()); or an
|
||
|
* arbitrary number 0 <= head < elements.length equal to tail if
|
||
|
* the deque is empty.
|
||
|
*/
|
||
|
transient int head;
|
||
|
|
||
|
/**
|
||
|
* The index at which the next element would be added to the tail
|
||
|
* of the deque (via addLast(E), add(E), or push(E));
|
||
|
* elements[tail] is always null.
|
||
|
*/
|
||
|
transient int tail;
|
||
|
|
||
|
/**
|
||
|
* The maximum size of array to allocate.
|
||
|
* Some VMs reserve some header words in an array.
|
||
|
* Attempts to allocate larger arrays may result in
|
||
|
* OutOfMemoryError: Requested array size exceeds VM limit
|
||
|
*/
|
||
|
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
|
||
|
|
||
|
/**
|
||
|
* Increases the capacity of this deque by at least the given amount.
|
||
|
*
|
||
|
* @param needed the required minimum extra capacity; must be positive
|
||
|
*/
|
||
|
private void grow(int needed) {
|
||
|
// overflow-conscious code
|
||
|
final int oldCapacity = elements.length;
|
||
|
int newCapacity;
|
||
|
// Double capacity if small; else grow by 50%
|
||
|
int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
|
||
|
if (jump < needed
|
||
|
|| (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
|
||
|
newCapacity = newCapacity(needed, jump);
|
||
|
// Android-added: preserve reference to the old storage to nullify it later.
|
||
|
final Object[] oldElements = elements;
|
||
|
final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
|
||
|
// Exceptionally, here tail == head needs to be disambiguated
|
||
|
if (tail < head || (tail == head && es[head] != null)) {
|
||
|
// wrap around; slide first leg forward to end of array
|
||
|
int newSpace = newCapacity - oldCapacity;
|
||
|
System.arraycopy(es, head,
|
||
|
es, head + newSpace,
|
||
|
oldCapacity - head);
|
||
|
for (int i = head, to = (head += newSpace); i < to; i++)
|
||
|
es[i] = null;
|
||
|
}
|
||
|
// Android-added: Clear old array instance that's about to become eligible for GC.
|
||
|
// This ensures that array elements can be eligible for garbage collection even
|
||
|
// before the array itself is recognized as being eligible; the latter might
|
||
|
// take a while in some GC implementations, if the array instance is longer lived
|
||
|
// (its liveness rarely checked) than some of its contents.
|
||
|
Arrays.fill(oldElements, null);
|
||
|
}
|
||
|
|
||
|
/** Capacity calculation for edge conditions, especially overflow. */
|
||
|
private int newCapacity(int needed, int jump) {
|
||
|
final int oldCapacity = elements.length, minCapacity;
|
||
|
if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
|
||
|
if (minCapacity < 0)
|
||
|
throw new IllegalStateException("Sorry, deque too big");
|
||
|
return Integer.MAX_VALUE;
|
||
|
}
|
||
|
if (needed > jump)
|
||
|
return minCapacity;
|
||
|
return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
|
||
|
? oldCapacity + jump
|
||
|
: MAX_ARRAY_SIZE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty array deque with an initial capacity
|
||
|
* sufficient to hold 16 elements.
|
||
|
*/
|
||
|
public ArrayDeque() {
|
||
|
elements = new Object[16 + 1];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty array deque with an initial capacity
|
||
|
* sufficient to hold the specified number of elements.
|
||
|
*
|
||
|
* @param numElements lower bound on initial capacity of the deque
|
||
|
*/
|
||
|
public ArrayDeque(int numElements) {
|
||
|
elements =
|
||
|
new Object[(numElements < 1) ? 1 :
|
||
|
(numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
|
||
|
numElements + 1];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a deque containing the elements of the specified
|
||
|
* collection, in the order they are returned by the collection's
|
||
|
* iterator. (The first element returned by the collection's
|
||
|
* iterator becomes the first element, or <i>front</i> of the
|
||
|
* deque.)
|
||
|
*
|
||
|
* @param c the collection whose elements are to be placed into the deque
|
||
|
* @throws NullPointerException if the specified collection is null
|
||
|
*/
|
||
|
public ArrayDeque(Collection<? extends E> c) {
|
||
|
this(c.size());
|
||
|
copyElements(c);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Circularly increments i, mod modulus.
|
||
|
* Precondition and postcondition: 0 <= i < modulus.
