6388 lines
261 KiB
Java
6388 lines
261 KiB
Java
![]() |
/*
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This file is available under and governed by the GNU General Public
|
||
|
* License version 2 only, as published by the Free Software Foundation.
|
||
|
* However, the following notice accompanied the original version of this
|
||
|
* file:
|
||
|
*
|
||
|
* Written by Doug Lea with assistance from members of JCP JSR-166
|
||
|
* Expert Group and released to the public domain, as explained at
|
||
|
* http://creativecommons.org/publicdomain/zero/1.0/
|
||
|
*/
|
||
|
|
||
|
package java.util.concurrent;
|
||
|
|
||
|
import java.io.ObjectStreamField;
|
||
|
import java.io.Serializable;
|
||
|
import java.lang.reflect.ParameterizedType;
|
||
|
import java.lang.reflect.Type;
|
||
|
import java.util.AbstractMap;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Collection;
|
||
|
import java.util.Enumeration;
|
||
|
import java.util.HashMap;
|
||
|
import java.util.Hashtable;
|
||
|
import java.util.Iterator;
|
||
|
import java.util.Map;
|
||
|
import java.util.NoSuchElementException;
|
||
|
import java.util.Set;
|
||
|
import java.util.Spliterator;
|
||
|
import java.util.concurrent.atomic.AtomicReference;
|
||
|
import java.util.concurrent.locks.LockSupport;
|
||
|
import java.util.concurrent.locks.ReentrantLock;
|
||
|
import java.util.function.BiConsumer;
|
||
|
import java.util.function.BiFunction;
|
||
|
import java.util.function.Consumer;
|
||
|
import java.util.function.DoubleBinaryOperator;
|
||
|
import java.util.function.Function;
|
||
|
import java.util.function.IntBinaryOperator;
|
||
|
import java.util.function.LongBinaryOperator;
|
||
|
import java.util.function.Predicate;
|
||
|
import java.util.function.ToDoubleBiFunction;
|
||
|
import java.util.function.ToDoubleFunction;
|
||
|
import java.util.function.ToIntBiFunction;
|
||
|
import java.util.function.ToIntFunction;
|
||
|
import java.util.function.ToLongBiFunction;
|
||
|
import java.util.function.ToLongFunction;
|
||
|
import java.util.stream.Stream;
|
||
|
import jdk.internal.misc.Unsafe;
|
||
|
|
||
|
/**
|
||
|
* A hash table supporting full concurrency of retrievals and
|
||
|
* high expected concurrency for updates. This class obeys the
|
||
|
* same functional specification as {@link java.util.Hashtable}, and
|
||
|
* includes versions of methods corresponding to each method of
|
||
|
* {@code Hashtable}. However, even though all operations are
|
||
|
* thread-safe, retrieval operations do <em>not</em> entail locking,
|
||
|
* and there is <em>not</em> any support for locking the entire table
|
||
|
* in a way that prevents all access. This class is fully
|
||
|
* interoperable with {@code Hashtable} in programs that rely on its
|
||
|
* thread safety but not on its synchronization details.
|
||
|
*
|
||
|
* <p>Retrieval operations (including {@code get}) generally do not
|
||
|
* block, so may overlap with update operations (including {@code put}
|
||
|
* and {@code remove}). Retrievals reflect the results of the most
|
||
|
* recently <em>completed</em> update operations holding upon their
|
||
|
* onset. (More formally, an update operation for a given key bears a
|
||
|
* <em>happens-before</em> relation with any (non-null) retrieval for
|
||
|
* that key reporting the updated value.) For aggregate operations
|
||
|
* such as {@code putAll} and {@code clear}, concurrent retrievals may
|
||
|
* reflect insertion or removal of only some entries. Similarly,
|
||
|
* Iterators, Spliterators and Enumerations return elements reflecting the
|
||
|
* state of the hash table at some point at or since the creation of the
|
||
|
* iterator/enumeration. They do <em>not</em> throw {@link
|
||
|
* java.util.ConcurrentModificationException ConcurrentModificationException}.
|
||
|
* However, iterators are designed to be used by only one thread at a time.
|
||
|
* Bear in mind that the results of aggregate status methods including
|
||
|
* {@code size}, {@code isEmpty}, and {@code containsValue} are typically
|
||
|
* useful only when a map is not undergoing concurrent updates in other threads.
|
||
|
* Otherwise the results of these methods reflect transient states
|
||
|
* that may be adequate for monitoring or estimation purposes, but not
|
||
|
* for program control.
|
||
|
*
|
||
|
* <p>The table is dynamically expanded when there are too many
|
||
|
* collisions (i.e., keys that have distinct hash codes but fall into
|
||
|
* the same slot modulo the table size), with the expected average
|
||
|
* effect of maintaining roughly two bins per mapping (corresponding
|
||
|
* to a 0.75 load factor threshold for resizing). There may be much
|
||
|
* variance around this average as mappings are added and removed, but
|
||
|
* overall, this maintains a commonly accepted time/space tradeoff for
|
||
|
* hash tables. However, resizing this or any other kind of hash
|
||
|
* table may be a relatively slow operation. When possible, it is a
|
||
|
* good idea to provide a size estimate as an optional {@code
|
||
|
* initialCapacity} constructor argument. An additional optional
|
||
|
* {@code loadFactor} constructor argument provides a further means of
|
||
|
* customizing initial table capacity by specifying the table density
|
||
|
* to be used in calculating the amount of space to allocate for the
|
||
|
* given number of elements. Also, for compatibility with previous
|
||
|
* versions of this class, constructors may optionally specify an
|
||
|
* expected {@code concurrencyLevel} as an additional hint for
|
||
|
* internal sizing. Note that using many keys with exactly the same
|
||
|
* {@code hashCode()} is a sure way to slow down performance of any
|
||
|
* hash table. To ameliorate impact, when keys are {@link Comparable},
|
||
|
* this class may use comparison order among keys to help break ties.
|
||
|
*
|
||
|
* <p>A {@link Set} projection of a ConcurrentHashMap may be created
|
||
|
* (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
|
||
|
* (using {@link #keySet(Object)} when only keys are of interest, and the
|
||
|
* mapped values are (perhaps transiently) not used or all take the
|
||
|
* same mapping value.
|
||
|
*
|
||
|
* <p>A ConcurrentHashMap can be used as a scalable frequency map (a
|
||
|
* form of histogram or multiset) by using {@link
|
||
|
* java.util.concurrent.atomic.LongAdder} values and initializing via
|
||
|
* {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
|
||
|
* to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
|
||
|
* {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
|
||
|
*
|
||
|
* <p>This class and its views and iterators implement all of the
|
||
|
* <em>optional</em> methods of the {@link Map} and {@link Iterator}
|
||
|
* interfaces.
|
||
|
*
|
||
|
* <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
|
||
|
* does <em>not</em> allow {@code null} to be used as a key or value.
|
||
|
*
|
||
|
* <p>ConcurrentHashMaps support a set of sequential and parallel bulk
|
||
|
* operations that, unlike most {@link Stream} methods, are designed
|
||
|
* to be safely, and often sensibly, applied even with maps that are
|
||
|
* being concurrently updated by other threads; for example, when
|
||
|
* computing a snapshot summary of the values in a shared registry.
|
||
|
* There are three kinds of operation, each with four forms, accepting
|
||
|
* functions with keys, values, entries, and (key, value) pairs as
|
||
|
* arguments and/or return values. Because the elements of a
|
||
|
* ConcurrentHashMap are not ordered in any particular way, and may be
|
||
|
* processed in different orders in different parallel executions, the
|
||
|
* correctness of supplied functions should not depend on any
|
||
|
* ordering, or on any other objects or values that may transiently
|
||
|
* change while computation is in progress; and except for forEach
|
||
|
* actions, should ideally be side-effect-free. Bulk operations on
|
||
|
* {@link Map.Entry} objects do not support method {@code setValue}.
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>forEach: Performs a given action on each element.
|
||
|
* A variant form applies a given transformation on each element
|
||
|
* before performing the action.
|
||
|
*
|
||
|
* <li>search: Returns the first available non-null result of
|
||
|
* applying a given function on each element; skipping further
|
||
|
* search when a result is found.
|
||
|
*
|
||
|
* <li>reduce: Accumulates each element. The supplied reduction
|
||
|
* function cannot rely on ordering (more formally, it should be
|
||
|
* both associative and commutative). There are five variants:
|
||
|
*
|
||
|
* <ul>
|
||
|
*
|
||
|
* <li>Plain reductions. (There is not a form of this method for
|
||
|
* (key, value) function arguments since there is no corresponding
|
||
|
* return type.)
|
||
|
*
|
||
|
* <li>Mapped reductions that accumulate the results of a given
|
||
|
* function applied to each element.
|
||
|
*
|
||
|
* <li>Reductions to scalar doubles, longs, and ints, using a
|
||
|
* given basis value.
|
||
|
*
|
||
|
* </ul>
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>These bulk operations accept a {@code parallelismThreshold}
|
||
|
* argument. Methods proceed sequentially if the current map size is
|
||
|
* estimated to be less than the given threshold. Using a value of
|
||
|
* {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
|
||
|
* of {@code 1} results in maximal parallelism by partitioning into
|
||
|
* enough subtasks to fully utilize the {@link
|
||
|
* ForkJoinPool#commonPool()} that is used for all parallel
|
||
|
* computations. Normally, you would initially choose one of these
|
||
|
* extreme values, and then measure performance of using in-between
|
||
|
* values that trade off overhead versus throughput.
|
||
|
*
|
||
|
* <p>The concurrency properties of bulk operations follow
|
||
|
* from those of ConcurrentHashMap: Any non-null result returned
|
||
|
* from {@code get(key)} and related access methods bears a
|
||
|
* happens-before relation with the associated insertion or
|
||
|
* update. The result of any bulk operation reflects the
|
||
|
* composition of these per-element relations (but is not
|
||
|
* necessarily atomic with respect to the map as a whole unless it
|
||
|
* is somehow known to be quiescent). Conversely, because keys
|
||
|
* and values in the map are never null, null serves as a reliable
|
||
|
* atomic indicator of the current lack of any result. To
|
||
|
* maintain this property, null serves as an implicit basis for
|
||
|
* all non-scalar reduction operations. For the double, long, and
|
||
|
* int versions, the basis should be one that, when combined with
|
||
|
* any other value, returns that other value (more formally, it
|
||
|
* should be the identity element for the reduction). Most common
|
||
|
* reductions have these properties; for example, computing a sum
|
||
|
* with basis 0 or a minimum with basis MAX_VALUE.
|
||
|
*
|
||
|
* <p>Search and transformation functions provided as arguments
|
||
|
* should similarly return null to indicate the lack of any result
|
||
|
* (in which case it is not used). In the case of mapped
|
||
|
* reductions, this also enables transformations to serve as
|
||
|
* filters, returning null (or, in the case of primitive
|
||
|
* specializations, the identity basis) if the element should not
|
||
|
* be combined. You can create compound transformations and
|
||
|
* filterings by composing them yourself under this "null means
|
||
|
* there is nothing there now" rule before using them in search or
|
||
|
* reduce operations.
|
||
|
*
|
||
|
* <p>Methods accepting and/or returning Entry arguments maintain
|
||
|
* key-value associations. They may be useful for example when
|
||
|
* finding the key for the greatest value. Note that "plain" Entry
|
||
|
* arguments can be supplied using {@code new
|
||
|
* AbstractMap.SimpleEntry(k,v)}.
|
||
|
*
|
||
|
* <p>Bulk operations may complete abruptly, throwing an
|
||
|
* exception encountered in the application of a supplied
|
||
|
* function. Bear in mind when handling such exceptions that other
|
||
|
* concurrently executing functions could also have thrown
|
||
|
* exceptions, or would have done so if the first exception had
|
||
|
* not occurred.
|
||
|
*
|
||
|
* <p>Speedups for parallel compared to sequential forms are common
|
||
|
* but not guaranteed. Parallel operations involving brief functions
|
||
|
* on small maps may execute more slowly than sequential forms if the
|
||
|
* underlying work to parallelize the computation is more expensive
|
||
|
* than the computation itself. Similarly, parallelization may not
|
||
|
* lead to much actual parallelism if all processors are busy
|
||
|
* performing unrelated tasks.
|
||
|
*
|
||
|
* <p>All arguments to all task methods must be non-null.
|
||
|
*
|
||
|
* <p>This class is a member of the
|
||
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
||
|
* Java Collections Framework</a>.
|
||
|
*
|
||
|
* @since 1.5
|
||
|
* @author Doug Lea
|
||
|
* @param <K> the type of keys maintained by this map
|
||
|
* @param <V> the type of mapped values
|
||
|
*/
|
||
|
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
|
||
|
implements ConcurrentMap<K,V>, Serializable {
|
||
|
private static final long serialVersionUID = 7249069246763182397L;
|
||
|
|
||
|
/*
|
||
|
* Overview:
|
||
|
*
|
||
|
* The primary design goal of this hash table is to maintain
|
||
|
* concurrent readability (typically method get(), but also
|
||
|
* iterators and related methods) while minimizing update
|
||
|
* contention. Secondary goals are to keep space consumption about
|
||
|
* the same or better than java.util.HashMap, and to support high
|
||
|
* initial insertion rates on an empty table by many threads.
|
||
|
*
|
||
|
* This map usually acts as a binned (bucketed) hash table. Each
|
||
|
* key-value mapping is held in a Node. Most nodes are instances
|
||
|
* of the basic Node class with hash, key, value, and next
|
||
|
* fields. However, various subclasses exist: TreeNodes are
|
||
|
* arranged in balanced trees, not lists. TreeBins hold the roots
|
||
|
* of sets of TreeNodes. ForwardingNodes are placed at the heads
|
||
|
* of bins during resizing. ReservationNodes are used as
|
||
|
* placeholders while establishing values in computeIfAbsent and
|
||
|
* related methods. The types TreeBin, ForwardingNode, and
|
||
|
* ReservationNode do not hold normal user keys, values, or
|
||
|
* hashes, and are readily distinguishable during search etc
|
||
|
* because they have negative hash fields and null key and value
|
||
|
* fields. (These special nodes are either uncommon or transient,
|
||
|
* so the impact of carrying around some unused fields is
|
||
|
* insignificant.)
|
||
|
*
|
||
|
* The table is lazily initialized to a power-of-two size upon the
|
||
|
* first insertion. Each bin in the table normally contains a
|
||
|
* list of Nodes (most often, the list has only zero or one Node).
|
||
|
* Table accesses require volatile/atomic reads, writes, and
|
||
|
* CASes. Because there is no other way to arrange this without
|
||
|
* adding further indirections, we use intrinsics
|
||
|
* (jdk.internal.misc.Unsafe) operations.
|
||
|
*
|
||
|
* We use the top (sign) bit of Node hash fields for control
|
||
|
* purposes -- it is available anyway because of addressing
|
||
|
* constraints. Nodes with negative hash fields are specially
|
||
|
* handled or ignored in map methods.
|
||
|
*
|
||
|
* Insertion (via put or its variants) of the first node in an
|
||
|
* empty bin is performed by just CASing it to the bin. This is
|
||
|
* by far the most common case for put operations under most
|
||
|
* key/hash distributions. Other update operations (insert,
|
||
|
* delete, and replace) require locks. We do not want to waste
|
||
|
* the space required to associate a distinct lock object with
|
||
|
* each bin, so instead use the first node of a bin list itself as
|
||
|
* a lock. Locking support for these locks relies on builtin
|
||
|
* "synchronized" monitors.
|
||
|
*
|
||
|
* Using the first node of a list as a lock does not by itself
|
||
|
* suffice though: When a node is locked, any update must first
|
||
|
* validate that it is still the first node after locking it, and
|
||
|
* retry if not. Because new nodes are always appended to lists,
|
||
|
* once a node is first in a bin, it remains first until deleted
|
||
|
* or the bin becomes invalidated (upon resizing).
|
||
|
*
|
||
|
* The main disadvantage of per-bin locks is that other update
|
||
|
* operations on other nodes in a bin list protected by the same
|
||
|
* lock can stall, for example when user equals() or mapping
|
||
|
* functions take a long time. However, statistically, under
|
||
|
* random hash codes, this is not a common problem. Ideally, the
|
||
|
* frequency of nodes in bins follows a Poisson distribution
|
||
|
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
|
||
|
* parameter of about 0.5 on average, given the resizing threshold
|
||
|
* of 0.75, although with a large variance because of resizing
|
||
|
* granularity. Ignoring variance, the expected occurrences of
|
||
|
* list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
|
||
|
* first values are:
|
||
|
*
|
||
|
* 0: 0.60653066
|
||
|
* 1: 0.30326533
|
||
|
* 2: 0.07581633
|
||
|
* 3: 0.01263606
|
||
|
* 4: 0.00157952
|
||
|
* 5: 0.00015795
|
||
|
* 6: 0.00001316
|
||
|
* 7: 0.00000094
|
||
|
* 8: 0.00000006
|
||
|
* more: less than 1 in ten million
|
||
|
*
|
||
|
* Lock contention probability for two threads accessing distinct
|
||
|
* elements is roughly 1 / (8 * #elements) under random hashes.