|
||
|
*/
|
||
|
static final int inc(int i, int modulus) {
|
||
|
if (++i >= modulus) i = 0;
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Circularly decrements i, mod modulus.
|
||
|
* Precondition and postcondition: 0 <= i < modulus.
|
||
|
*/
|
||
|
static final int dec(int i, int modulus) {
|
||
|
if (--i < 0) i = modulus - 1;
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Circularly adds the given distance to index i, mod modulus.
|
||
|
* Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
|
||
|
* @return index 0 <= i < modulus
|
||
|
*/
|
||
|
static final int inc(int i, int distance, int modulus) {
|
||
|
if ((i += distance) - modulus >= 0) i -= modulus;
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Subtracts j from i, mod modulus.
|
||
|
* Index i must be logically ahead of index j.
|
||
|
* Precondition: 0 <= i < modulus, 0 <= j < modulus.
|
||
|
* @return the "circular distance" from j to i; corner case i == j
|
||
|
* is disambiguated to "empty", returning 0.
|
||
|
*/
|
||
|
static final int sub(int i, int j, int modulus) {
|
||
|
if ((i -= j) < 0) i += modulus;
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns element at array index i.
|
||
|
* This is a slight abuse of generics, accepted by javac.
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
static final <E> E elementAt(Object[] es, int i) {
|
||
|
return (E) es[i];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A version of elementAt that checks for null elements.
|
||
|
* This check doesn't catch all possible comodifications,
|
||
|
* but does catch ones that corrupt traversal.
|
||
|
*/
|
||
|
static final <E> E nonNullElementAt(Object[] es, int i) {
|
||
|
@SuppressWarnings("unchecked") E e = (E) es[i];
|
||
|
if (e == null)
|
||
|
throw new ConcurrentModificationException();
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
// The main insertion and extraction methods are addFirst,
|
||
|
// addLast, pollFirst, pollLast. The other methods are defined in
|
||
|
// terms of these.
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the front of this deque.
|
||
|
*
|
||
|
* @param e the element to add
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void addFirst(E e) {
|
||
|
if (e == null)
|
||
|
throw new NullPointerException();
|
||
|
final Object[] es = elements;
|
||
|
es[head = dec(head, es.length)] = e;
|
||
|
if (head == tail)
|
||
|
grow(1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the end of this deque.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #add}.
|
||
|
*
|
||
|
* @param e the element to add
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void addLast(E e) {
|
||
|
if (e == null)
|
||
|
throw new NullPointerException();
|
||
|
final Object[] es = elements;
|
||
|
es[tail] = e;
|
||
|
if (head == (tail = inc(tail, es.length)))
|
||
|
grow(1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds all of the elements in the specified collection at the end
|
||
|
* of this deque, as if by calling {@link #addLast} on each one,
|
||
|
* in the order that they are returned by the collection's iterator.
|
||
|
*
|
||
|
* @param c the elements to be inserted into this deque
|
||
|
* @return {@code true} if this deque changed as a result of the call
|
||
|
* @throws NullPointerException if the specified collection or any
|
||
|
* of its elements are null
|
||
|
*/
|
||
|
public boolean addAll(Collection<? extends E> c) {
|
||
|
final int s, needed;
|
||
|
if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
|
||
|
grow(needed);
|
||
|
copyElements(c);
|
||
|
return size() > s;
|
||
|
}
|
||
|
|
||
|
private void copyElements(Collection<? extends E> c) {
|
||
|
c.forEach(this::addLast);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the front of this deque.
|
||
|
*
|
||
|
* @param e the element to add
|
||
|
* @return {@code true} (as specified by {@link Deque#offerFirst})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offerFirst(E e) {
|
||
|
addFirst(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the end of this deque.
|
||
|
*
|
||
|
* @param e the element to add
|
||
|
* @return {@code true} (as specified by {@link Deque#offerLast})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offerLast(E e) {
|
||
|
addLast(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E removeFirst() {
|
||
|
E e = pollFirst();
|
||
|
if (e == null)
|
||
|
throw new NoSuchElementException();
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E removeLast() {
|
||
|
E e = pollLast();
|
||
|
if (e == null)
|
||
|
throw new NoSuchElementException();
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
public E pollFirst() {
|
||
|
final Object[] es;
|
||
|
final int h;
|
||
|
E e = elementAt(es = elements, h = head);
|
||
|
if (e != null) {
|
||
|
es[h] = null;
|
||
|
head = inc(h, es.length);
|
||
|
}
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
public E pollLast() {
|
||
|
final Object[] es;
|
||
|
final int t;
|
||
|
E e = elementAt(es = elements, t = dec(tail, es.length));
|
||
|
if (e != null)
|
||
|
es[tail = t] = null;
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E getFirst() {
|
||
|
E e = elementAt(elements, head);
|
||
|
if (e == null)
|
||
|
throw new NoSuchElementException();
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E getLast() {
|
||
|
final Object[] es = elements;
|
||
|
E e = elementAt(es, dec(tail, es.length));
|
||
|
if (e == null)
|
||
|
throw new NoSuchElementException();
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
public E peekFirst() {
|
||
|
return elementAt(elements, head);
|
||
|
}
|
||
|
|
||
|
public E peekLast() {
|
||
|
final Object[] es;
|
||
|
return elementAt(es = elements, dec(tail, es.length));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the first occurrence of the specified element in this
|
||
|
* deque (when traversing the deque from head to tail).
|
||
|
* If the deque does not contain the element, it is unchanged.
|
||
|
* More formally, removes the first element {@code e} such that
|
||
|
* {@code o.equals(e)} (if such an element exists).
|
||
|
* Returns {@code true} if this deque contained the specified element
|
||
|
* (or equivalently, if this deque changed as a result of the call).
|
||
|
*
|
||
|
* @param o element to be removed from this deque, if present
|
||
|
* @return {@code true} if the deque contained the specified element
|
||
|
*/
|
||
|
public boolean removeFirstOccurrence(Object o) {
|
||
|
if (o != null) {
|
||
|
final Object[] es = elements;
|
||
|
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
if (o.equals(es[i])) {
|
||
|
delete(i);
|
||
|
return true;
|
||
|
}
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the last occurrence of the specified element in this
|
||
|
* deque (when traversing the deque from head to tail).
|
||
|
* If the deque does not contain the element, it is unchanged.
|
||
|
* More formally, removes the last element {@code e} such that
|
||
|
* {@code o.equals(e)} (if such an element exists).
|
||
|
* Returns {@code true} if this deque contained the specified element
|
||
|
* (or equivalently, if this deque changed as a result of the call).
|
||
|
*
|
||
|
* @param o element to be removed from this deque, if present
|
||
|
* @return {@code true} if the deque contained the specified element
|
||
|
*/
|
||
|
public boolean removeLastOccurrence(Object o) {
|
||
|
if (o != null) {
|
||
|
final Object[] es = elements;
|
||
|
for (int i = tail, end = head, to = (i >= end) ? end : 0;
|
||
|
; i = es.length, to = end) {
|
||
|
for (i--; i > to - 1; i--)
|
||
|
if (o.equals(es[i])) {
|
||
|
delete(i);
|
||
|
return true;
|
||
|
}
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// *** Queue methods ***
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the end of this deque.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #addLast}.
|
||
|
*
|
||
|
* @param e the element to add
|
||
|
* @return {@code true} (as specified by {@link Collection#add})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean add(E e) {
|
||
|
addLast(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the end of this deque.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #offerLast}.
|
||
|
*
|
||
|
* @param e the element to add
|
||
|
* @return {@code true} (as specified by {@link Queue#offer})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offer(E e) {
|
||
|
return offerLast(e);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieves and removes the head of the queue represented by this deque.
|
||
|
*
|
||
|
* This method differs from {@link #poll() poll()} only in that it
|
||
|
* throws an exception if this deque is empty.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #removeFirst}.
|
||
|
*
|
||
|
* @return the head of the queue represented by this deque
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E remove() {
|
||
|
return removeFirst();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieves and removes the head of the queue represented by this deque
|
||
|
* (in other words, the first element of this deque), or returns
|
||
|
* {@code null} if this deque is empty.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #pollFirst}.
|
||
|
*
|
||
|
* @return the head of the queue represented by this deque, or
|
||
|
* {@code null} if this deque is empty
|
||
|
*/
|
||
|
public E poll() {
|
||
|
return pollFirst();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieves, but does not remove, the head of the queue represented by
|
||
|
* this deque. This method differs from {@link #peek peek} only in
|
||
|
* that it throws an exception if this deque is empty.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #getFirst}.
|
||
|
*
|
||
|
* @return the head of the queue represented by this deque
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E element() {
|
||
|
return getFirst();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieves, but does not remove, the head of the queue represented by
|
||
|
* this deque, or returns {@code null} if this deque is empty.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #peekFirst}.