|
||
|
*
|
||
|
* Actual hash code distributions encountered in practice
|
||
|
* sometimes deviate significantly from uniform randomness. This
|
||
|
* includes the case when N > (1<<30), so some keys MUST collide.
|
||
|
* Similarly for dumb or hostile usages in which multiple keys are
|
||
|
* designed to have identical hash codes or ones that differs only
|
||
|
* in masked-out high bits. So we use a secondary strategy that
|
||
|
* applies when the number of nodes in a bin exceeds a
|
||
|
* threshold. These TreeBins use a balanced tree to hold nodes (a
|
||
|
* specialized form of red-black trees), bounding search time to
|
||
|
* O(log N). Each search step in a TreeBin is at least twice as
|
||
|
* slow as in a regular list, but given that N cannot exceed
|
||
|
* (1<<64) (before running out of addresses) this bounds search
|
||
|
* steps, lock hold times, etc, to reasonable constants (roughly
|
||
|
* 100 nodes inspected per operation worst case) so long as keys
|
||
|
* are Comparable (which is very common -- String, Long, etc).
|
||
|
* TreeBin nodes (TreeNodes) also maintain the same "next"
|
||
|
* traversal pointers as regular nodes, so can be traversed in
|
||
|
* iterators in the same way.
|
||
|
*
|
||
|
* The table is resized when occupancy exceeds a percentage
|
||
|
* threshold (nominally, 0.75, but see below). Any thread
|
||
|
* noticing an overfull bin may assist in resizing after the
|
||
|
* initiating thread allocates and sets up the replacement array.
|
||
|
* However, rather than stalling, these other threads may proceed
|
||
|
* with insertions etc. The use of TreeBins shields us from the
|
||
|
* worst case effects of overfilling while resizes are in
|
||
|
* progress. Resizing proceeds by transferring bins, one by one,
|
||
|
* from the table to the next table. However, threads claim small
|
||
|
* blocks of indices to transfer (via field transferIndex) before
|
||
|
* doing so, reducing contention. A generation stamp in field
|
||
|
* sizeCtl ensures that resizings do not overlap. Because we are
|
||
|
* using power-of-two expansion, the elements from each bin must
|
||
|
* either stay at same index, or move with a power of two
|
||
|
* offset. We eliminate unnecessary node creation by catching
|
||
|
* cases where old nodes can be reused because their next fields
|
||
|
* won't change. On average, only about one-sixth of them need
|
||
|
* cloning when a table doubles. The nodes they replace will be
|
||
|
* garbage collectible as soon as they are no longer referenced by
|
||
|
* any reader thread that may be in the midst of concurrently
|
||
|
* traversing table. Upon transfer, the old table bin contains
|
||
|
* only a special forwarding node (with hash field "MOVED") that
|
||
|
* contains the next table as its key. On encountering a
|
||
|
* forwarding node, access and update operations restart, using
|
||
|
* the new table.
|
||
|
*
|
||
|
* Each bin transfer requires its bin lock, which can stall
|
||
|
* waiting for locks while resizing. However, because other
|
||
|
* threads can join in and help resize rather than contend for
|
||
|
* locks, average aggregate waits become shorter as resizing
|
||
|
* progresses. The transfer operation must also ensure that all
|
||
|
* accessible bins in both the old and new table are usable by any
|
||
|
* traversal. This is arranged in part by proceeding from the
|
||
|
* last bin (table.length - 1) up towards the first. Upon seeing
|
||
|
* a forwarding node, traversals (see class Traverser) arrange to
|
||
|
* move to the new table without revisiting nodes. To ensure that
|
||
|
* no intervening nodes are skipped even when moved out of order,
|
||
|
* a stack (see class TableStack) is created on first encounter of
|
||
|
* a forwarding node during a traversal, to maintain its place if
|
||
|
* later processing the current table. The need for these
|
||
|
* save/restore mechanics is relatively rare, but when one
|
||
|
* forwarding node is encountered, typically many more will be.
|
||
|
* So Traversers use a simple caching scheme to avoid creating so
|
||
|
* many new TableStack nodes. (Thanks to Peter Levart for
|
||
|
* suggesting use of a stack here.)
|
||
|
*
|
||
|
* The traversal scheme also applies to partial traversals of
|
||
|
* ranges of bins (via an alternate Traverser constructor)
|
||
|
* to support partitioned aggregate operations. Also, read-only
|
||
|
* operations give up if ever forwarded to a null table, which
|
||
|
* provides support for shutdown-style clearing, which is also not
|
||
|
* currently implemented.
|
||
|
*
|
||
|
* Lazy table initialization minimizes footprint until first use,
|
||
|
* and also avoids resizings when the first operation is from a
|
||
|
* putAll, constructor with map argument, or deserialization.
|
||
|
* These cases attempt to override the initial capacity settings,
|
||
|
* but harmlessly fail to take effect in cases of races.
|
||
|
*
|
||
|
* The element count is maintained using a specialization of
|
||
|
* LongAdder. We need to incorporate a specialization rather than
|
||
|
* just use a LongAdder in order to access implicit
|
||
|
* contention-sensing that leads to creation of multiple
|
||
|
* CounterCells. The counter mechanics avoid contention on
|
||
|
* updates but can encounter cache thrashing if read too
|
||
|
* frequently during concurrent access. To avoid reading so often,
|
||
|
* resizing under contention is attempted only upon adding to a
|
||
|
* bin already holding two or more nodes. Under uniform hash
|
||
|
* distributions, the probability of this occurring at threshold
|
||
|
* is around 13%, meaning that only about 1 in 8 puts check
|
||
|
* threshold (and after resizing, many fewer do so).
|
||
|
*
|
||
|
* TreeBins use a special form of comparison for search and
|
||
|
* related operations (which is the main reason we cannot use
|
||
|
* existing collections such as TreeMaps). TreeBins contain
|
||
|
* Comparable elements, but may contain others, as well as
|
||
|
* elements that are Comparable but not necessarily Comparable for
|
||
|
* the same T, so we cannot invoke compareTo among them. To handle
|
||
|
* this, the tree is ordered primarily by hash value, then by
|
||
|
* Comparable.compareTo order if applicable. On lookup at a node,
|
||
|
* if elements are not comparable or compare as 0 then both left
|
||
|
* and right children may need to be searched in the case of tied
|
||
|
* hash values. (This corresponds to the full list search that
|
||
|
* would be necessary if all elements were non-Comparable and had
|
||
|
* tied hashes.) On insertion, to keep a total ordering (or as
|
||
|
* close as is required here) across rebalancings, we compare
|
||
|
* classes and identityHashCodes as tie-breakers. The red-black
|
||
|
* balancing code is updated from pre-jdk-collections
|
||
|
* (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
|
||
|
* based in turn on Cormen, Leiserson, and Rivest "Introduction to
|
||
|
* Algorithms" (CLR).
|
||
|
*
|
||
|
* TreeBins also require an additional locking mechanism. While
|
||
|
* list traversal is always possible by readers even during
|
||
|
* updates, tree traversal is not, mainly because of tree-rotations
|
||
|
* that may change the root node and/or its linkages. TreeBins
|
||
|
* include a simple read-write lock mechanism parasitic on the
|
||
|
* main bin-synchronization strategy: Structural adjustments
|
||
|
* associated with an insertion or removal are already bin-locked
|
||
|
* (and so cannot conflict with other writers) but must wait for
|
||
|
* ongoing readers to finish. Since there can be only one such
|
||
|
* waiter, we use a simple scheme using a single "waiter" field to
|
||
|
* block writers. However, readers need never block. If the root
|
||
|
* lock is held, they proceed along the slow traversal path (via
|
||
|
* next-pointers) until the lock becomes available or the list is
|
||
|
* exhausted, whichever comes first. These cases are not fast, but
|
||
|
* maximize aggregate expected throughput.
|
||
|
*
|
||
|
* Maintaining API and serialization compatibility with previous
|
||
|
* versions of this class introduces several oddities. Mainly: We
|
||
|
* leave untouched but unused constructor arguments referring to
|
||
|
* concurrencyLevel. We accept a loadFactor constructor argument,
|
||
|
* but apply it only to initial table capacity (which is the only
|
||
|
* time that we can guarantee to honor it.) We also declare an
|
||
|
* unused "Segment" class that is instantiated in minimal form
|
||
|
* only when serializing.
|
||
|
*
|
||
|
* Also, solely for compatibility with previous versions of this
|
||
|
* class, it extends AbstractMap, even though all of its methods
|
||
|
* are overridden, so it is just useless baggage.
|
||
|
*
|
||
|
* This file is organized to make things a little easier to follow
|
||
|
* while reading than they might otherwise: First the main static
|
||
|
* declarations and utilities, then fields, then main public
|
||
|
* methods (with a few factorings of multiple public methods into
|
||
|
* internal ones), then sizing methods, trees, traversers, and
|
||
|
* bulk operations.
|
||
|
*/
|
||
|
|
||
|
/* ---------------- Constants -------------- */
|
||
|
|
||
|
/**
|
||
|
* The largest possible table capacity. This value must be
|
||
|
* exactly 1<<30 to stay within Java array allocation and indexing
|
||
|
* bounds for power of two table sizes, and is further required
|
||
|
* because the top two bits of 32bit hash fields are used for
|
||
|
* control purposes.
|
||
|
*/
|
||
|
private static final int MAXIMUM_CAPACITY = 1 << 30;
|
||
|
|
||
|
/**
|
||
|
* The default initial table capacity. Must be a power of 2
|
||
|
* (i.e., at least 1) and at most MAXIMUM_CAPACITY.
|
||
|
*/
|
||
|
private static final int DEFAULT_CAPACITY = 16;
|
||
|
|
||
|
/**
|
||
|
* The largest possible (non-power of two) array size.
|
||
|
* Needed by toArray and related methods.
|
||
|
*/
|
||
|
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
|
||
|
|
||
|
/**
|
||
|
* The default concurrency level for this table. Unused but
|
||
|
* defined for compatibility with previous versions of this class.
|
||
|
*/
|
||
|
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
|
||
|
|
||
|
/**
|
||
|
* The load factor for this table. Overrides of this value in
|
||
|
* constructors affect only the initial table capacity. The
|
||
|
* actual floating point value isn't normally used -- it is
|
||
|
* simpler to use expressions such as {@code n - (n >>> 2)} for
|
||
|
* the associated resizing threshold.
|
||
|
*/
|
||
|
private static final float LOAD_FACTOR = 0.75f;
|
||
|
|
||
|
/**
|
||
|
* The bin count threshold for using a tree rather than list for a
|
||
|
* bin. Bins are converted to trees when adding an element to a
|
||
|
* bin with at least this many nodes. The value must be greater
|
||
|
* than 2, and should be at least 8 to mesh with assumptions in
|
||
|
* tree removal about conversion back to plain bins upon
|
||
|
* shrinkage.
|
||
|
*/
|
||
|
static final int TREEIFY_THRESHOLD = 8;
|
||
|
|
||
|
/**
|
||
|
* The bin count threshold for untreeifying a (split) bin during a
|
||
|
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
|
||
|
* most 6 to mesh with shrinkage detection under removal.
|
||
|
*/
|
||
|
static final int UNTREEIFY_THRESHOLD = 6;
|
||
|
|
||
|
/**
|
||
|
* The smallest table capacity for which bins may be treeified.
|
||
|
* (Otherwise the table is resized if too many nodes in a bin.)
|
||
|
* The value should be at least 4 * TREEIFY_THRESHOLD to avoid
|
||
|
* conflicts between resizing and treeification thresholds.
|
||
|
*/
|
||
|
static final int MIN_TREEIFY_CAPACITY = 64;
|
||
|
|
||
|
/**
|
||
|
* Minimum number of rebinnings per transfer step. Ranges are
|
||
|
* subdivided to allow multiple resizer threads. This value
|
||
|
* serves as a lower bound to avoid resizers encountering
|
||
|
* excessive memory contention. The value should be at least
|
||
|
* DEFAULT_CAPACITY.
|
||
|
*/
|
||
|
private static final int MIN_TRANSFER_STRIDE = 16;
|
||
|
|
||
|
/**
|
||
|
* The number of bits used for generation stamp in sizeCtl.
|
||
|
* Must be at least 6 for 32bit arrays.
|
||
|
*/
|
||
|
private static final int RESIZE_STAMP_BITS = 16;
|
||
|
|
||
|
/**
|
||
|
* The maximum number of threads that can help resize.
|
||
|
* Must fit in 32 - RESIZE_STAMP_BITS bits.
|
||
|
*/
|
||
|
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
|
||
|
|
||
|
/**
|
||
|
* The bit shift for recording size stamp in sizeCtl.
|
||
|
*/
|
||
|
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
|
||
|
|
||
|
/*
|
||
|
* Encodings for Node hash fields. See above for explanation.
|
||
|
*/
|
||
|
static final int MOVED = -1; // hash for forwarding nodes
|
||
|
static final int TREEBIN = -2; // hash for roots of trees
|
||
|
static final int RESERVED = -3; // hash for transient reservations
|
||
|
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
|
||
|
|
||
|
/** Number of CPUS, to place bounds on some sizings */
|
||
|
static final int NCPU = Runtime.getRuntime().availableProcessors();
|
||
|
|
||
|
/**
|
||
|
* Serialized pseudo-fields, provided only for jdk7 compatibility.
|
||
|
* @serialField segments Segment[]
|
||
|
* The segments, each of which is a specialized hash table.
|
||
|
* @serialField segmentMask int
|
||
|
* Mask value for indexing into segments. The upper bits of a
|
||
|
* key's hash code are used to choose the segment.
|
||
|
* @serialField segmentShift int
|
||
|
* Shift value for indexing within segments.
|
||
|
*/
|
||
|
private static final ObjectStreamField[] serialPersistentFields = {
|
||
|
new ObjectStreamField("segments", Segment[].class),
|
||
|
new ObjectStreamField("segmentMask", Integer.TYPE),
|
||
|
new ObjectStreamField("segmentShift", Integer.TYPE),
|
||
|
};
|
||
|
|
||
|
/* ---------------- Nodes -------------- */
|
||
|
|
||
|
/**
|
||
|
* Key-value entry. This class is never exported out as a
|
||
|
* user-mutable Map.Entry (i.e., one supporting setValue; see
|
||
|
* MapEntry below), but can be used for read-only traversals used
|
||
|
* in bulk tasks. Subclasses of Node with a negative hash field
|
||
|
* are special, and contain null keys and values (but are never
|
||
|
* exported). Otherwise, keys and vals are never null.
|
||
|
*/
|
||
|
static class Node<K,V> implements Map.Entry<K,V> {
|
||
|
final int hash;
|
||
|
final K key;
|
||
|
volatile V val;
|
||
|
volatile Node<K,V> next;
|
||
|
|
||
|
Node(int hash, K key, V val) {
|
||
|
this.hash = hash;
|
||
|
this.key = key;
|
||
|
this.val = val;
|
||
|
}
|
||
|
|
||
|
Node(int hash, K key, V val, Node<K,V> next) {
|
||
|
this(hash, key, val);
|
||
|
this.next = next;
|
||
|
}
|
||
|
|
||
|
public final K getKey() { return key; }
|
||
|
public final V getValue() { return val; }
|
||
|
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
|
||
|
public final String toString() {
|
||
|
return Helpers.mapEntryToString(key, val);
|
||
|
}
|
||
|
public final V setValue(V value) {
|
||
|
throw new UnsupportedOperationException();
|
||
|
}
|
||
|
|
||
|
public final boolean equals(Object o) {
|
||
|
Object k, v, u; Map.Entry<?,?> e;
|
||
|
return ((o instanceof Map.Entry) &&
|
||
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
|
||
|
(v = e.getValue()) != null &&
|
||
|
(k == key || k.equals(key)) &&
|
||
|
(v == (u = val) || v.equals(u)));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Virtualized support for map.get(); overridden in subclasses.
|
||
|
*/
|
||
|
Node<K,V> find(int h, Object k) {
|
||
|
Node<K,V> e = this;
|
||
|
if (k != null) {
|
||
|
do {
|
||
|
K ek;
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == k || (ek != null && k.equals(ek))))
|
||
|
return e;
|
||
|
} while ((e = e.next) != null);
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ---------------- Static utilities -------------- */
|
||
|
|
||
|
/**
|
||
|
* Spreads (XORs) higher bits of hash to lower and also forces top
|
||
|
* bit to 0. Because the table uses power-of-two masking, sets of
|
||
|
* hashes that vary only in bits above the current mask will
|
||
|
* always collide. (Among known examples are sets of Float keys
|
||
|
* holding consecutive whole numbers in small tables.) So we
|
||
|
* apply a transform that spreads the impact of higher bits
|
||
|
* downward. There is a tradeoff between speed, utility, and
|
||
|
* quality of bit-spreading. Because many common sets of hashes
|
||
|
* are already reasonably distributed (so don't benefit from
|
||
|
* spreading), and because we use trees to handle large sets of
|
||
|
* collisions in bins, we just XOR some shifted bits in the
|
||
|
* cheapest possible way to reduce systematic lossage, as well as
|
||
|
* to incorporate impact of the highest bits that would otherwise
|
||
|
* never be used in index calculations because of table bounds.