|
||
|
*
|
||
|
* @return the head of the queue represented by this deque, or
|
||
|
* {@code null} if this deque is empty
|
||
|
*/
|
||
|
public E peek() {
|
||
|
return peekFirst();
|
||
|
}
|
||
|
|
||
|
// *** Stack methods ***
|
||
|
|
||
|
/**
|
||
|
* Pushes an element onto the stack represented by this deque. In other
|
||
|
* words, inserts the element at the front of this deque.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #addFirst}.
|
||
|
*
|
||
|
* @param e the element to push
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void push(E e) {
|
||
|
addFirst(e);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Pops an element from the stack represented by this deque. In other
|
||
|
* words, removes and returns the first element of this deque.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #removeFirst()}.
|
||
|
*
|
||
|
* @return the element at the front of this deque (which is the top
|
||
|
* of the stack represented by this deque)
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E pop() {
|
||
|
return removeFirst();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the element at the specified position in the elements array.
|
||
|
* This can result in forward or backwards motion of array elements.
|
||
|
* We optimize for least element motion.
|
||
|
*
|
||
|
* <p>This method is called delete rather than remove to emphasize
|
||
|
* that its semantics differ from those of {@link List#remove(int)}.
|
||
|
*
|
||
|
* @return true if elements near tail moved backwards
|
||
|
*/
|
||
|
boolean delete(int i) {
|
||
|
final Object[] es = elements;
|
||
|
final int capacity = es.length;
|
||
|
final int h, t;
|
||
|
// number of elements before to-be-deleted elt
|
||
|
final int front = sub(i, h = head, capacity);
|
||
|
// number of elements after to-be-deleted elt
|
||
|
final int back = sub(t = tail, i, capacity) - 1;
|
||
|
if (front < back) {
|
||
|
// move front elements forwards
|
||
|
if (h <= i) {
|
||
|
System.arraycopy(es, h, es, h + 1, front);
|
||
|
} else { // Wrap around
|
||
|
System.arraycopy(es, 0, es, 1, i);
|
||
|
es[0] = es[capacity - 1];
|
||
|
System.arraycopy(es, h, es, h + 1, front - (i + 1));
|
||
|
}
|
||
|
es[h] = null;
|
||
|
head = inc(h, capacity);
|
||
|
return false;
|
||
|
} else {
|
||
|
// move back elements backwards
|
||
|
tail = dec(t, capacity);
|
||
|
if (i <= tail) {
|
||
|
System.arraycopy(es, i + 1, es, i, back);
|
||
|
} else { // Wrap around
|
||
|
System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
|
||
|
es[capacity - 1] = es[0];
|
||
|
System.arraycopy(es, 1, es, 0, t - 1);
|
||
|
}
|
||
|
es[tail] = null;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// *** Collection Methods ***
|
||
|
|
||
|
/**
|
||
|
* Returns the number of elements in this deque.
|
||
|
*
|
||
|
* @return the number of elements in this deque
|
||
|
*/
|
||
|
public int size() {
|
||
|
return sub(tail, head, elements.length);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this deque contains no elements.
|
||
|
*
|
||
|
* @return {@code true} if this deque contains no elements
|
||
|
*/
|
||
|
public boolean isEmpty() {
|
||
|
return head == tail;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an iterator over the elements in this deque. The elements
|
||
|
* will be ordered from first (head) to last (tail). This is the same
|
||
|
* order that elements would be dequeued (via successive calls to
|
||
|
* {@link #remove} or popped (via successive calls to {@link #pop}).
|
||
|
*
|
||
|
* @return an iterator over the elements in this deque
|
||
|
*/
|
||
|
public Iterator<E> iterator() {
|
||
|
return new DeqIterator();
|
||
|
}
|
||
|
|
||
|
public Iterator<E> descendingIterator() {
|
||
|
return new DescendingIterator();
|
||
|
}
|
||
|
|
||
|
private class DeqIterator implements Iterator<E> {
|
||
|
/** Index of element to be returned by subsequent call to next. */
|
||
|
int cursor;
|
||
|
|
||
|
/** Number of elements yet to be returned. */
|
||
|
int remaining = size();
|
||
|
|
||
|
/**
|
||
|
* Index of element returned by most recent call to next.
|
||
|
* Reset to -1 if element is deleted by a call to remove.