|
||
|
*/
|
||
|
static final int spread(int h) {
|
||
|
return (h ^ (h >>> 16)) & HASH_BITS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a power of two table size for the given desired capacity.
|
||
|
* See Hackers Delight, sec 3.2
|
||
|
*/
|
||
|
private static final int tableSizeFor(int c) {
|
||
|
int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
|
||
|
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns x's Class if it is of the form "class C implements
|
||
|
* Comparable<C>", else null.
|
||
|
*/
|
||
|
static Class<?> comparableClassFor(Object x) {
|
||
|
if (x instanceof Comparable) {
|
||
|
Class<?> c; Type[] ts, as; ParameterizedType p;
|
||
|
if ((c = x.getClass()) == String.class) // bypass checks
|
||
|
return c;
|
||
|
if ((ts = c.getGenericInterfaces()) != null) {
|
||
|
for (Type t : ts) {
|
||
|
if ((t instanceof ParameterizedType) &&
|
||
|
((p = (ParameterizedType)t).getRawType() ==
|
||
|
Comparable.class) &&
|
||
|
(as = p.getActualTypeArguments()) != null &&
|
||
|
as.length == 1 && as[0] == c) // type arg is c
|
||
|
return c;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns k.compareTo(x) if x matches kc (k's screened comparable
|
||
|
* class), else 0.
|
||
|
*/
|
||
|
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
|
||
|
static int compareComparables(Class<?> kc, Object k, Object x) {
|
||
|
return (x == null || x.getClass() != kc ? 0 :
|
||
|
((Comparable)k).compareTo(x));
|
||
|
}
|
||
|
|
||
|
/* ---------------- Table element access -------------- */
|
||
|
|
||
|
/*
|
||
|
* Atomic access methods are used for table elements as well as
|
||
|
* elements of in-progress next table while resizing. All uses of
|
||
|
* the tab arguments must be null checked by callers. All callers
|
||
|
* also paranoically precheck that tab's length is not zero (or an
|
||
|
* equivalent check), thus ensuring that any index argument taking
|
||
|
* the form of a hash value anded with (length - 1) is a valid
|
||
|
* index. Note that, to be correct wrt arbitrary concurrency
|
||
|
* errors by users, these checks must operate on local variables,
|
||
|
* which accounts for some odd-looking inline assignments below.
|
||
|
* Note that calls to setTabAt always occur within locked regions,
|
||
|
* and so require only release ordering.
|
||
|
*/
|
||
|
|
||
|
@SuppressWarnings("unchecked")
|
||
|
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
|
||
|
return (Node<K,V>)U.getReferenceAcquire(tab, ((long)i << ASHIFT) + ABASE);
|
||
|
}
|
||
|
|
||
|
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
|
||
|
Node<K,V> c, Node<K,V> v) {
|
||
|
return U.compareAndSetReference(tab, ((long)i << ASHIFT) + ABASE, c, v);
|
||
|
}
|
||
|
|
||
|
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
|
||
|
U.putReferenceRelease(tab, ((long)i << ASHIFT) + ABASE, v);
|
||
|
}
|
||
|
|
||
|
/* ---------------- Fields -------------- */
|
||
|
|
||
|
/**
|
||
|
* The array of bins. Lazily initialized upon first insertion.
|
||
|
* Size is always a power of two. Accessed directly by iterators.
|
||
|
*/
|
||
|
transient volatile Node<K,V>[] table;
|
||
|
|
||
|
/**
|
||
|
* The next table to use; non-null only while resizing.
|
||
|
*/
|
||
|
private transient volatile Node<K,V>[] nextTable;
|
||
|
|
||
|
/**
|
||
|
* Base counter value, used mainly when there is no contention,
|
||
|
* but also as a fallback during table initialization
|
||
|
* races. Updated via CAS.
|
||
|
*/
|
||
|
private transient volatile long baseCount;
|
||
|
|
||
|
/**
|
||
|
* Table initialization and resizing control. When negative, the
|
||
|
* table is being initialized or resized: -1 for initialization,
|
||
|
* else -(1 + the number of active resizing threads). Otherwise,
|
||
|
* when table is null, holds the initial table size to use upon
|
||
|
* creation, or 0 for default. After initialization, holds the
|
||
|
* next element count value upon which to resize the table.
|
||
|
*/
|
||
|
private transient volatile int sizeCtl;
|
||
|
|
||
|
/**
|
||
|
* The next table index (plus one) to split while resizing.
|
||
|
*/
|
||
|
private transient volatile int transferIndex;
|
||
|
|
||
|
/**
|
||
|
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
|
||
|
*/
|
||
|
private transient volatile int cellsBusy;
|
||
|
|
||
|
/**
|
||
|
* Table of counter cells. When non-null, size is a power of 2.
|
||
|
*/
|
||
|
private transient volatile CounterCell[] counterCells;
|
||
|
|
||
|
// views
|
||
|
private transient KeySetView<K,V> keySet;
|
||
|
private transient ValuesView<K,V> values;
|
||
|
private transient EntrySetView<K,V> entrySet;
|
||
|
|
||
|
|
||
|
/* ---------------- Public operations -------------- */
|
||
|
|
||
|
/**
|
||
|
* Creates a new, empty map with the default initial table size (16).
|
||
|
*/
|
||
|
public ConcurrentHashMap() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new, empty map with an initial table size
|
||
|
* accommodating the specified number of elements without the need
|
||
|
* to dynamically resize.
|
||
|
*
|
||
|
* @param initialCapacity The implementation performs internal
|
||
|
* sizing to accommodate this many elements.
|
||
|
* @throws IllegalArgumentException if the initial capacity of
|
||
|
* elements is negative
|
||
|
*/
|
||
|
public ConcurrentHashMap(int initialCapacity) {
|
||
|
this(initialCapacity, LOAD_FACTOR, 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new map with the same mappings as the given map.
|
||
|
*
|
||
|
* @param m the map
|
||
|
*/
|
||
|
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
|
||
|
this.sizeCtl = DEFAULT_CAPACITY;
|
||
|
putAll(m);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new, empty map with an initial table size based on
|
||
|
* the given number of elements ({@code initialCapacity}) and
|
||
|
* initial table density ({@code loadFactor}).
|
||
|
*
|
||
|
* @param initialCapacity the initial capacity. The implementation
|
||
|
* performs internal sizing to accommodate this many elements,
|
||
|
* given the specified load factor.
|
||
|
* @param loadFactor the load factor (table density) for
|
||
|
* establishing the initial table size
|
||
|
* @throws IllegalArgumentException if the initial capacity of
|
||
|
* elements is negative or the load factor is nonpositive
|
||
|
*
|
||
|
* @since 1.6
|
||
|
*/
|
||
|
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
|
||
|
this(initialCapacity, loadFactor, 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new, empty map with an initial table size based on
|
||
|
* the given number of elements ({@code initialCapacity}), initial
|
||
|
* table density ({@code loadFactor}), and number of concurrently
|
||
|
* updating threads ({@code concurrencyLevel}).
|
||
|
*
|
||
|
* @param initialCapacity the initial capacity. The implementation
|
||
|
* performs internal sizing to accommodate this many elements,
|
||
|
* given the specified load factor.
|
||
|
* @param loadFactor the load factor (table density) for
|
||
|
* establishing the initial table size
|
||
|
* @param concurrencyLevel the estimated number of concurrently
|
||
|
* updating threads. The implementation may use this value as
|
||
|
* a sizing hint.
|
||
|
* @throws IllegalArgumentException if the initial capacity is
|
||
|
* negative or the load factor or concurrencyLevel are
|
||
|
* nonpositive
|
||
|
*/
|
||
|
public ConcurrentHashMap(int initialCapacity,
|
||
|
float loadFactor, int concurrencyLevel) {
|
||
|
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
|
||
|
throw new IllegalArgumentException();
|
||
|
if (initialCapacity < concurrencyLevel) // Use at least as many bins
|
||
|
initialCapacity = concurrencyLevel; // as estimated threads
|
||
|
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
|
||
|
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
|
||
|
MAXIMUM_CAPACITY : tableSizeFor((int)size);
|
||
|
this.sizeCtl = cap;
|
||
|
}
|
||
|
|
||
|
// Original (since JDK1.2) Map methods
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*/
|
||
|
public int size() {
|
||
|
long n = sumCount();
|
||
|
return ((n < 0L) ? 0 :
|
||
|
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
|
||
|
(int)n);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*/
|
||
|
public boolean isEmpty() {
|
||
|
return sumCount() <= 0L; // ignore transient negative values
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the value to which the specified key is mapped,
|
||
|
* or {@code null} if this map contains no mapping for the key.
|
||
|
*
|
||
|
* <p>More formally, if this map contains a mapping from a key
|
||
|
* {@code k} to a value {@code v} such that {@code key.equals(k)},
|
||
|
* then this method returns {@code v}; otherwise it returns
|
||
|
* {@code null}. (There can be at most one such mapping.)
|
||
|
*
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public V get(Object key) {
|
||
|
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
|
||
|
int h = spread(key.hashCode());
|
||
|
if ((tab = table) != null && (n = tab.length) > 0 &&
|
||
|
(e = tabAt(tab, (n - 1) & h)) != null) {
|
||
|
if ((eh = e.hash) == h) {
|
||
|
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
|
||
|
return e.val;
|
||
|
}
|
||
|
else if (eh < 0)
|
||
|
return (p = e.find(h, key)) != null ? p.val : null;
|
||
|
while ((e = e.next) != null) {
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == key || (ek != null && key.equals(ek))))
|
||
|
return e.val;
|
||
|
}
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Tests if the specified object is a key in this table.
|
||
|
*
|
||
|
* @param key possible key
|
||
|
* @return {@code true} if and only if the specified object
|
||
|
* is a key in this table, as determined by the
|
||
|
* {@code equals} method; {@code false} otherwise
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public boolean containsKey(Object key) {
|
||
|
return get(key) != null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this map maps one or more keys to the
|
||
|
* specified value. Note: This method may require a full traversal
|
||
|
* of the map, and is much slower than method {@code containsKey}.
|
||
|
*
|
||
|
* @param value value whose presence in this map is to be tested
|
||
|
* @return {@code true} if this map maps one or more keys to the
|
||
|
* specified value
|
||
|
* @throws NullPointerException if the specified value is null
|
||
|
*/
|
||
|
public boolean containsValue(Object value) {
|
||
|
if (value == null)
|
||
|
throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
V v;
|
||
|
if ((v = p.val) == value || (v != null && value.equals(v)))
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Maps the specified key to the specified value in this table.
|
||
|
* Neither the key nor the value can be null.
|
||
|
*
|
||
|
* <p>The value can be retrieved by calling the {@code get} method
|
||
|
* with a key that is equal to the original key.
|
||
|
*
|
||
|
* @param key key with which the specified value is to be associated
|
||
|
* @param value value to be associated with the specified key
|
||
|
* @return the previous value associated with {@code key}, or
|
||
|
* {@code null} if there was no mapping for {@code key}
|
||
|
* @throws NullPointerException if the specified key or value is null
|
||
|
*/
|
||
|
public V put(K key, V value) {
|
||
|
return putVal(key, value, false);
|
||
|
}
|
||
|
|
||
|
/** Implementation for put and putIfAbsent */
|
||
|
final V putVal(K key, V value, boolean onlyIfAbsent) {
|
||
|
if (key == null || value == null) throw new NullPointerException();
|
||
|
int hash = spread(key.hashCode());
|
||
|
int binCount = 0;
|
||
|
for (Node<K,V>[] tab = table;;) {
|
||
|
Node<K,V> f; int n, i, fh; K fk; V fv;
|
||
|
if (tab == null || (n = tab.length) == 0)
|
||
|
tab = initTable();
|
||
|
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
|
||
|
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
|
||
|
break; // no lock when adding to empty bin
|
||
|
}
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
tab = helpTransfer(tab, f);
|
||
|
else if (onlyIfAbsent // check first node without acquiring lock
|
||
|
&& fh == hash
|
||
|
&& ((fk = f.key) == key || (fk != null && key.equals(fk)))
|
||
|
&& (fv = f.val) != null)
|
||
|
return fv;
|
||
|
else {
|
||
|
V oldVal = null;
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
if (fh >= 0) {
|
||
|
binCount = 1;
|
||
|
for (Node<K,V> e = f;; ++binCount) {
|
||
|
K ek;
|
||
|
if (e.hash == hash &&
|
||
|
((ek = e.key) == key ||
|
||
|
(ek != null && key.equals(ek)))) {
|
||
|
oldVal = e.val;
|
||
|
if (!onlyIfAbsent)
|
||
|
e.val = value;
|
||
|
break;
|
||
|
}
|
||
|
Node<K,V> pred = e;
|
||
|
if ((e = e.next) == null) {
|
||
|
pred.next = new Node<K,V>(hash, key, value);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
Node<K,V> p;
|
||
|
binCount = 2;
|
||
|
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
|
||
|
value)) != null) {
|
||
|
oldVal = p.val;
|
||
|
if (!onlyIfAbsent)
|
||
|
p.val = value;
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0) {
|
||
|
if (binCount >= TREEIFY_THRESHOLD)
|
||
|
treeifyBin(tab, i);
|
||
|
if (oldVal != null)
|
||
|
return oldVal;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
addCount(1L, binCount);
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Copies all of the mappings from the specified map to this one.
|
||
|
* These mappings replace any mappings that this map had for any of the
|
||
|
* keys currently in the specified map.
|
||
|
*
|
||
|
* @param m mappings to be stored in this map
|
||
|
*/
|
||
|
public void putAll(Map<? extends K, ? extends V> m) {
|
||
|
tryPresize(m.size());
|
||
|
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
|
||
|
putVal(e.getKey(), e.getValue(), false);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the key (and its corresponding value) from this map.
|
||
|
* This method does nothing if the key is not in the map.
|
||
|
*
|
||
|
* @param key the key that needs to be removed
|
||
|
* @return the previous value associated with {@code key}, or
|
||
|
* {@code null} if there was no mapping for {@code key}
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public V remove(Object key) {
|
||
|
return replaceNode(key, null, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Implementation for the four public remove/replace methods:
|
||
|
* Replaces node value with v, conditional upon match of cv if
|
||
|
* non-null. If resulting value is null, delete.
|
||
|
*/
|
||
|
final V replaceNode(Object key, V value, Object cv) {
|
||
|
int hash = spread(key.hashCode());
|
||
|
for (Node<K,V>[] tab = table;;) {
|
||
|
Node<K,V> f; int n, i, fh;
|
||
|
if (tab == null || (n = tab.length) == 0 ||
|
||
|
(f = tabAt(tab, i = (n - 1) & hash)) == null)
|
||
|
break;
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
tab = helpTransfer(tab, f);
|
||
|
else {
|
||
|
V oldVal = null;
|
||
|
boolean validated = false;
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
if (fh >= 0) {
|
||
|
validated = true;
|
||
|
for (Node<K,V> e = f, pred = null;;) {
|
||
|
K ek;
|
||
|
if (e.hash == hash &&
|
||
|
((ek = e.key) == key ||
|
||
|
(ek != null && key.equals(ek)))) {
|
||
|
V ev = e.val;
|
||
|
if (cv == null || cv == ev ||
|
||
|
(ev != null && cv.equals(ev))) {
|
||
|
oldVal = ev;
|
||
|
if (value != null)
|
||
|
e.val = value;
|
||
|
else if (pred != null)
|
||
|
pred.next = e.next;
|
||
|
else
|
||
|
setTabAt(tab, i, e.next);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
pred = e;
|
||
|
if ((e = e.next) == null)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
validated = true;
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)f;
|
||
|
TreeNode<K,V> r, p;
|
||
|
if ((r = t.root) != null &&
|
||
|
(p = r.findTreeNode(hash, key, null)) != null) {
|
||
|
V pv = p.val;
|
||
|
if (cv == null || cv == pv ||
|
||
|
(pv != null && cv.equals(pv))) {
|
||
|
oldVal = pv;
|
||
|
if (value != null)
|
||
|
p.val = value;
|
||
|
else if (t.removeTreeNode(p))
|
||
|
setTabAt(tab, i, untreeify(t.first));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
if (validated) {
|
||
|
if (oldVal != null) {
|
||
|
if (value == null)
|
||
|
addCount(-1L, -1);
|
||
|
return oldVal;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes all of the mappings from this map.
|
||
|
*/
|
||
|
public void clear() {
|
||
|
long delta = 0L; // negative number of deletions
|
||
|
int i = 0;
|
||
|
Node<K,V>[] tab = table;
|
||
|
while (tab != null && i < tab.length) {
|
||
|
int fh;
|
||
|
Node<K,V> f = tabAt(tab, i);
|
||
|
if (f == null)
|
||
|
++i;
|
||
|
else if ((fh = f.hash) == MOVED) {
|
||
|
tab = helpTransfer(tab, f);
|
||
|
i = 0; // restart
|
||
|
}
|
||
|
else {
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
Node<K,V> p = (fh >= 0 ? f :
|
||
|
(f instanceof TreeBin) ?
|
||
|
((TreeBin<K,V>)f).first : null);
|
||
|
while (p != null) {
|
||
|
--delta;
|
||
|
p = p.next;
|
||
|
}
|
||
|
setTabAt(tab, i++, null);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (delta != 0L)
|
||
|
addCount(delta, -1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link Set} view of the keys contained in this map.
|
||
|
* The set is backed by the map, so changes to the map are
|
||
|
* reflected in the set, and vice-versa. The set supports element
|
||
|
* removal, which removes the corresponding mapping from this map,
|
||
|
* via the {@code Iterator.remove}, {@code Set.remove},
|
||
|
* {@code removeAll}, {@code retainAll}, and {@code clear}
|
||
|
* operations. It does not support the {@code add} or
|
||
|
* {@code addAll} operations.
|
||
|
*
|
||
|
* <p> The set returned by this method is guaranteed to an instance of
|
||
|
* {@link KeySetView}.
|
||
|
*
|
||
|
* <p>The view's iterators and spliterators are
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
|
||
|
* {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
|
||
|
*
|
||
|
* @return the set view
|
||
|
*/
|
||
|
// Android-changed: Return type for backwards compat. Was KeySetView<K,V>. http://b/28099367
|
||
|
@dalvik.annotation.codegen.CovariantReturnType(returnType = KeySetView.class, presentAfter = 28)
|
||
|
public Set<K> keySet() {
|
||
|
KeySetView<K,V> ks;
|
||
|
if ((ks = keySet) != null) return ks;
|
||
|
return keySet = new KeySetView<K,V>(this, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link Collection} view of the values contained in this map.
|
||
|
* The collection is backed by the map, so changes to the map are
|
||
|
* reflected in the collection, and vice-versa. The collection
|
||
|
* supports element removal, which removes the corresponding
|
||
|
* mapping from this map, via the {@code Iterator.remove},
|
||
|
* {@code Collection.remove}, {@code removeAll},
|
||
|
* {@code retainAll}, and {@code clear} operations. It does not
|
||
|
* support the {@code add} or {@code addAll} operations.
|
||
|
*
|
||
|
* <p>The view's iterators and spliterators are
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
|
||
|
* and {@link Spliterator#NONNULL}.
|
||
|
*
|
||
|
* @return the collection view
|
||
|
*/
|
||
|
public Collection<V> values() {
|
||
|
ValuesView<K,V> vs;
|
||
|
if ((vs = values) != null) return vs;
|
||
|
return values = new ValuesView<K,V>(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link Set} view of the mappings contained in this map.
|
||
|
* The set is backed by the map, so changes to the map are
|
||
|
* reflected in the set, and vice-versa. The set supports element
|
||
|
* removal, which removes the corresponding mapping from the map,
|
||
|
* via the {@code Iterator.remove}, {@code Set.remove},
|
||
|
* {@code removeAll}, {@code retainAll}, and {@code clear}
|
||
|
* operations.
|
||
|
*
|
||
|
* <p>The view's iterators and spliterators are
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
|
||
|
* {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
|
||
|
*
|
||
|
* @return the set view
|
||
|
*/
|
||
|
public Set<Map.Entry<K,V>> entrySet() {
|
||
|
EntrySetView<K,V> es;
|
||
|
if ((es = entrySet) != null) return es;
|
||
|
return entrySet = new EntrySetView<K,V>(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the hash code value for this {@link Map}, i.e.,
|
||
|
* the sum of, for each key-value pair in the map,
|
||
|
* {@code key.hashCode() ^ value.hashCode()}.
|
||
|
*
|
||
|
* @return the hash code value for this map
|
||
|
*/
|
||
|
public int hashCode() {
|
||
|
int h = 0;
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; )
|
||
|
h += p.key.hashCode() ^ p.val.hashCode();
|
||
|
}
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a string representation of this map. The string
|
||
|
* representation consists of a list of key-value mappings (in no
|
||
|
* particular order) enclosed in braces ("{@code {}}"). Adjacent
|
||
|
* mappings are separated by the characters {@code ", "} (comma
|
||
|
* and space). Each key-value mapping is rendered as the key
|
||
|
* followed by an equals sign ("{@code =}") followed by the
|
||
|
* associated value.
|
||
|
*
|
||
|
* @return a string representation of this map
|
||
|
*/
|
||
|
public String toString() {
|
||
|
Node<K,V>[] t;
|
||
|
int f = (t = table) == null ? 0 : t.length;
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
|
||
|
StringBuilder sb = new StringBuilder();
|
||
|
sb.append('{');
|
||
|
Node<K,V> p;
|
||
|
if ((p = it.advance()) != null) {
|
||
|
for (;;) {
|
||
|
K k = p.key;
|
||
|
V v = p.val;
|
||
|
sb.append(k == this ? "(this Map)" : k);
|
||
|
sb.append('=');
|
||
|
sb.append(v == this ? "(this Map)" : v);
|
||
|
if ((p = it.advance()) == null)
|
||
|
break;
|
||
|
sb.append(',').append(' ');
|
||
|
}
|
||
|
}
|
||
|
return sb.append('}').toString();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compares the specified object with this map for equality.
|
||
|
* Returns {@code true} if the given object is a map with the same
|
||
|
* mappings as this map. This operation may return misleading
|
||
|
* results if either map is concurrently modified during execution
|
||
|
* of this method.
|
||
|
*
|
||
|
* @param o object to be compared for equality with this map
|
||
|
* @return {@code true} if the specified object is equal to this map
|
||
|
*/
|
||
|
public boolean equals(Object o) {
|
||
|
if (o != this) {
|
||
|
if (!(o instanceof Map))
|
||
|
return false;
|
||
|
Map<?,?> m = (Map<?,?>) o;
|
||
|
Node<K,V>[] t;
|
||
|
int f = (t = table) == null ? 0 : t.length;
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
V val = p.val;
|
||
|
Object v = m.get(p.key);
|
||
|
if (v == null || (v != val && !v.equals(val)))
|
||
|
return false;
|
||
|
}
|
||
|
for (Map.Entry<?,?> e : m.entrySet()) {
|
||
|
Object mk, mv, v;
|
||
|
if ((mk = e.getKey()) == null ||
|
||
|
(mv = e.getValue()) == null ||
|
||
|
(v = get(mk)) == null ||
|
||
|
(mv != v && !mv.equals(v)))
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Stripped-down version of helper class used in previous version,
|
||
|
* declared for the sake of serialization compatibility.
|
||
|
*/
|
||
|
static class Segment<K,V> extends ReentrantLock implements Serializable {
|
||
|
private static final long serialVersionUID = 2249069246763182397L;
|
||
|
final float loadFactor;
|
||
|
Segment(float lf) { this.loadFactor = lf; }
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Saves this map to a stream (that is, serializes it).
|
||
|
*
|
||
|
* @param s the stream
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
* @serialData
|
||
|
* the serialized fields, followed by the key (Object) and value
|
||
|
* (Object) for each key-value mapping, followed by a null pair.
|
||
|
* The key-value mappings are emitted in no particular order.
|
||
|
*/
|
||
|
private void writeObject(java.io.ObjectOutputStream s)
|
||
|
throws java.io.IOException {
|
||
|
// For serialization compatibility
|
||
|
// Emulate segment calculation from previous version of this class
|
||
|
int sshift = 0;
|
||
|
int ssize = 1;
|
||
|
while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
|
||
|
++sshift;
|
||
|
ssize <<= 1;
|
||
|
}
|
||
|
int segmentShift = 32 - sshift;
|
||
|
int segmentMask = ssize - 1;
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Segment<K,V>[] segments = (Segment<K,V>[])
|
||
|
new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
|
||
|
for (int i = 0; i < segments.length; ++i)
|
||
|
segments[i] = new Segment<K,V>(LOAD_FACTOR);
|
||
|
java.io.ObjectOutputStream.PutField streamFields = s.putFields();
|
||
|
streamFields.put("segments", segments);
|
||
|
streamFields.put("segmentShift", segmentShift);
|
||
|
streamFields.put("segmentMask", segmentMask);
|
||
|
s.writeFields();
|
||
|
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
s.writeObject(p.key);
|
||
|
s.writeObject(p.val);
|
||
|
}
|
||
|
}
|
||
|
s.writeObject(null);
|
||
|
s.writeObject(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reconstitutes this map from a stream (that is, deserializes it).
|
||
|
* @param s the stream
|
||
|
* @throws ClassNotFoundException if the class of a serialized object
|
||
|
* could not be found
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
*/
|
||
|
private void readObject(java.io.ObjectInputStream s)
|
||
|
throws java.io.IOException, ClassNotFoundException {
|
||
|
/*
|
||
|
* To improve performance in typical cases, we create nodes
|
||
|
* while reading, then place in table once size is known.
|
||
|
* However, we must also validate uniqueness and deal with
|
||
|
* overpopulated bins while doing so, which requires
|
||
|
* specialized versions of putVal mechanics.
|
||
|
*/
|
||
|
sizeCtl = -1; // force exclusion for table construction
|
||
|
s.defaultReadObject();
|
||
|
long size = 0L;
|
||
|
Node<K,V> p = null;
|
||
|
for (;;) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
K k = (K) s.readObject();
|
||
|
@SuppressWarnings("unchecked")
|
||
|
V v = (V) s.readObject();
|
||
|
if (k != null && v != null) {
|
||
|
p = new Node<K,V>(spread(k.hashCode()), k, v, p);
|
||
|
++size;
|
||
|
}
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
if (size == 0L)
|
||
|
sizeCtl = 0;
|
||
|
else {
|
||
|
long ts = (long)(1.0 + size / LOAD_FACTOR);
|
||
|
int n = (ts >= (long)MAXIMUM_CAPACITY) ?
|
||
|
MAXIMUM_CAPACITY : tableSizeFor((int)ts);
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
|
||
|
int mask = n - 1;
|
||
|
long added = 0L;
|
||
|
while (p != null) {
|
||
|
boolean insertAtFront;
|
||
|
Node<K,V> next = p.next, first;
|
||
|
int h = p.hash, j = h & mask;
|
||
|
if ((first = tabAt(tab, j)) == null)
|
||
|
insertAtFront = true;
|
||
|
else {
|
||
|
K k = p.key;
|
||
|
if (first.hash < 0) {
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)first;
|
||
|
if (t.putTreeVal(h, k, p.val) == null)
|
||
|
++added;
|
||
|
insertAtFront = false;
|
||
|
}
|
||
|
else {
|
||
|
int binCount = 0;
|
||
|
insertAtFront = true;
|
||
|
Node<K,V> q; K qk;
|
||
|
for (q = first; q != null; q = q.next) {
|
||
|
if (q.hash == h &&
|
||
|
((qk = q.key) == k ||
|
||
|
(qk != null && k.equals(qk)))) {
|
||
|
insertAtFront = false;
|
||
|
break;
|
||
|
}
|
||
|
++binCount;
|
||
|
}
|
||
|
if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
|
||
|
insertAtFront = false;
|
||
|
++added;
|
||
|
p.next = first;
|
||
|
TreeNode<K,V> hd = null, tl = null;
|
||
|
for (q = p; q != null; q = q.next) {
|
||
|
TreeNode<K,V> t = new TreeNode<K,V>
|
||
|
(q.hash, q.key, q.val, null, null);
|
||
|
if ((t.prev = tl) == null)
|
||
|
hd = t;
|
||
|
else
|
||
|
tl.next = t;
|
||
|
tl = t;
|
||
|
}
|
||
|
setTabAt(tab, j, new TreeBin<K,V>(hd));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (insertAtFront) {
|
||
|
++added;
|
||
|
p.next = first;
|
||
|
setTabAt(tab, j, p);
|
||
|
}
|
||
|
p = next;
|
||
|
}
|
||
|
table = tab;
|
||
|
sizeCtl = n - (n >>> 2);
|
||
|
baseCount = added;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ConcurrentMap methods
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*
|
||
|
* @return the previous value associated with the specified key,
|
||
|
* or {@code null} if there was no mapping for the key
|
||
|
* @throws NullPointerException if the specified key or value is null
|
||
|
*/
|
||
|
public V putIfAbsent(K key, V value) {
|
||
|
return putVal(key, value, true);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public boolean remove(Object key, Object value) {
|
||
|
if (key == null)
|
||
|
throw new NullPointerException();
|
||
|
return value != null && replaceNode(key, null, value) != null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*
|
||
|
* @throws NullPointerException if any of the arguments are null
|
||
|
*/
|
||
|
public boolean replace(K key, V oldValue, V newValue) {
|
||
|
if (key == null || oldValue == null || newValue == null)
|
||
|
throw new NullPointerException();
|
||
|
return replaceNode(key, newValue, oldValue) != null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*
|
||
|
* @return the previous value associated with the specified key,
|
||
|
* or {@code null} if there was no mapping for the key
|
||
|
* @throws NullPointerException if the specified key or value is null
|
||
|
*/
|
||
|
public V replace(K key, V value) {
|
||
|
if (key == null || value == null)
|
||
|
throw new NullPointerException();
|
||
|
return replaceNode(key, value, null);
|
||
|
}
|
||
|
|
||
|
// Overrides of JDK8+ Map extension method defaults
|
||
|
|
||
|
/**
|
||
|
* Returns the value to which the specified key is mapped, or the
|
||
|
* given default value if this map contains no mapping for the
|
||
|
* key.
|
||
|
*
|
||
|
* @param key the key whose associated value is to be returned
|
||
|
* @param defaultValue the value to return if this map contains
|
||
|
* no mapping for the given key
|
||
|
* @return the mapping for the key, if present; else the default value
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public V getOrDefault(Object key, V defaultValue) {
|
||
|
V v;
|
||
|
return (v = get(key)) == null ? defaultValue : v;
|
||
|
}
|
||
|
|
||
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
action.accept(p.key, p.val);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
||
|
if (function == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
V oldValue = p.val;
|
||
|
for (K key = p.key;;) {
|
||
|
V newValue = function.apply(key, oldValue);
|
||
|
if (newValue == null)
|
||
|
throw new NullPointerException();
|
||
|
if (replaceNode(key, newValue, oldValue) != null ||
|
||
|
(oldValue = get(key)) == null)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Helper method for EntrySetView.removeIf.
|
||
|
*/
|
||
|
boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
|
||
|
if (function == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
boolean removed = false;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
K k = p.key;
|
||
|
V v = p.val;
|
||
|
Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
|
||
|
if (function.test(e) && replaceNode(k, null, v) != null)
|
||
|
removed = true;
|
||
|
}
|
||
|
}
|
||
|
return removed;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Helper method for ValuesView.removeIf.
|
||
|
*/
|
||
|
boolean removeValueIf(Predicate<? super V> function) {
|
||
|
if (function == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
boolean removed = false;
|
||
|
if ((t = table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
K k = p.key;
|
||
|
V v = p.val;
|
||
|
if (function.test(v) && replaceNode(k, null, v) != null)
|
||
|
removed = true;
|
||
|
}
|
||
|
}
|
||
|
return removed;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* If the specified key is not already associated with a value,
|
||
|
* attempts to compute its value using the given mapping function
|
||
|
* and enters it into this map unless {@code null}. The entire
|
||
|
* method invocation is performed atomically. The supplied
|
||
|
* function is invoked exactly once per invocation of this method
|
||
|
* if the key is absent, else not at all. Some attempted update
|
||
|
* operations on this map by other threads may be blocked while
|
||
|
* computation is in progress, so the computation should be short
|
||
|
* and simple.
|
||
|
*
|
||
|
* <p>The mapping function must not modify this map during computation.