|
||
|
*/
|
||
|
int lastRet = -1;
|
||
|
|
||
|
DeqIterator() { cursor = head; }
|
||
|
|
||
|
public final boolean hasNext() {
|
||
|
return remaining > 0;
|
||
|
}
|
||
|
|
||
|
public E next() {
|
||
|
if (remaining <= 0)
|
||
|
throw new NoSuchElementException();
|
||
|
final Object[] es = elements;
|
||
|
E e = nonNullElementAt(es, cursor);
|
||
|
cursor = inc(lastRet = cursor, es.length);
|
||
|
remaining--;
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
void postDelete(boolean leftShifted) {
|
||
|
if (leftShifted)
|
||
|
cursor = dec(cursor, elements.length);
|
||
|
}
|
||
|
|
||
|
public final void remove() {
|
||
|
if (lastRet < 0)
|
||
|
throw new IllegalStateException();
|
||
|
postDelete(delete(lastRet));
|
||
|
lastRet = -1;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void forEachRemaining(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
int r;
|
||
|
if ((r = remaining) <= 0)
|
||
|
return;
|
||
|
remaining = 0;
|
||
|
final Object[] es = elements;
|
||
|
if (es[cursor] == null || sub(tail, cursor, es.length) != r)
|
||
|
throw new ConcurrentModificationException();
|
||
|
for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
action.accept(elementAt(es, i));
|
||
|
if (to == end) {
|
||
|
if (end != tail)
|
||
|
throw new ConcurrentModificationException();
|
||
|
lastRet = dec(end, es.length);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private class DescendingIterator extends DeqIterator {
|
||
|
DescendingIterator() { cursor = dec(tail, elements.length); }
|
||
|
|
||
|
public final E next() {
|
||
|
if (remaining <= 0)
|
||
|
throw new NoSuchElementException();
|
||
|
final Object[] es = elements;
|
||
|
E e = nonNullElementAt(es, cursor);
|
||
|
cursor = dec(lastRet = cursor, es.length);
|
||
|
remaining--;
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
void postDelete(boolean leftShifted) {
|
||
|
if (!leftShifted)
|
||
|
cursor = inc(cursor, elements.length);
|
||
|
}
|
||
|
|
||
|
public final void forEachRemaining(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
int r;
|
||
|
if ((r = remaining) <= 0)
|
||
|
return;
|
||
|
remaining = 0;
|
||
|
final Object[] es = elements;
|
||
|
if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
|
||
|
throw new ConcurrentModificationException();
|
||
|
for (int i = cursor, end = head, to = (i >= end) ? end : 0;
|
||
|
; i = es.length - 1, to = end) {
|
||
|
// hotspot generates faster code than for: i >= to !
|
||
|
for (; i > to - 1; i--)
|
||
|
action.accept(elementAt(es, i));
|
||
|
if (to == end) {
|
||
|
if (end != head)
|
||
|
throw new ConcurrentModificationException();
|
||
|
lastRet = end;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
|
||
|
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
|
||
|
* deque.
|
||
|
*
|
||
|
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
|
||
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
|
||
|
* {@link Spliterator#NONNULL}. Overriding implementations should document
|
||
|
* the reporting of additional characteristic values.
|
||
|
*
|
||
|
* @return a {@code Spliterator} over the elements in this deque
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public Spliterator<E> spliterator() {
|
||
|
return new DeqSpliterator();
|
||
|
}
|
||
|
|
||
|
final class DeqSpliterator implements Spliterator<E> {
|
||
|
private int fence; // -1 until first use
|
||
|
private int cursor; // current index, modified on traverse/split
|
||
|
|
||
|
/** Constructs late-binding spliterator over all elements. */
|
||
|
DeqSpliterator() {
|
||
|
this.fence = -1;
|
||
|
}
|
||
|
|
||
|
/** Constructs spliterator over the given range. */
|
||
|
DeqSpliterator(int origin, int fence) {
|
||
|
// assert 0 <= origin && origin < elements.length;
|
||
|
// assert 0 <= fence && fence < elements.length;
|
||
|
this.cursor = origin;
|
||
|
this.fence = fence;
|
||
|
}
|
||
|
|
||
|
/** Ensures late-binding initialization; then returns fence. */
|
||
|
private int getFence() { // force initialization
|
||
|
int t;
|
||
|
if ((t = fence) < 0) {
|
||
|
t = fence = tail;
|
||
|
cursor = head;
|
||
|
}
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
public DeqSpliterator trySplit() {
|
||
|
final Object[] es = elements;
|
||
|
final int i, n;
|
||
|
return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
|
||
|
? null
|
||
|
: new DeqSpliterator(i, cursor = inc(i, n, es.length));
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super E> action) {
|
||
|
if (action == null)
|
||
|
throw new NullPointerException();
|
||
|
final int end = getFence(), cursor = this.cursor;
|
||
|