|
||
|
*
|
||
|
* @param key key with which the specified value is to be associated
|
||
|
* @param mappingFunction the function to compute a value
|
||
|
* @return the current (existing or computed) value associated with
|
||
|
* the specified key, or null if the computed value is null
|
||
|
* @throws NullPointerException if the specified key or mappingFunction
|
||
|
* is null
|
||
|
* @throws IllegalStateException if the computation detectably
|
||
|
* attempts a recursive update to this map that would
|
||
|
* otherwise never complete
|
||
|
* @throws RuntimeException or Error if the mappingFunction does so,
|
||
|
* in which case the mapping is left unestablished
|
||
|
*/
|
||
|
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
|
||
|
if (key == null || mappingFunction == null)
|
||
|
throw new NullPointerException();
|
||
|
int h = spread(key.hashCode());
|
||
|
V val = null;
|
||
|
int binCount = 0;
|
||
|
for (Node<K,V>[] tab = table;;) {
|
||
|
Node<K,V> f; int n, i, fh; K fk; V fv;
|
||
|
if (tab == null || (n = tab.length) == 0)
|
||
|
tab = initTable();
|
||
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
|
||
|
Node<K,V> r = new ReservationNode<K,V>();
|
||
|
synchronized (r) {
|
||
|
if (casTabAt(tab, i, null, r)) {
|
||
|
binCount = 1;
|
||
|
Node<K,V> node = null;
|
||
|
try {
|
||
|
if ((val = mappingFunction.apply(key)) != null)
|
||
|
node = new Node<K,V>(h, key, val);
|
||
|
} finally {
|
||
|
setTabAt(tab, i, node);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0)
|
||
|
break;
|
||
|
}
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
tab = helpTransfer(tab, f);
|
||
|
else if (fh == h // check first node without acquiring lock
|
||
|
&& ((fk = f.key) == key || (fk != null && key.equals(fk)))
|
||
|
&& (fv = f.val) != null)
|
||
|
return fv;
|
||
|
else {
|
||
|
boolean added = false;
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
if (fh >= 0) {
|
||
|
binCount = 1;
|
||
|
for (Node<K,V> e = f;; ++binCount) {
|
||
|
K ek;
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == key ||
|
||
|
(ek != null && key.equals(ek)))) {
|
||
|
val = e.val;
|
||
|
break;
|
||
|
}
|
||
|
Node<K,V> pred = e;
|
||
|
if ((e = e.next) == null) {
|
||
|
if ((val = mappingFunction.apply(key)) != null) {
|
||
|
if (pred.next != null)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
added = true;
|
||
|
pred.next = new Node<K,V>(h, key, val);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
binCount = 2;
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)f;
|
||
|
TreeNode<K,V> r, p;
|
||
|
if ((r = t.root) != null &&
|
||
|
(p = r.findTreeNode(h, key, null)) != null)
|
||
|
val = p.val;
|
||
|
else if ((val = mappingFunction.apply(key)) != null) {
|
||
|
added = true;
|
||
|
t.putTreeVal(h, key, val);
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0) {
|
||
|
if (binCount >= TREEIFY_THRESHOLD)
|
||
|
treeifyBin(tab, i);
|
||
|
if (!added)
|
||
|
return val;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (val != null)
|
||
|
addCount(1L, binCount);
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* If the value for the specified key is present, attempts to
|
||
|
* compute a new mapping given the key and its current mapped
|
||
|
* value. The entire method invocation is performed atomically.
|
||
|
* The supplied function is invoked exactly once per invocation of
|
||
|
* this method if the key is present, else not at all. Some
|
||
|
* attempted update operations on this map by other threads may be
|
||
|
* blocked while computation is in progress, so the computation
|
||
|
* should be short and simple.
|
||
|
*
|
||
|
* <p>The remapping function must not modify this map during computation.
|
||
|
*
|
||
|
* @param key key with which a value may be associated
|
||
|
* @param remappingFunction the function to compute a value
|
||
|
* @return the new value associated with the specified key, or null if none
|
||
|
* @throws NullPointerException if the specified key or remappingFunction
|
||
|
* is null
|
||
|
* @throws IllegalStateException if the computation detectably
|
||
|
* attempts a recursive update to this map that would
|
||
|
* otherwise never complete
|
||
|
* @throws RuntimeException or Error if the remappingFunction does so,
|
||
|
* in which case the mapping is unchanged
|
||
|
*/
|
||
|
public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
||
|
if (key == null || remappingFunction == null)
|
||
|
throw new NullPointerException();
|
||
|
int h = spread(key.hashCode());
|
||
|
V val = null;
|
||
|
int delta = 0;
|
||
|
int binCount = 0;
|
||
|
for (Node<K,V>[] tab = table;;) {
|
||
|
Node<K,V> f; int n, i, fh;
|
||
|
if (tab == null || (n = tab.length) == 0)
|
||
|
tab = initTable();
|
||
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
|
||
|
break;
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
tab = helpTransfer(tab, f);
|
||
|
else {
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
if (fh >= 0) {
|
||
|
binCount = 1;
|
||
|
for (Node<K,V> e = f, pred = null;; ++binCount) {
|
||
|
K ek;
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == key ||
|
||
|
(ek != null && key.equals(ek)))) {
|
||
|
val = remappingFunction.apply(key, e.val);
|
||
|
if (val != null)
|
||
|
e.val = val;
|
||
|
else {
|
||
|
delta = -1;
|
||
|
Node<K,V> en = e.next;
|
||
|
if (pred != null)
|
||
|
pred.next = en;
|
||
|
else
|
||
|
setTabAt(tab, i, en);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
pred = e;
|
||
|
if ((e = e.next) == null)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
binCount = 2;
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)f;
|
||
|
TreeNode<K,V> r, p;
|
||
|
if ((r = t.root) != null &&
|
||
|
(p = r.findTreeNode(h, key, null)) != null) {
|
||
|
val = remappingFunction.apply(key, p.val);
|
||
|
if (val != null)
|
||
|
p.val = val;
|
||
|
else {
|
||
|
delta = -1;
|
||
|
if (t.removeTreeNode(p))
|
||
|
setTabAt(tab, i, untreeify(t.first));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (delta != 0)
|
||
|
addCount((long)delta, binCount);
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Attempts to compute a mapping for the specified key and its
|
||
|
* current mapped value (or {@code null} if there is no current
|
||
|
* mapping). The entire method invocation is performed atomically.
|
||
|
* The supplied function is invoked exactly once per invocation of
|
||
|
* this method. Some attempted update operations on this map by
|
||
|
* other threads may be blocked while computation is in progress,
|
||
|
* so the computation should be short and simple.
|
||
|
*
|
||
|
* <p>The remapping function must not modify this map during computation.
|
||
|
*
|
||
|
* @param key key with which the specified value is to be associated
|
||
|
* @param remappingFunction the function to compute a value
|
||
|
* @return the new value associated with the specified key, or null if none
|
||
|
* @throws NullPointerException if the specified key or remappingFunction
|
||
|
* is null
|
||
|
* @throws IllegalStateException if the computation detectably
|
||
|
* attempts a recursive update to this map that would
|
||
|
* otherwise never complete
|
||
|
* @throws RuntimeException or Error if the remappingFunction does so,
|
||
|
* in which case the mapping is unchanged
|
||
|
*/
|
||
|
public V compute(K key,
|
||
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
||
|
if (key == null || remappingFunction == null)
|
||
|
throw new NullPointerException();
|
||
|
int h = spread(key.hashCode());
|
||
|
V val = null;
|
||
|
int delta = 0;
|
||
|
int binCount = 0;
|
||
|
for (Node<K,V>[] tab = table;;) {
|
||
|
Node<K,V> f; int n, i, fh;
|
||
|
if (tab == null || (n = tab.length) == 0)
|
||
|
tab = initTable();
|
||
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
|
||
|
Node<K,V> r = new ReservationNode<K,V>();
|
||
|
synchronized (r) {
|
||
|
if (casTabAt(tab, i, null, r)) {
|
||
|
binCount = 1;
|
||
|
Node<K,V> node = null;
|
||
|
try {
|
||
|
if ((val = remappingFunction.apply(key, null)) != null) {
|
||
|
delta = 1;
|
||
|
node = new Node<K,V>(h, key, val);
|
||
|
}
|
||
|
} finally {
|
||
|
setTabAt(tab, i, node);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0)
|
||
|
break;
|
||
|
}
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
tab = helpTransfer(tab, f);
|
||
|
else {
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
if (fh >= 0) {
|
||
|
binCount = 1;
|
||
|
for (Node<K,V> e = f, pred = null;; ++binCount) {
|
||
|
K ek;
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == key ||
|
||
|
(ek != null && key.equals(ek)))) {
|
||
|
val = remappingFunction.apply(key, e.val);
|
||
|
if (val != null)
|
||
|
e.val = val;
|
||
|
else {
|
||
|
delta = -1;
|
||
|
Node<K,V> en = e.next;
|
||
|
if (pred != null)
|
||
|
pred.next = en;
|
||
|
else
|
||
|
setTabAt(tab, i, en);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
pred = e;
|
||
|
if ((e = e.next) == null) {
|
||
|
val = remappingFunction.apply(key, null);
|
||
|
if (val != null) {
|
||
|
if (pred.next != null)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
delta = 1;
|
||
|
pred.next = new Node<K,V>(h, key, val);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
binCount = 1;
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)f;
|
||
|
TreeNode<K,V> r, p;
|
||
|
if ((r = t.root) != null)
|
||
|
p = r.findTreeNode(h, key, null);
|
||
|
else
|
||
|
p = null;
|
||
|
V pv = (p == null) ? null : p.val;
|
||
|
val = remappingFunction.apply(key, pv);
|
||
|
if (val != null) {
|
||
|
if (p != null)
|
||
|
p.val = val;
|
||
|
else {
|
||
|
delta = 1;
|
||
|
t.putTreeVal(h, key, val);
|
||
|
}
|
||
|
}
|
||
|
else if (p != null) {
|
||
|
delta = -1;
|
||
|
if (t.removeTreeNode(p))
|
||
|
setTabAt(tab, i, untreeify(t.first));
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0) {
|
||
|
if (binCount >= TREEIFY_THRESHOLD)
|
||
|
treeifyBin(tab, i);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (delta != 0)
|
||
|
addCount((long)delta, binCount);
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* If the specified key is not already associated with a
|
||
|
* (non-null) value, associates it with the given value.
|
||
|
* Otherwise, replaces the value with the results of the given
|
||
|
* remapping function, or removes if {@code null}. The entire
|
||
|
* method invocation is performed atomically. Some attempted
|
||
|
* update operations on this map by other threads may be blocked
|
||
|
* while computation is in progress, so the computation should be
|
||
|
* short and simple, and must not attempt to update any other
|
||
|
* mappings of this Map.
|
||
|
*
|
||
|
* @param key key with which the specified value is to be associated
|
||
|
* @param value the value to use if absent
|
||
|
* @param remappingFunction the function to recompute a value if present
|
||
|
* @return the new value associated with the specified key, or null if none
|
||
|
* @throws NullPointerException if the specified key or the
|
||
|
* remappingFunction is null
|
||
|
* @throws RuntimeException or Error if the remappingFunction does so,
|
||
|
* in which case the mapping is unchanged
|
||
|
*/
|
||
|
public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
||
|
if (key == null || value == null || remappingFunction == null)
|
||
|
throw new NullPointerException();
|
||
|
int h = spread(key.hashCode());
|
||
|
V val = null;
|
||
|
int delta = 0;
|
||
|
int binCount = 0;
|
||
|
for (Node<K,V>[] tab = table;;) {
|
||
|
Node<K,V> f; int n, i, fh;
|
||
|
if (tab == null || (n = tab.length) == 0)
|
||
|
tab = initTable();
|
||
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
|
||
|
if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
|
||
|
delta = 1;
|
||
|
val = value;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
tab = helpTransfer(tab, f);
|
||
|
else {
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
if (fh >= 0) {
|
||
|
binCount = 1;
|
||
|
for (Node<K,V> e = f, pred = null;; ++binCount) {
|
||
|
K ek;
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == key ||
|
||
|
(ek != null && key.equals(ek)))) {
|
||
|
val = remappingFunction.apply(e.val, value);
|
||
|
if (val != null)
|
||
|
e.val = val;
|
||
|
else {
|
||
|
delta = -1;
|
||
|
Node<K,V> en = e.next;
|
||
|
if (pred != null)
|
||
|
pred.next = en;
|
||
|
else
|
||
|
setTabAt(tab, i, en);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
pred = e;
|
||
|
if ((e = e.next) == null) {
|
||
|
delta = 1;
|
||
|
val = value;
|
||
|
pred.next = new Node<K,V>(h, key, val);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
binCount = 2;
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)f;
|
||
|
TreeNode<K,V> r = t.root;
|
||
|
TreeNode<K,V> p = (r == null) ? null :
|
||
|
r.findTreeNode(h, key, null);
|
||
|
val = (p == null) ? value :
|
||
|
remappingFunction.apply(p.val, value);
|
||
|
if (val != null) {
|
||
|
if (p != null)
|
||
|
p.val = val;
|
||
|
else {
|
||
|
delta = 1;
|
||
|
t.putTreeVal(h, key, val);
|
||
|
}
|
||
|
}
|
||
|
else if (p != null) {
|
||
|
delta = -1;
|
||
|
if (t.removeTreeNode(p))
|
||
|
setTabAt(tab, i, untreeify(t.first));
|
||
|
}
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
if (binCount != 0) {
|
||
|
if (binCount >= TREEIFY_THRESHOLD)
|
||
|
treeifyBin(tab, i);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (delta != 0)
|
||
|
addCount((long)delta, binCount);
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
// Hashtable legacy methods
|
||
|
|
||
|
/**
|
||
|
* Tests if some key maps into the specified value in this table.
|
||
|
*
|
||
|
* <p>Note that this method is identical in functionality to
|
||
|
* {@link #containsValue(Object)}, and exists solely to ensure
|
||
|
* full compatibility with class {@link java.util.Hashtable},
|
||
|
* which supported this method prior to introduction of the
|
||
|
* Java Collections Framework.
|
||
|
*
|
||
|
* @param value a value to search for
|
||
|
* @return {@code true} if and only if some key maps to the
|
||
|
* {@code value} argument in this table as
|
||
|
* determined by the {@code equals} method;
|
||
|
* {@code false} otherwise
|
||
|
* @throws NullPointerException if the specified value is null
|
||
|
*/
|
||
|
public boolean contains(Object value) {
|
||
|
return containsValue(value);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an enumeration of the keys in this table.
|
||
|
*
|
||
|
* @return an enumeration of the keys in this table
|
||
|
* @see #keySet()
|
||
|
*/
|
||
|
public Enumeration<K> keys() {
|
||
|
Node<K,V>[] t;
|
||
|
int f = (t = table) == null ? 0 : t.length;
|
||
|
return new KeyIterator<K,V>(t, f, 0, f, this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an enumeration of the values in this table.
|
||
|
*
|
||
|
* @return an enumeration of the values in this table
|
||
|
* @see #values()
|
||
|
*/
|
||
|
public Enumeration<V> elements() {
|
||
|
Node<K,V>[] t;
|
||
|
int f = (t = table) == null ? 0 : t.length;
|
||
|
return new ValueIterator<K,V>(t, f, 0, f, this);
|
||
|
}
|
||
|
|
||
|
// ConcurrentHashMap-only methods
|
||
|
|
||
|
/**
|
||
|
* Returns the number of mappings. This method should be used
|
||
|
* instead of {@link #size} because a ConcurrentHashMap may
|
||
|
* contain more mappings than can be represented as an int. The
|
||
|
* value returned is an estimate; the actual count may differ if
|
||
|
* there are concurrent insertions or removals.
|
||
|
*
|
||
|
* @return the number of mappings
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public long mappingCount() {
|
||
|
long n = sumCount();
|
||
|
return (n < 0L) ? 0L : n; // ignore transient negative values
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new {@link Set} backed by a ConcurrentHashMap
|
||
|
* from the given type to {@code Boolean.TRUE}.
|
||
|
*
|
||
|
* @param <K> the element type of the returned set
|
||
|
* @return the new set
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public static <K> KeySetView<K,Boolean> newKeySet() {
|
||
|
return new KeySetView<K,Boolean>
|
||
|
(new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new {@link Set} backed by a ConcurrentHashMap
|
||
|
* from the given type to {@code Boolean.TRUE}.
|
||
|
*
|
||
|
* @param initialCapacity The implementation performs internal
|
||
|
* sizing to accommodate this many elements.
|
||
|
* @param <K> the element type of the returned set
|
||
|
* @return the new set
|
||
|
* @throws IllegalArgumentException if the initial capacity of
|
||
|
* elements is negative
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
|
||
|
return new KeySetView<K,Boolean>
|
||
|
(new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link Set} view of the keys in this map, using the
|
||
|
* given common mapped value for any additions (i.e., {@link
|
||
|
* Collection#add} and {@link Collection#addAll(Collection)}).
|
||
|
* This is of course only appropriate if it is acceptable to use
|
||
|
* the same value for all additions from this view.
|
||
|
*
|
||
|
* @param mappedValue the mapped value to use for any additions
|
||
|
* @return the set view
|
||
|
* @throws NullPointerException if the mappedValue is null
|
||
|
*/
|
||
|
public KeySetView<K,V> keySet(V mappedValue) {
|
||
|
if (mappedValue == null)
|
||
|
throw new NullPointerException();
|
||
|
return new KeySetView<K,V>(this, mappedValue);
|
||
|
}
|
||
|
|
||
|
/* ---------------- Special Nodes -------------- */
|
||
|
|
||
|
/**
|
||
|
* A node inserted at head of bins during transfer operations.
|
||
|
*/
|
||
|
static final class ForwardingNode<K,V> extends Node<K,V> {
|
||
|
final Node<K,V>[] nextTable;
|
||
|
ForwardingNode(Node<K,V>[] tab) {
|
||
|
super(MOVED, null, null);
|
||
|
this.nextTable = tab;
|
||
|
}
|
||
|
|
||
|
Node<K,V> find(int h, Object k) {
|
||
|
// loop to avoid arbitrarily deep recursion on forwarding nodes
|
||
|
outer: for (Node<K,V>[] tab = nextTable;;) {
|
||
|
Node<K,V> e; int n;
|
||
|
if (k == null || tab == null || (n = tab.length) == 0 ||
|
||
|
(e = tabAt(tab, (n - 1) & h)) == null)
|
||
|
return null;
|
||
|
for (;;) {
|
||
|
int eh; K ek;
|
||
|
if ((eh = e.hash) == h &&
|
||
|
((ek = e.key) == k || (ek != null && k.equals(ek))))
|
||
|
return e;
|
||
|
if (eh < 0) {
|
||
|
if (e instanceof ForwardingNode) {
|
||
|
tab = ((ForwardingNode<K,V>)e).nextTable;
|
||
|
continue outer;
|
||
|
}
|
||
|
else
|
||
|
return e.find(h, k);
|
||
|
}
|
||
|
if ((e = e.next) == null)
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A place-holder node used in computeIfAbsent and compute.
|
||
|
*/
|
||
|
static final class ReservationNode<K,V> extends Node<K,V> {
|
||
|
ReservationNode() {
|
||
|
super(RESERVED, null, null);
|
||
|
}
|
||
|
|
||
|
Node<K,V> find(int h, Object k) {
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ---------------- Table Initialization and Resizing -------------- */
|
||
|
|
||
|
/**
|
||
|
* Returns the stamp bits for resizing a table of size n.
|
||
|
* Must be negative when shifted left by RESIZE_STAMP_SHIFT.
|
||
|
*/
|
||
|
static final int resizeStamp(int n) {
|
||
|
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Initializes table, using the size recorded in sizeCtl.
|
||
|
*/
|
||
|
private final Node<K,V>[] initTable() {
|
||
|
Node<K,V>[] tab; int sc;
|
||
|
while ((tab = table) == null || tab.length == 0) {
|
||
|
if ((sc = sizeCtl) < 0)
|
||
|
Thread.yield(); // lost initialization race; just spin
|
||
|
else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
|
||
|
try {
|
||
|
if ((tab = table) == null || tab.length == 0) {
|
||
|
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
|
||
|
table = tab = nt;
|
||
|
sc = n - (n >>> 2);
|
||
|
}
|
||
|
} finally {
|
||
|
sizeCtl = sc;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return tab;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds to count, and if table is too small and not already
|
||
|
* resizing, initiates transfer. If already resizing, helps
|
||
|
* perform transfer if work is available. Rechecks occupancy
|
||
|
* after a transfer to see if another resize is already needed
|
||
|
* because resizings are lagging additions.
|
||
|
*
|
||
|
* @param x the count to add
|
||
|
* @param check if <0, don't check resize, if <= 1 only check if uncontended
|
||
|
*/
|
||
|
private final void addCount(long x, int check) {
|
||
|
CounterCell[] cs; long b, s;
|
||
|
if ((cs = counterCells) != null ||
|
||
|
!U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
|
||
|
CounterCell c; long v; int m;
|
||
|
boolean uncontended = true;
|
||
|
if (cs == null || (m = cs.length - 1) < 0 ||
|
||
|
(c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
|
||
|
!(uncontended =
|
||
|
U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
|
||
|
fullAddCount(x, uncontended);
|
||
|
return;
|
||
|
}
|
||
|
if (check <= 1)
|
||
|
return;
|
||
|
s = sumCount();
|
||
|
}
|
||
|
if (check >= 0) {
|
||
|
Node<K,V>[] tab, nt; int n, sc;
|
||
|
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
|
||
|
(n = tab.length) < MAXIMUM_CAPACITY) {
|
||
|
int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
|
||
|
if (sc < 0) {
|
||
|
if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
|
||
|
(nt = nextTable) == null || transferIndex <= 0)
|
||
|
break;
|
||
|
if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
|
||
|
transfer(tab, nt);
|
||
|
}
|
||
|
else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
|
||
|
transfer(tab, null);
|
||
|
s = sumCount();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Helps transfer if a resize is in progress.
|
||
|
*/
|
||
|
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
|
||
|
Node<K,V>[] nextTab; int sc;
|
||
|
if (tab != null && (f instanceof ForwardingNode) &&
|
||
|
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
|
||
|
int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
|
||
|
while (nextTab == nextTable && table == tab &&
|
||
|
(sc = sizeCtl) < 0) {
|
||
|
if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
|
||
|
transferIndex <= 0)
|
||
|
break;
|
||
|
if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
|
||
|
transfer(tab, nextTab);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return nextTab;
|
||
|
}
|
||
|
return table;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Tries to presize table to accommodate the given number of elements.
|
||
|
*
|
||
|
* @param size number of elements (doesn't need to be perfectly accurate)
|
||
|
*/
|
||
|
private final void tryPresize(int size) {
|
||
|
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
|
||
|
tableSizeFor(size + (size >>> 1) + 1);
|
||
|
int sc;
|
||
|
while ((sc = sizeCtl) >= 0) {
|
||
|
Node<K,V>[] tab = table; int n;
|
||
|
if (tab == null || (n = tab.length) == 0) {
|
||
|
n = (sc > c) ? sc : c;
|
||
|
if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
|
||
|
try {
|
||
|
if (table == tab) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
|
||
|
table = nt;
|
||
|
sc = n - (n >>> 2);
|
||
|
}
|
||
|
} finally {
|
||
|
sizeCtl = sc;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (c <= sc || n >= MAXIMUM_CAPACITY)
|
||
|
break;
|
||
|
else if (tab == table) {
|
||
|
int rs = resizeStamp(n);
|
||
|
if (U.compareAndSetInt(this, SIZECTL, sc,
|
||
|
(rs << RESIZE_STAMP_SHIFT) + 2))
|
||
|
transfer(tab, null);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Moves and/or copies the nodes in each bin to new table. See
|
||
|
* above for explanation.
|
||
|
*/
|
||
|
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
|
||
|
int n = tab.length, stride;
|
||
|
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
|
||
|
stride = MIN_TRANSFER_STRIDE; // subdivide range
|
||
|
if (nextTab == null) { // initiating
|
||
|
try {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
|
||
|
nextTab = nt;
|
||
|
} catch (Throwable ex) { // try to cope with OOME
|
||
|
sizeCtl = Integer.MAX_VALUE;
|
||
|
return;
|
||
|
}
|
||
|
nextTable = nextTab;
|
||
|
transferIndex = n;
|
||
|
}
|
||
|
int nextn = nextTab.length;
|
||
|
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
|
||
|
boolean advance = true;
|
||
|
boolean finishing = false; // to ensure sweep before committing nextTab
|
||
|
for (int i = 0, bound = 0;;) {
|
||
|
Node<K,V> f; int fh;
|
||
|
while (advance) {
|
||
|
int nextIndex, nextBound;
|
||
|
if (--i >= bound || finishing)
|
||
|
advance = false;
|
||
|
else if ((nextIndex = transferIndex) <= 0) {
|
||
|
i = -1;
|
||
|
advance = false;
|
||
|
}
|
||
|
else if (U.compareAndSetInt
|
||
|
(this, TRANSFERINDEX, nextIndex,
|
||
|
nextBound = (nextIndex > stride ?
|
||
|
nextIndex - stride : 0))) {
|
||
|
bound = nextBound;
|
||
|
i = nextIndex - 1;
|
||
|
advance = false;
|
||
|
}
|
||
|
}
|
||
|
if (i < 0 || i >= n || i + n >= nextn) {
|
||
|
int sc;
|
||
|
if (finishing) {
|
||
|
nextTable = null;
|
||
|
table = nextTab;
|
||
|
sizeCtl = (n << 1) - (n >>> 1);
|
||
|
return;
|
||
|
}
|
||
|
if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
|
||
|
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
|
||
|
return;
|
||
|
finishing = advance = true;
|
||
|
i = n; // recheck before commit
|
||
|
}
|
||
|
}
|
||
|
else if ((f = tabAt(tab, i)) == null)
|
||
|
advance = casTabAt(tab, i, null, fwd);
|
||
|
else if ((fh = f.hash) == MOVED)
|
||
|
advance = true; // already processed
|
||
|
else {
|
||
|
synchronized (f) {
|
||
|
if (tabAt(tab, i) == f) {
|
||
|
Node<K,V> ln, hn;
|
||
|
if (fh >= 0) {
|
||
|
int runBit = fh & n;
|
||
|
Node<K,V> lastRun = f;
|
||
|
for (Node<K,V> p = f.next; p != null; p = p.next) {
|
||
|
int b = p.hash & n;
|
||
|
if (b != runBit) {
|
||
|
runBit = b;
|
||
|
lastRun = p;
|
||
|
}
|
||
|
}
|
||
|
if (runBit == 0) {
|
||
|
ln = lastRun;
|
||
|
hn = null;
|
||
|
}
|
||
|
else {
|
||
|
hn = lastRun;
|
||
|
ln = null;
|
||
|
}
|
||
|
for (Node<K,V> p = f; p != lastRun; p = p.next) {
|
||
|
int ph = p.hash; K pk = p.key; V pv = p.val;
|
||
|
if ((ph & n) == 0)
|
||
|
ln = new Node<K,V>(ph, pk, pv, ln);
|
||
|
else
|
||
|
hn = new Node<K,V>(ph, pk, pv, hn);
|
||
|
}
|
||
|
setTabAt(nextTab, i, ln);
|
||
|
setTabAt(nextTab, i + n, hn);
|
||
|
setTabAt(tab, i, fwd);
|
||
|
advance = true;
|
||
|
}
|
||
|
else if (f instanceof TreeBin) {
|
||
|
TreeBin<K,V> t = (TreeBin<K,V>)f;
|
||
|
TreeNode<K,V> lo = null, loTail = null;
|
||
|
TreeNode<K,V> hi = null, hiTail = null;
|
||
|
int lc = 0, hc = 0;
|
||
|
for (Node<K,V> e = t.first; e != null; e = e.next) {
|
||
|
int h = e.hash;
|
||
|
TreeNode<K,V> p = new TreeNode<K,V>
|
||
|
(h, e.key, e.val, null, null);
|
||
|
if ((h & n) == 0) {
|
||
|
if ((p.prev = loTail) == null)
|
||
|
lo = p;
|
||
|
else
|
||
|
loTail.next = p;
|
||
|
loTail = p;
|
||
|
++lc;
|
||
|
}
|
||
|
else {
|
||
|
if ((p.prev = hiTail) == null)
|
||
|
hi = p;
|
||
|
else
|
||
|
hiTail.next = p;
|
||
|
hiTail = p;
|
||
|
++hc;
|
||
|
}
|
||
|
}
|
||
|
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
|
||
|
(hc != 0) ? new TreeBin<K,V>(lo) : t;
|
||
|
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
|
||
|
(lc != 0) ? new TreeBin<K,V>(hi) : t;
|
||
|
setTabAt(nextTab, i, ln);
|
||
|
setTabAt(nextTab, i + n, hn);
|
||
|
setTabAt(tab, i, fwd);
|
||
|
advance = true;
|
||
|
}
|
||
|
else if (f instanceof ReservationNode)
|
||
|
throw new IllegalStateException("Recursive update");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ---------------- Counter support -------------- */
|
||
|
|
||
|
/**
|
||
|
* A padded cell for distributing counts. Adapted from LongAdder
|
||
|
* and Striped64. See their internal docs for explanation.
|
||
|
*/
|
||
|
@jdk.internal.vm.annotation.Contended
|
||
|
static final class CounterCell {
|
||
|
volatile long value;
|
||
|
CounterCell(long x) { value = x; }
|
||
|
}
|
||
|
|
||
|
final long sumCount() {
|
||
|
CounterCell[] cs = counterCells;
|
||
|
long sum = baseCount;
|
||
|
if (cs != null) {
|
||
|
for (CounterCell c : cs)
|
||
|
if (c != null)
|
||
|
sum += c.value;
|
||
|
}
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
// See LongAdder version for explanation
|
||
|
private final void fullAddCount(long x, boolean wasUncontended) {
|
||
|
int h;
|
||
|
if ((h = ThreadLocalRandom.getProbe()) == 0) {
|
||
|
ThreadLocalRandom.localInit(); // force initialization
|
||
|
h = ThreadLocalRandom.getProbe();
|
||
|
wasUncontended = true;
|
||
|
}
|
||
|
boolean collide = false; // True if last slot nonempty
|
||
|
for (;;) {
|
||
|
CounterCell[] cs; CounterCell c; int n; long v;
|
||
|
if ((cs = counterCells) != null && (n = cs.length) > 0) {
|
||
|
if ((c = cs[(n - 1) & h]) == null) {
|
||
|
if (cellsBusy == 0) { // Try to attach new Cell
|
||
|
CounterCell r = new CounterCell(x); // Optimistic create
|
||
|
if (cellsBusy == 0 &&
|
||
|
U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
|
||
|
boolean created = false;
|
||
|
try { // Recheck under lock
|
||
|
CounterCell[] rs; int m, j;
|
||
|
if ((rs = counterCells) != null &&
|
||
|
(m = rs.length) > 0 &&
|
||
|
rs[j = (m - 1) & h] == null) {
|
||
|
rs[j] = r;
|
||
|
created = true;
|
||
|
}
|
||
|
} finally {
|
||
|
cellsBusy = 0;
|
||
|
}
|
||
|
if (created)
|
||
|
break;
|
||
|
continue; // Slot is now non-empty
|
||
|
}
|
||
|
}
|
||
|
collide = false;
|
||
|
}
|
||
|
else if (!wasUncontended) // CAS already known to fail
|
||
|
wasUncontended = true; // Continue after rehash
|
||
|
else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
|
||
|
break;
|
||
|
else if (counterCells != cs || n >= NCPU)
|
||
|
collide = false; // At max size or stale
|
||
|
else if (!collide)
|
||
|
collide = true;
|
||
|
else if (cellsBusy == 0 &&
|
||
|
U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
|
||
|
try {
|
||
|
if (counterCells == cs) // Expand table unless stale
|
||
|
counterCells = Arrays.copyOf(cs, n << 1);
|
||
|
} finally {
|
||
|
cellsBusy = 0;
|
||
|
}
|
||
|
collide = false;
|
||
|
continue; // Retry with expanded table
|
||
|
}
|
||
|
h = ThreadLocalRandom.advanceProbe(h);
|
||
|
}
|
||
|
else if (cellsBusy == 0 && counterCells == cs &&
|
||
|
U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
|
||
|
boolean init = false;
|
||
|
try { // Initialize table
|
||
|
if (counterCells == cs) {
|
||
|
CounterCell[] rs = new CounterCell[2];
|
||
|
rs[h & 1] = new CounterCell(x);
|
||
|
counterCells = rs;
|
||
|
init = true;
|
||
|
}
|
||
|
} finally {
|
||
|
cellsBusy = 0;
|
||
|
}
|
||
|
if (init)
|
||
|
break;
|
||
|
}
|
||
|
else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
|
||
|
break; // Fall back on using base
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ---------------- Conversion from/to TreeBins -------------- */
|
||
|
|
||
|
/**
|
||
|
* Replaces all linked nodes in bin at given index unless table is
|
||
|
* too small, in which case resizes instead.
|
||
|
*/
|
||
|
private final void treeifyBin(Node<K,V>[] tab, int index) {
|
||
|
Node<K,V> b; int n;
|
||
|
if (tab != null) {
|
||
|
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
|
||
|
tryPresize(n << 1);
|
||
|
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
|
||
|
synchronized (b) {
|
||
|
if (tabAt(tab, index) == b) {
|
||
|
TreeNode<K,V> hd = null, tl = null;
|
||
|
for (Node<K,V> e = b; e != null; e = e.next) {
|
||
|
TreeNode<K,V> p =
|
||
|
new TreeNode<K,V>(e.hash, e.key, e.val,
|
||
|
null, null);
|
||
|
if ((p.prev = tl) == null)
|
||
|
hd = p;
|
||
|
else
|
||
|
tl.next = p;
|
||
|
tl = p;
|
||
|
}
|
||
|
setTabAt(tab, index, new TreeBin<K,V>(hd));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a list of non-TreeNodes replacing those in given list.
|
||
|
*/
|
||
|
static <K,V> Node<K,V> untreeify(Node<K,V> b) {
|
||
|
Node<K,V> hd = null, tl = null;
|
||
|
for (Node<K,V> q = b; q != null; q = q.next) {
|
||
|
Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
|
||
|
if (tl == null)
|
||
|
hd = p;
|
||
|
else
|
||
|
tl.next = p;
|
||
|
tl = p;
|
||
|
}
|
||
|
return hd;
|
||
|
}
|
||
|
|
||
|
/* ---------------- TreeNodes -------------- */
|
||
|
|
||
|
/**
|
||
|
* Nodes for use in TreeBins.
|
||
|
*/
|
||
|
static final class TreeNode<K,V> extends Node<K,V> {
|
||
|
TreeNode<K,V> parent; // red-black tree links
|
||
|
TreeNode<K,V> left;
|
||
|
TreeNode<K,V> right;
|
||
|
TreeNode<K,V> prev; // needed to unlink next upon deletion
|
||
|
boolean red;
|
||
|
|
||
|
TreeNode(int hash, K key, V val, Node<K,V> next,
|
||
|
TreeNode<K,V> parent) {
|
||
|
super(hash, key, val, next);
|
||
|
this.parent = parent;
|
||
|
}
|
||
|
|
||
|
Node<K,V> find(int h, Object k) {
|
||
|
return findTreeNode(h, k, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the TreeNode (or null if not found) for the given key
|
||
|
* starting at given root.