final Object[] es = elements;
|
||
|
if (cursor != end) {
|
||
|
this.cursor = end;
|
||
|
// null check at both ends of range is sufficient
|
||
|
if (es[cursor] == null || es[dec(end, es.length)] == null)
|
||
|
throw new ConcurrentModificationException();
|
||
|
for (int i = cursor, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
action.accept(elementAt(es, i));
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public boolean tryAdvance(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
final Object[] es = elements;
|
||
|
if (fence < 0) { fence = tail; cursor = head; } // late-binding
|
||
|
final int i;
|
||
|
if ((i = cursor) == fence)
|
||
|
return false;
|
||
|
E e = nonNullElementAt(es, i);
|
||
|
cursor = inc(i, es.length);
|
||
|
action.accept(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public long estimateSize() {
|
||
|
return sub(getFence(), cursor, elements.length);
|
||
|
}
|
||
|
|
||
|
public int characteristics() {
|
||
|
return Spliterator.NONNULL
|
||
|
| Spliterator.ORDERED
|
||
|
| Spliterator.SIZED
|
||
|
| Spliterator.SUBSIZED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public void forEach(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
final Object[] es = elements;
|
||
|
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
action.accept(elementAt(es, i));
|
||
|
if (to == end) {
|
||
|
if (end != tail) throw new ConcurrentModificationException();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean removeIf(Predicate<? super E> filter) {
|
||
|
Objects.requireNonNull(filter);
|
||
|
return bulkRemove(filter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean removeAll(Collection<?> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
return bulkRemove(e -> c.contains(e));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean retainAll(Collection<?> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
return bulkRemove(e -> !c.contains(e));
|
||
|
}
|
||
|
|
||
|
/** Implementation of bulk remove methods. */
|
||
|
private boolean bulkRemove(Predicate<? super E> filter) {
|
||
|
final Object[] es = elements;
|
||
|
// Optimize for initial run of survivors
|
||
|
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
if (filter.test(elementAt(es, i)))
|
||
|
return bulkRemoveModified(filter, i);
|
||
|
if (to == end) {
|
||
|
if (end != tail) throw new ConcurrentModificationException();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// A tiny bit set implementation
|
||
|
|
||
|
private static long[] nBits(int n) {
|
||
|
return new long[((n - 1) >> 6) + 1];
|
||
|
}
|
||
|
private static void setBit(long[] bits, int i) {
|
||
|
bits[i >> 6] |= 1L << i;
|
||
|
}
|
||
|
private static boolean isClear(long[] bits, int i) {
|
||
|
return (bits[i >> 6] & (1L << i)) == 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Helper for bulkRemove, in case of at least one deletion.
|
||
|
* Tolerate predicates that reentrantly access the collection for
|
||
|
* read (but writers still get CME), so traverse once to find
|
||
|
* elements to delete, a second pass to physically expunge.
|
||
|
*
|
||
|
* @param beg valid index of first element to be deleted
|
||
|
*/
|
||
|
private boolean bulkRemoveModified(
|
||
|
Predicate<? super E> filter, final int beg) {
|
||
|
final Object[] es = elements;
|
||
|
final int capacity = es.length;
|
||
|
final int end = tail;
|
||
|
final long[] deathRow = nBits(sub(end, beg, capacity));
|
||
|
deathRow[0] = 1L; // set bit 0
|
||
|
for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
|
||
|
; i = 0, to = end, k -= capacity) {
|
||
|
for (; i < to; i++)
|
||
|
if (filter.test(elementAt(es, i)))
|
||
|
setBit(deathRow, i - k);
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
// a two-finger traversal, with hare i reading, tortoise w writing
|
||
|
int w = beg;
|
||
|
for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
|
||
|
; w = 0) { // w rejoins i on second leg
|
||
|
// In this loop, i and w are on the same leg, with i > w
|
||
|
for (; i < to; i++)
|
||
|
if (isClear(deathRow, i - k))
|
||
|
es[w++] = es[i];
|
||
|
if (to == end) break;
|
||
|
// In this loop, w is on the first leg, i on the second
|
||
|
for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
|
||
|
if (isClear(deathRow, i - k))
|
||
|
es[w++] = es[i];
|
||
|
if (i >= to) {
|
||
|
if (w == capacity) w = 0; // "corner" case
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (end != tail) throw new ConcurrentModificationException();
|
||
|
circularClear(es, tail = w, end);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this deque contains the specified element.
|
||
|
* More formally, returns {@code true} if and only if this deque contains
|
||
|
* at least one element {@code e} such that {@code o.equals(e)}.
|
||
|
*
|
||
|
* @param o object to be checked for containment in this deque
|
||
|
* @return {@code true} if this deque contains the specified element
|
||
|
*/
|
||
|
public boolean contains(Object o) {
|
||
|
if (o != null) {
|
||
|
final Object[] es = elements;
|
||
|
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
if (o.equals(es[i]))
|
||
|
return true;
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes a single instance of the specified element from this deque.
|
||
|
* If the deque does not contain the element, it is unchanged.
|
||
|
* More formally, removes the first element {@code e} such that
|
||
|
* {@code o.equals(e)} (if such an element exists).
|
||
|
* Returns {@code true} if this deque contained the specified element
|
||
|
* (or equivalently, if this deque changed as a result of the call).
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
|
||
|
*
|
||
|
* @param o element to be removed from this deque, if present
|
||
|
* @return {@code true} if this deque contained the specified element
|
||
|
*/
|
||
|
public boolean remove(Object o) {
|
||
|
return removeFirstOccurrence(o);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes all of the elements from this deque.
|
||
|
* The deque will be empty after this call returns.
|
||
|
*/
|
||
|
public void clear() {
|
||
|
circularClear(elements, head, tail);
|
||
|
head = tail = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Nulls out slots starting at array index i, up to index end.
|
||
|
* Condition i == end means "empty" - nothing to do.
|
||
|
*/
|
||
|
private static void circularClear(Object[] es, int i, int end) {
|
||
|
// assert 0 <= i && i < es.length;
|
||
|
// assert 0 <= end && end < es.length;
|
||
|
for (int to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++) es[i] = null;
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing all of the elements in this deque
|
||
|
* in proper sequence (from first to last element).
|
||
|
*
|
||
|
* <p>The returned array will be "safe" in that no references to it are
|
||
|
* maintained by this deque. (In other words, this method must allocate
|
||
|
* a new array). The caller is thus free to modify the returned array.
|
||
|
*
|
||
|
* <p>This method acts as bridge between array-based and collection-based
|
||
|
* APIs.
|
||
|
*
|
||
|
* @return an array containing all of the elements in this deque
|
||
|
*/
|
||
|
public Object[] toArray() {
|
||
|
return toArray(Object[].class);
|
||
|
}
|
||
|
|
||
|
private <T> T[] toArray(Class<T[]> klazz) {
|
||
|
final Object[] es = elements;
|
||
|
final T[] a;
|
||
|
final int head = this.head, tail = this.tail, end;
|
||
|
if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
|
||
|
// Uses null extension feature of copyOfRange
|
||
|
a = Arrays.copyOfRange(es, head, end, klazz);
|
||
|
} else {
|
||
|
// integer overflow!
|
||
|
a = Arrays.copyOfRange(es, 0, end - head, klazz);
|
||
|
System.arraycopy(es, head, a, 0, es.length - head);
|
||
|
}
|
||
|
if (end != tail)
|
||
|
System.arraycopy(es, 0, a, es.length - head, tail);
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing all of the elements in this deque in
|
||
|
* proper sequence (from first to last element); the runtime type of the
|
||
|
* returned array is that of the specified array. If the deque fits in
|
||
|
* the specified array, it is returned therein. Otherwise, a new array
|
||
|
* is allocated with the runtime type of the specified array and the
|
||
|
* size of this deque.
|
||
|
*
|
||
|
* <p>If this deque fits in the specified array with room to spare
|
||
|
* (i.e., the array has more elements than this deque), the element in
|
||
|
* the array immediately following the end of the deque is set to
|
||
|
* {@code null}.
|
||
|
*
|
||
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between
|
||
|
* array-based and collection-based APIs. Further, this method allows
|
||
|
* precise control over the runtime type of the output array, and may,
|
||
|
* under certain circumstances, be used to save allocation costs.
|
||
|
*
|
||
|
* <p>Suppose {@code x} is a deque known to contain only strings.
|
||
|
* The following code can be used to dump the deque into a newly
|
||
|
* allocated array of {@code String}:
|
||
|
*
|
||
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
|
||
|
*
|
||
|
* Note that {@code toArray(new Object[0])} is identical in function to
|
||
|
* {@code toArray()}.