|
||
|
*/
|
||
|
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
|
||
|
if (k != null) {
|
||
|
TreeNode<K,V> p = this;
|
||
|
do {
|
||
|
int ph, dir; K pk; TreeNode<K,V> q;
|
||
|
TreeNode<K,V> pl = p.left, pr = p.right;
|
||
|
if ((ph = p.hash) > h)
|
||
|
p = pl;
|
||
|
else if (ph < h)
|
||
|
p = pr;
|
||
|
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
|
||
|
return p;
|
||
|
else if (pl == null)
|
||
|
p = pr;
|
||
|
else if (pr == null)
|
||
|
p = pl;
|
||
|
else if ((kc != null ||
|
||
|
(kc = comparableClassFor(k)) != null) &&
|
||
|
(dir = compareComparables(kc, k, pk)) != 0)
|
||
|
p = (dir < 0) ? pl : pr;
|
||
|
else if ((q = pr.findTreeNode(h, k, kc)) != null)
|
||
|
return q;
|
||
|
else
|
||
|
p = pl;
|
||
|
} while (p != null);
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ---------------- TreeBins -------------- */
|
||
|
|
||
|
/**
|
||
|
* TreeNodes used at the heads of bins. TreeBins do not hold user
|
||
|
* keys or values, but instead point to list of TreeNodes and
|
||
|
* their root. They also maintain a parasitic read-write lock
|
||
|
* forcing writers (who hold bin lock) to wait for readers (who do
|
||
|
* not) to complete before tree restructuring operations.
|
||
|
*/
|
||
|
static final class TreeBin<K,V> extends Node<K,V> {
|
||
|
TreeNode<K,V> root;
|
||
|
volatile TreeNode<K,V> first;
|
||
|
volatile Thread waiter;
|
||
|
volatile int lockState;
|
||
|
// values for lockState
|
||
|
static final int WRITER = 1; // set while holding write lock
|
||
|
static final int WAITER = 2; // set when waiting for write lock
|
||
|
static final int READER = 4; // increment value for setting read lock
|
||
|
|
||
|
/**
|
||
|
* Tie-breaking utility for ordering insertions when equal
|
||
|
* hashCodes and non-comparable. We don't require a total
|
||
|
* order, just a consistent insertion rule to maintain
|
||
|
* equivalence across rebalancings. Tie-breaking further than
|
||
|
* necessary simplifies testing a bit.
|
||
|
*/
|
||
|
static int tieBreakOrder(Object a, Object b) {
|
||
|
int d;
|
||
|
if (a == null || b == null ||
|
||
|
(d = a.getClass().getName().
|
||
|
compareTo(b.getClass().getName())) == 0)
|
||
|
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
|
||
|
-1 : 1);
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates bin with initial set of nodes headed by b.
|
||
|
*/
|
||
|
TreeBin(TreeNode<K,V> b) {
|
||
|
super(TREEBIN, null, null);
|
||
|
this.first = b;
|
||
|
TreeNode<K,V> r = null;
|
||
|
for (TreeNode<K,V> x = b, next; x != null; x = next) {
|
||
|
next = (TreeNode<K,V>)x.next;
|
||
|
x.left = x.right = null;
|
||
|
if (r == null) {
|
||
|
x.parent = null;
|
||
|
x.red = false;
|
||
|
r = x;
|
||
|
}
|
||
|
else {
|
||
|
K k = x.key;
|
||
|
int h = x.hash;
|
||
|
Class<?> kc = null;
|
||
|
for (TreeNode<K,V> p = r;;) {
|
||
|
int dir, ph;
|
||
|
K pk = p.key;
|
||
|
if ((ph = p.hash) > h)
|
||
|
dir = -1;
|
||
|
else if (ph < h)
|
||
|
dir = 1;
|
||
|
else if ((kc == null &&
|
||
|
(kc = comparableClassFor(k)) == null) ||
|
||
|
(dir = compareComparables(kc, k, pk)) == 0)
|
||
|
dir = tieBreakOrder(k, pk);
|
||
|
TreeNode<K,V> xp = p;
|
||
|
if ((p = (dir <= 0) ? p.left : p.right) == null) {
|
||
|
x.parent = xp;
|
||
|
if (dir <= 0)
|
||
|
xp.left = x;
|
||
|
else
|
||
|
xp.right = x;
|
||
|
r = balanceInsertion(r, x);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
this.root = r;
|
||
|
assert checkInvariants(root);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Acquires write lock for tree restructuring.
|
||
|
*/
|
||
|
private final void lockRoot() {
|
||
|
if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
|
||
|
contendedLock(); // offload to separate method
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Releases write lock for tree restructuring.
|
||
|
*/
|
||
|
private final void unlockRoot() {
|
||
|
lockState = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Possibly blocks awaiting root lock.
|
||
|
*/
|
||
|
private final void contendedLock() {
|
||
|
boolean waiting = false;
|
||
|
for (int s;;) {
|
||
|
if (((s = lockState) & ~WAITER) == 0) {
|
||
|
if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
|
||
|
if (waiting)
|
||
|
waiter = null;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
else if ((s & WAITER) == 0) {
|
||
|
if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
|
||
|
waiting = true;
|
||
|
waiter = Thread.currentThread();
|
||
|
}
|
||
|
}
|
||
|
else if (waiting)
|
||
|
LockSupport.park(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns matching node or null if none. Tries to search
|
||
|
* using tree comparisons from root, but continues linear
|
||
|
* search when lock not available.
|
||
|
*/
|
||
|
final Node<K,V> find(int h, Object k) {
|
||
|
if (k != null) {
|
||
|
for (Node<K,V> e = first; e != null; ) {
|
||
|
int s; K ek;
|
||
|
if (((s = lockState) & (WAITER|WRITER)) != 0) {
|
||
|
if (e.hash == h &&
|
||
|
((ek = e.key) == k || (ek != null && k.equals(ek))))
|
||
|
return e;
|
||
|
e = e.next;
|
||
|
}
|
||
|
else if (U.compareAndSetInt(this, LOCKSTATE, s,
|
||
|
s + READER)) {
|
||
|
TreeNode<K,V> r, p;
|
||
|
try {
|
||
|
p = ((r = root) == null ? null :
|
||
|
r.findTreeNode(h, k, null));
|
||
|
} finally {
|
||
|
Thread w;
|
||
|
if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
|
||
|
(READER|WAITER) && (w = waiter) != null)
|
||
|
LockSupport.unpark(w);
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds or adds a node.
|
||
|
* @return null if added
|
||
|
*/
|
||
|
final TreeNode<K,V> putTreeVal(int h, K k, V v) {
|
||
|
Class<?> kc = null;
|
||
|
boolean searched = false;
|
||
|
for (TreeNode<K,V> p = root;;) {
|
||
|
int dir, ph; K pk;
|
||
|
if (p == null) {
|
||
|
first = root = new TreeNode<K,V>(h, k, v, null, null);
|
||
|
break;
|
||
|
}
|
||
|
else if ((ph = p.hash) > h)
|
||
|
dir = -1;
|
||
|
else if (ph < h)
|
||
|
dir = 1;
|
||
|
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
|
||
|
return p;
|
||
|
else if ((kc == null &&
|
||
|
(kc = comparableClassFor(k)) == null) ||
|
||
|
(dir = compareComparables(kc, k, pk)) == 0) {
|
||
|
if (!searched) {
|
||
|
TreeNode<K,V> q, ch;
|
||
|
searched = true;
|
||
|
if (((ch = p.left) != null &&
|
||
|
(q = ch.findTreeNode(h, k, kc)) != null) ||
|
||
|
((ch = p.right) != null &&
|
||
|
(q = ch.findTreeNode(h, k, kc)) != null))
|
||
|
return q;
|
||
|
}
|
||
|
dir = tieBreakOrder(k, pk);
|
||
|
}
|
||
|
|
||
|
TreeNode<K,V> xp = p;
|
||
|
if ((p = (dir <= 0) ? p.left : p.right) == null) {
|
||
|
TreeNode<K,V> x, f = first;
|
||
|
first = x = new TreeNode<K,V>(h, k, v, f, xp);
|
||
|
if (f != null)
|
||
|
f.prev = x;
|
||
|
if (dir <= 0)
|
||
|
xp.left = x;
|
||
|
else
|
||
|
xp.right = x;
|
||
|
if (!xp.red)
|
||
|
x.red = true;
|
||
|
else {
|
||
|
lockRoot();
|
||
|
try {
|
||
|
root = balanceInsertion(root, x);
|
||
|
} finally {
|
||
|
unlockRoot();
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
assert checkInvariants(root);
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the given node, that must be present before this
|
||
|
* call. This is messier than typical red-black deletion code
|
||
|
* because we cannot swap the contents of an interior node
|
||
|
* with a leaf successor that is pinned by "next" pointers
|
||
|
* that are accessible independently of lock. So instead we
|
||
|
* swap the tree linkages.
|
||
|
*
|
||
|
* @return true if now too small, so should be untreeified
|
||
|
*/
|
||
|
final boolean removeTreeNode(TreeNode<K,V> p) {
|
||
|
TreeNode<K,V> next = (TreeNode<K,V>)p.next;
|
||
|
TreeNode<K,V> pred = p.prev; // unlink traversal pointers
|
||
|
TreeNode<K,V> r, rl;
|
||
|
if (pred == null)
|
||
|
first = next;
|
||
|
else
|
||
|
pred.next = next;
|
||
|
if (next != null)
|
||
|
next.prev = pred;
|
||
|
if (first == null) {
|
||
|
root = null;
|
||
|
return true;
|
||
|
}
|
||
|
if ((r = root) == null || r.right == null || // too small
|
||
|
(rl = r.left) == null || rl.left == null)
|
||
|
return true;
|
||
|
lockRoot();
|
||
|
try {
|
||
|
TreeNode<K,V> replacement;
|
||
|
TreeNode<K,V> pl = p.left;
|
||
|
TreeNode<K,V> pr = p.right;
|
||
|
if (pl != null && pr != null) {
|
||
|
TreeNode<K,V> s = pr, sl;
|
||
|
while ((sl = s.left) != null) // find successor
|
||
|
s = sl;
|
||
|
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
|
||
|
TreeNode<K,V> sr = s.right;
|
||
|
TreeNode<K,V> pp = p.parent;
|
||
|
if (s == pr) { // p was s's direct parent
|
||
|
p.parent = s;
|
||
|
s.right = p;
|
||
|
}
|
||
|
else {
|
||
|
TreeNode<K,V> sp = s.parent;
|
||
|
if ((p.parent = sp) != null) {
|
||
|
if (s == sp.left)
|
||
|
sp.left = p;
|
||
|
else
|
||
|
sp.right = p;
|
||
|
}
|
||
|
if ((s.right = pr) != null)
|
||
|
pr.parent = s;
|
||
|
}
|
||
|
p.left = null;
|
||
|
if ((p.right = sr) != null)
|
||
|
sr.parent = p;
|
||
|
if ((s.left = pl) != null)
|
||
|
pl.parent = s;
|
||
|
if ((s.parent = pp) == null)
|
||
|
r = s;
|
||
|
else if (p == pp.left)
|
||
|
pp.left = s;
|
||
|
else
|
||
|
pp.right = s;
|
||
|
if (sr != null)
|
||
|
replacement = sr;
|
||
|
else
|
||
|
replacement = p;
|
||
|
}
|
||
|
else if (pl != null)
|
||
|
replacement = pl;
|
||
|
else if (pr != null)
|
||
|
replacement = pr;
|
||
|
else
|
||
|
replacement = p;
|
||
|
if (replacement != p) {
|
||
|
TreeNode<K,V> pp = replacement.parent = p.parent;
|
||
|
if (pp == null)
|
||
|
r = replacement;
|
||
|
else if (p == pp.left)
|
||
|
pp.left = replacement;
|
||
|
else
|
||
|
pp.right = replacement;
|
||
|
p.left = p.right = p.parent = null;
|
||
|
}
|
||
|
|
||
|
root = (p.red) ? r : balanceDeletion(r, replacement);
|
||
|
|
||
|
if (p == replacement) { // detach pointers
|
||
|
TreeNode<K,V> pp;
|
||
|
if ((pp = p.parent) != null) {
|
||
|
if (p == pp.left)
|
||
|
pp.left = null;
|
||
|
else if (p == pp.right)
|
||
|
pp.right = null;
|
||
|
p.parent = null;
|
||
|
}
|
||
|
}
|
||
|
} finally {
|
||
|
unlockRoot();
|
||
|
}
|
||
|
assert checkInvariants(root);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* ------------------------------------------------------------ */
|
||
|
// Red-black tree methods, all adapted from CLR
|
||
|
|
||
|
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
|
||
|
TreeNode<K,V> p) {
|
||
|
TreeNode<K,V> r, pp, rl;
|
||
|
if (p != null && (r = p.right) != null) {
|
||
|
if ((rl = p.right = r.left) != null)
|
||
|
rl.parent = p;
|
||
|
if ((pp = r.parent = p.parent) == null)
|
||
|
(root = r).red = false;
|
||
|
else if (pp.left == p)
|
||
|
pp.left = r;
|
||
|
else
|
||
|
pp.right = r;
|
||
|
r.left = p;
|
||
|
p.parent = r;
|
||
|
}
|
||
|
return root;
|
||
|
}
|
||
|
|
||
|
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
|
||
|
TreeNode<K,V> p) {
|
||
|
TreeNode<K,V> l, pp, lr;
|
||
|
if (p != null && (l = p.left) != null) {
|
||
|
if ((lr = p.left = l.right) != null)
|
||
|
lr.parent = p;
|
||
|
if ((pp = l.parent = p.parent) == null)
|
||
|
(root = l).red = false;
|
||
|
else if (pp.right == p)
|
||
|
pp.right = l;
|
||
|
else
|
||
|
pp.left = l;
|
||
|
l.right = p;
|
||
|
p.parent = l;
|
||
|
}
|
||
|
return root;
|
||
|
}
|
||
|
|
||
|
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
|
||
|
TreeNode<K,V> x) {
|
||
|
x.red = true;
|
||
|
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
|
||
|
if ((xp = x.parent) == null) {
|
||
|
x.red = false;
|
||
|
return x;
|
||
|
}
|
||
|
else if (!xp.red || (xpp = xp.parent) == null)
|
||
|
return root;
|
||
|
if (xp == (xppl = xpp.left)) {
|
||
|
if ((xppr = xpp.right) != null && xppr.red) {
|
||
|
xppr.red = false;
|
||
|
xp.red = false;
|
||
|
xpp.red = true;
|
||
|
x = xpp;
|
||
|
}
|
||
|
else {
|
||
|
if (x == xp.right) {
|
||
|
root = rotateLeft(root, x = xp);
|
||
|
xpp = (xp = x.parent) == null ? null : xp.parent;
|
||
|
}
|
||
|
if (xp != null) {
|
||
|
xp.red = false;
|
||
|
if (xpp != null) {
|
||
|
xpp.red = true;
|
||
|
root = rotateRight(root, xpp);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (xppl != null && xppl.red) {
|
||
|
xppl.red = false;
|
||
|
xp.red = false;
|
||
|
xpp.red = true;
|
||
|
x = xpp;
|
||
|
}
|
||
|
else {
|
||
|
if (x == xp.left) {
|
||
|
root = rotateRight(root, x = xp);
|
||
|
xpp = (xp = x.parent) == null ? null : xp.parent;
|
||
|
}
|
||
|
if (xp != null) {
|
||
|
xp.red = false;
|
||
|
if (xpp != null) {
|
||
|
xpp.red = true;
|
||
|
root = rotateLeft(root, xpp);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
|
||
|
TreeNode<K,V> x) {
|
||
|
for (TreeNode<K,V> xp, xpl, xpr;;) {
|
||
|
if (x == null || x == root)
|
||
|
return root;
|
||
|
else if ((xp = x.parent) == null) {
|
||
|
x.red = false;
|
||
|
return x;
|
||
|
}
|
||
|
else if (x.red) {
|
||
|
x.red = false;
|
||
|
return root;
|
||
|
}
|
||
|
else if ((xpl = xp.left) == x) {
|
||
|
if ((xpr = xp.right) != null && xpr.red) {
|
||
|
xpr.red = false;
|
||
|
xp.red = true;
|
||
|
root = rotateLeft(root, xp);
|
||
|
xpr = (xp = x.parent) == null ? null : xp.right;
|
||
|
}
|
||
|
if (xpr == null)
|
||
|
x = xp;
|
||
|
else {
|
||
|
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
|
||
|
if ((sr == null || !sr.red) &&
|
||
|
(sl == null || !sl.red)) {
|
||
|
xpr.red = true;
|
||
|
x = xp;
|
||
|
}
|
||
|
else {
|
||
|
if (sr == null || !sr.red) {
|
||
|
if (sl != null)
|
||
|
sl.red = false;
|
||
|
xpr.red = true;
|
||
|
root = rotateRight(root, xpr);
|
||
|
xpr = (xp = x.parent) == null ?