|
||
|
*
|
||
|
* @param a the array into which the elements of the deque are to
|
||
|
* be stored, if it is big enough; otherwise, a new array of the
|
||
|
* same runtime type is allocated for this purpose
|
||
|
* @return an array containing all of the elements in this deque
|
||
|
* @throws ArrayStoreException if the runtime type of the specified array
|
||
|
* is not a supertype of the runtime type of every element in
|
||
|
* this deque
|
||
|
* @throws NullPointerException if the specified array is null
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public <T> T[] toArray(T[] a) {
|
||
|
final int size;
|
||
|
if ((size = size()) > a.length)
|
||
|
return toArray((Class<T[]>) a.getClass());
|
||
|
final Object[] es = elements;
|
||
|
for (int i = head, j = 0, len = Math.min(size, es.length - i);
|
||
|
; i = 0, len = tail) {
|
||
|
System.arraycopy(es, i, a, j, len);
|
||
|
if ((j += len) == size) break;
|
||
|
}
|
||
|
if (size < a.length)
|
||
|
a[size] = null;
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
// *** Object methods ***
|
||
|
|
||
|
/**
|
||
|
* Returns a copy of this deque.
|
||
|
*
|
||
|
* @return a copy of this deque
|
||
|
*/
|
||
|
public ArrayDeque<E> clone() {
|
||
|
try {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
|
||
|
result.elements = Arrays.copyOf(elements, elements.length);
|
||
|
return result;
|
||
|
} catch (CloneNotSupportedException e) {
|
||
|
throw new AssertionError();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@java.io.Serial
|
||
|
private static final long serialVersionUID = 2340985798034038923L;
|
||
|
|
||
|
/**
|
||
|
* Saves this deque to a stream (that is, serializes it).
|
||
|
*
|
||
|
* @param s the stream
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
* @serialData The current size ({@code int}) of the deque,
|
||
|
* followed by all of its elements (each an object reference) in
|
||
|
* first-to-last order.
|
||
|
*/
|
||
|
@java.io.Serial
|
||
|
private void writeObject(java.io.ObjectOutputStream s)
|
||
|
throws java.io.IOException {
|
||
|
s.defaultWriteObject();
|
||
|
|
||
|
// Write out size
|
||
|
s.writeInt(size());
|
||
|
|
||
|
// Write out elements in order.
|
||
|
final Object[] es = elements;
|
||
|
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
|
||
|
; i = 0, to = end) {
|
||
|
for (; i < to; i++)
|
||
|
s.writeObject(es[i]);
|
||
|
if (to == end) break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reconstitutes this deque from a stream (that is, deserializes it).
|
||
|
* @param s the stream
|
||
|
* @throws ClassNotFoundException if the class of a serialized object
|
||
|
* could not be found
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
*/
|
||
|
@java.io.Serial
|
||
|
private void readObject(java.io.ObjectInputStream s)
|
||
|
throws java.io.IOException, ClassNotFoundException {
|
||
|
s.defaultReadObject();
|
||
|
|
||
|
// Read in size and allocate array
|
||
|
int size = s.readInt();
|
||
|
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1);
|
||
|
elements = new Object[size + 1];
|
||
|
this.tail = size;
|
||
|
|
||
|
// Read in all elements in the proper order.
|
||
|
for (int i = 0; i < size; i++)
|
||
|
elements[i] = s.readObject();
|
||
|
}
|
||
|
|
||
|
/** debugging */
|
||
|
void checkInvariants() {
|
||
|
// Use head and tail fields with empty slot at tail strategy.
|
||
|
// head == tail disambiguates to "empty".
|
||
|
try {
|
||
|
int capacity = elements.length;
|
||
|
// assert 0 <= head && head < capacity;
|
||
|
// assert 0 <= tail && tail < capacity;
|
||
|
// assert capacity > 0;
|
||
|
// assert size() < capacity;
|
||
|
// assert head == tail || elements[head] != null;
|
||
|
// assert elements[tail] == null;
|
||
|
// assert head == tail || elements[dec(tail, capacity)] != null;
|
||
|
} catch (Throwable t) {
|
||
|
System.err.printf("head=%d tail=%d capacity=%d%n",
|
||
|
head, tail, elements.length);
|
||
|
System.err.printf("elements=%s%n",
|
||
|
Arrays.toString(elements));
|
||
|
throw t;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|