|
||
|
null : xp.right;
|
||
|
}
|
||
|
if (xpr != null) {
|
||
|
xpr.red = (xp == null) ? false : xp.red;
|
||
|
if ((sr = xpr.right) != null)
|
||
|
sr.red = false;
|
||
|
}
|
||
|
if (xp != null) {
|
||
|
xp.red = false;
|
||
|
root = rotateLeft(root, xp);
|
||
|
}
|
||
|
x = root;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else { // symmetric
|
||
|
if (xpl != null && xpl.red) {
|
||
|
xpl.red = false;
|
||
|
xp.red = true;
|
||
|
root = rotateRight(root, xp);
|
||
|
xpl = (xp = x.parent) == null ? null : xp.left;
|
||
|
}
|
||
|
if (xpl == null)
|
||
|
x = xp;
|
||
|
else {
|
||
|
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
|
||
|
if ((sl == null || !sl.red) &&
|
||
|
(sr == null || !sr.red)) {
|
||
|
xpl.red = true;
|
||
|
x = xp;
|
||
|
}
|
||
|
else {
|
||
|
if (sl == null || !sl.red) {
|
||
|
if (sr != null)
|
||
|
sr.red = false;
|
||
|
xpl.red = true;
|
||
|
root = rotateLeft(root, xpl);
|
||
|
xpl = (xp = x.parent) == null ?
|
||
|
null : xp.left;
|
||
|
}
|
||
|
if (xpl != null) {
|
||
|
xpl.red = (xp == null) ? false : xp.red;
|
||
|
if ((sl = xpl.left) != null)
|
||
|
sl.red = false;
|
||
|
}
|
||
|
if (xp != null) {
|
||
|
xp.red = false;
|
||
|
root = rotateRight(root, xp);
|
||
|
}
|
||
|
x = root;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks invariants recursively for the tree of Nodes rooted at t.
|
||
|
*/
|
||
|
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
|
||
|
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
|
||
|
tb = t.prev, tn = (TreeNode<K,V>)t.next;
|
||
|
if (tb != null && tb.next != t)
|
||
|
return false;
|
||
|
if (tn != null && tn.prev != t)
|
||
|
return false;
|
||
|
if (tp != null && t != tp.left && t != tp.right)
|
||
|
return false;
|
||
|
if (tl != null && (tl.parent != t || tl.hash > t.hash))
|
||
|
return false;
|
||
|
if (tr != null && (tr.parent != t || tr.hash < t.hash))
|
||
|
return false;
|
||
|
if (t.red && tl != null && tl.red && tr != null && tr.red)
|
||
|
return false;
|
||
|
if (tl != null && !checkInvariants(tl))
|
||
|
return false;
|
||
|
if (tr != null && !checkInvariants(tr))
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private static final long LOCKSTATE
|
||
|
= U.objectFieldOffset(TreeBin.class, "lockState");
|
||
|
}
|
||
|
|
||
|
/* ----------------Table Traversal -------------- */
|
||
|
|
||
|
/**
|
||
|
* Records the table, its length, and current traversal index for a
|
||
|
* traverser that must process a region of a forwarded table before
|
||
|
* proceeding with current table.
|
||
|
*/
|
||
|
static final class TableStack<K,V> {
|
||
|
int length;
|
||
|
int index;
|
||
|
Node<K,V>[] tab;
|
||
|
TableStack<K,V> next;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Encapsulates traversal for methods such as containsValue; also
|
||
|
* serves as a base class for other iterators and spliterators.
|
||
|
*
|
||
|
* Method advance visits once each still-valid node that was
|
||
|
* reachable upon iterator construction. It might miss some that
|
||
|
* were added to a bin after the bin was visited, which is OK wrt
|
||
|
* consistency guarantees. Maintaining this property in the face
|
||
|
* of possible ongoing resizes requires a fair amount of
|
||
|
* bookkeeping state that is difficult to optimize away amidst
|
||
|
* volatile accesses. Even so, traversal maintains reasonable
|
||
|
* throughput.
|
||
|
*
|
||
|
* Normally, iteration proceeds bin-by-bin traversing lists.
|
||
|
* However, if the table has been resized, then all future steps
|
||
|
* must traverse both the bin at the current index as well as at
|
||
|
* (index + baseSize); and so on for further resizings. To
|
||
|
* paranoically cope with potential sharing by users of iterators
|
||
|
* across threads, iteration terminates if a bounds checks fails
|
||
|
* for a table read.
|
||
|
*/
|
||
|
static class Traverser<K,V> {
|
||
|
Node<K,V>[] tab; // current table; updated if resized
|
||
|
Node<K,V> next; // the next entry to use
|
||
|
TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
|
||
|
int index; // index of bin to use next
|
||
|
int baseIndex; // current index of initial table
|
||
|
int baseLimit; // index bound for initial table
|
||
|
final int baseSize; // initial table size
|
||
|
|
||
|
Traverser(Node<K,V>[] tab, int size, int index, int limit) {
|
||
|
this.tab = tab;
|
||
|
this.baseSize = size;
|
||
|
this.baseIndex = this.index = index;
|
||
|
this.baseLimit = limit;
|
||
|
this.next = null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Advances if possible, returning next valid node, or null if none.
|
||
|
*/
|
||
|
final Node<K,V> advance() {
|
||
|
Node<K,V> e;
|
||
|
if ((e = next) != null)
|
||
|
e = e.next;
|
||
|
for (;;) {
|
||
|
Node<K,V>[] t; int i, n; // must use locals in checks
|
||
|
if (e != null)
|
||
|
return next = e;
|
||
|
if (baseIndex >= baseLimit || (t = tab) == null ||
|
||
|
(n = t.length) <= (i = index) || i < 0)
|
||
|
return next = null;
|
||
|
if ((e = tabAt(t, i)) != null && e.hash < 0) {
|
||
|
if (e instanceof ForwardingNode) {
|
||
|
tab = ((ForwardingNode<K,V>)e).nextTable;
|
||
|
e = null;
|
||
|
pushState(t, i, n);
|
||
|
continue;
|
||
|
}
|
||
|
else if (e instanceof TreeBin)
|
||
|
e = ((TreeBin<K,V>)e).first;
|
||
|
else
|
||
|
e = null;
|
||
|
}
|
||
|
if (stack != null)
|
||
|
recoverState(n);
|
||
|
else if ((index = i + baseSize) >= n)
|
||
|
index = ++baseIndex; // visit upper slots if present
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Saves traversal state upon encountering a forwarding node.
|
||
|
*/
|
||
|
private void pushState(Node<K,V>[] t, int i, int n) {
|
||
|
TableStack<K,V> s = spare; // reuse if possible
|
||
|
if (s != null)
|
||
|
spare = s.next;
|
||
|
else
|
||
|
s = new TableStack<K,V>();
|
||
|
s.tab = t;
|
||
|
s.length = n;
|
||
|
s.index = i;
|
||
|
s.next = stack;
|
||
|
stack = s;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Possibly pops traversal state.
|
||
|
*
|
||
|
* @param n length of current table
|
||
|
*/
|
||
|
private void recoverState(int n) {
|
||
|
TableStack<K,V> s; int len;
|
||
|
while ((s = stack) != null && (index += (len = s.length)) >= n) {
|
||
|
n = len;
|
||
|
index = s.index;
|
||
|
tab = s.tab;
|
||
|
s.tab = null;
|
||
|
TableStack<K,V> next = s.next;
|
||
|
s.next = spare; // save for reuse
|
||
|
stack = next;
|
||
|
spare = s;
|
||
|
}
|
||
|
if (s == null && (index += baseSize) >= n)
|
||
|
index = ++baseIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Base of key, value, and entry Iterators. Adds fields to
|
||
|
* Traverser to support iterator.remove.
|
||
|
*/
|
||
|
static class BaseIterator<K,V> extends Traverser<K,V> {
|
||
|
final ConcurrentHashMap<K,V> map;
|
||
|
Node<K,V> lastReturned;
|
||
|
BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
ConcurrentHashMap<K,V> map) {
|
||
|
super(tab, size, index, limit);
|
||
|
this.map = map;
|
||
|
advance();
|
||
|
}
|
||
|
|
||
|
public final boolean hasNext() { return next != null; }
|
||
|
public final boolean hasMoreElements() { return next != null; }
|
||
|
|
||
|
public final void remove() {
|
||
|
Node<K,V> p;
|
||
|
if ((p = lastReturned) == null)
|
||
|
throw new IllegalStateException();
|
||
|
lastReturned = null;
|
||
|
map.replaceNode(p.key, null, null);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static final class KeyIterator<K,V> extends BaseIterator<K,V>
|
||
|
implements Iterator<K>, Enumeration<K> {
|
||
|
KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
ConcurrentHashMap<K,V> map) {
|
||
|
super(tab, size, index, limit, map);
|
||
|
}
|
||
|
|
||
|
public final K next() {
|
||
|
Node<K,V> p;
|
||
|
if ((p = next) == null)
|
||
|
throw new NoSuchElementException();
|
||
|
K k = p.key;
|
||
|
lastReturned = p;
|
||
|
advance();
|
||
|
return k;
|
||
|
}
|
||
|
|
||
|
public final K nextElement() { return next(); }
|
||
|
}
|
||
|
|
||
|
static final class ValueIterator<K,V> extends BaseIterator<K,V>
|
||
|
implements Iterator<V>, Enumeration<V> {
|
||
|
ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
ConcurrentHashMap<K,V> map) {
|
||
|
super(tab, size, index, limit, map);
|
||
|
}
|
||
|
|
||
|
public final V next() {
|
||
|
Node<K,V> p;
|
||
|
if ((p = next) == null)
|
||
|
throw new NoSuchElementException();
|
||
|
V v = p.val;
|
||
|
lastReturned = p;
|
||
|
advance();
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
public final V nextElement() { return next(); }
|
||
|
}
|
||
|
|
||
|
static final class EntryIterator<K,V> extends BaseIterator<K,V>
|
||
|
implements Iterator<Map.Entry<K,V>> {
|
||
|
EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
ConcurrentHashMap<K,V> map) {
|
||
|
super(tab, size, index, limit, map);
|
||
|
}
|
||
|
|
||
|
public final Map.Entry<K,V> next() {
|
||
|
Node<K,V> p;
|
||
|
if ((p = next) == null)
|
||
|
throw new NoSuchElementException();
|
||
|
K k = p.key;
|
||
|
V v = p.val;
|
||
|
lastReturned = p;
|
||
|
advance();
|
||
|
return new MapEntry<K,V>(k, v, map);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Exported Entry for EntryIterator.
|
||
|
*/
|
||
|
static final class MapEntry<K,V> implements Map.Entry<K,V> {
|
||
|
final K key; // non-null
|
||
|
V val; // non-null
|
||
|
final ConcurrentHashMap<K,V> map;
|
||
|
MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
|
||
|
this.key = key;
|
||
|
this.val = val;
|
||
|
this.map = map;
|
||
|
}
|
||
|
public K getKey() { return key; }
|
||
|
public V getValue() { return val; }
|
||
|
public int hashCode() { return key.hashCode() ^ val.hashCode(); }
|
||
|
public String toString() {
|
||
|
return Helpers.mapEntryToString(key, val);
|
||
|
}
|
||
|
|
||
|
public boolean equals(Object o) {
|
||
|
Object k, v; Map.Entry<?,?> e;
|
||
|
return ((o instanceof Map.Entry) &&
|
||
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
|
||
|
(v = e.getValue()) != null &&
|
||
|
(k == key || k.equals(key)) &&
|
||
|
(v == val || v.equals(val)));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets our entry's value and writes through to the map. The
|
||
|
* value to return is somewhat arbitrary here. Since we do not
|
||
|
* necessarily track asynchronous changes, the most recent
|
||
|
* "previous" value could be different from what we return (or
|
||
|
* could even have been removed, in which case the put will
|
||
|
* re-establish). We do not and cannot guarantee more.
|
||
|
*/
|
||
|
public V setValue(V value) {
|
||
|
if (value == null) throw new NullPointerException();
|
||
|
V v = val;
|
||
|
val = value;
|
||
|
map.put(key, value);
|
||
|
return v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static final class KeySpliterator<K,V> extends Traverser<K,V>
|
||
|
implements Spliterator<K> {
|
||
|
long est; // size estimate
|
||
|
KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
long est) {
|
||
|
super(tab, size, index, limit);
|
||
|
this.est = est;
|
||
|
}
|
||
|
|
||
|
public KeySpliterator<K,V> trySplit() {
|
||
|
int i, f, h;
|
||
|
return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
|
||
|
new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
|
||
|
f, est >>>= 1);
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super K> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
for (Node<K,V> p; (p = advance()) != null;)
|
||
|
action.accept(p.key);
|
||
|
}
|
||
|
|
||
|
public boolean tryAdvance(Consumer<? super K> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null)
|
||
|
return false;
|
||
|
action.accept(p.key);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public long estimateSize() { return est; }
|
||
|
|
||
|
public int characteristics() {
|
||
|
return Spliterator.DISTINCT | Spliterator.CONCURRENT |
|
||
|
Spliterator.NONNULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static final class ValueSpliterator<K,V> extends Traverser<K,V>
|
||
|
implements Spliterator<V> {
|
||
|
long est; // size estimate
|
||
|
ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
long est) {
|
||
|
super(tab, size, index, limit);
|
||
|
this.est = est;
|
||
|
}
|
||
|
|
||
|
public ValueSpliterator<K,V> trySplit() {
|
||
|
int i, f, h;
|
||
|
return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
|
||
|
new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
|
||
|
f, est >>>= 1);
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super V> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
for (Node<K,V> p; (p = advance()) != null;)
|
||
|
action.accept(p.val);
|
||
|
}
|
||
|
|
||
|
public boolean tryAdvance(Consumer<? super V> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null)
|
||
|
return false;
|
||
|
action.accept(p.val);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public long estimateSize() { return est; }
|
||
|
|
||
|
public int characteristics() {
|
||
|
return Spliterator.CONCURRENT | Spliterator.NONNULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static final class EntrySpliterator<K,V> extends Traverser<K,V>
|
||
|
implements Spliterator<Map.Entry<K,V>> {
|
||
|
final ConcurrentHashMap<K,V> map; // To export MapEntry
|
||
|
long est; // size estimate
|
||
|
EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
|
||
|
long est, ConcurrentHashMap<K,V> map) {
|
||
|
super(tab, size, index, limit);
|
||
|
this.map = map;
|
||
|
this.est = est;
|
||
|
}
|
||
|
|
||
|
public EntrySpliterator<K,V> trySplit() {
|
||
|
int i, f, h;
|
||
|
return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
|
||
|
new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
|
||
|
f, est >>>= 1, map);
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
action.accept(new MapEntry<K,V>(p.key, p.val, map));
|
||
|
}
|
||
|
|
||
|
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null)
|
||
|
return false;
|
||
|
action.accept(new MapEntry<K,V>(p.key, p.val, map));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public long estimateSize() { return est; }
|
||
|
|
||
|
public int characteristics() {
|
||
|
return Spliterator.DISTINCT | Spliterator.CONCURRENT |
|
||
|
Spliterator.NONNULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Parallel bulk operations
|
||
|
|
||
|
/**
|
||
|
* Computes initial batch value for bulk tasks. The returned value
|
||
|
* is approximately exp2 of the number of times (minus one) to
|
||
|
* split task by two before executing leaf action. This value is
|
||
|
* faster to compute and more convenient to use as a guide to
|
||
|
* splitting than is the depth, since it is used while dividing by
|
||
|
* two anyway.
|
||
|
*/
|
||
|
final int batchFor(long b) {
|
||
|
long n;
|
||
|
if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
|
||
|
return 0;
|
||
|
int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
|
||
|
return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each (key, value).
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param action the action
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public void forEach(long parallelismThreshold,
|
||
|
BiConsumer<? super K,? super V> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
new ForEachMappingTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each non-null transformation
|
||
|
* of each (key, value).
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case the action is not applied)
|
||
|
* @param action the action
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> void forEach(long parallelismThreshold,
|
||
|
BiFunction<? super K, ? super V, ? extends U> transformer,
|
||
|
Consumer<? super U> action) {
|
||
|
if (transformer == null || action == null)
|
||
|
throw new NullPointerException();
|
||
|
new ForEachTransformedMappingTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
transformer, action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a non-null result from applying the given search
|
||
|
* function on each (key, value), or null if none. Upon
|
||
|
* success, further element processing is suppressed and the
|
||
|
* results of any other parallel invocations of the search
|
||
|
* function are ignored.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param searchFunction a function returning a non-null
|
||
|
* result on success, else null
|
||
|
* @param <U> the return type of the search function
|
||
|
* @return a non-null result from applying the given search
|
||
|
* function on each (key, value), or null if none
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U search(long parallelismThreshold,
|
||
|
BiFunction<? super K, ? super V, ? extends U> searchFunction) {
|
||
|
if (searchFunction == null) throw new NullPointerException();
|
||
|
return new SearchMappingsTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
searchFunction, new AtomicReference<U>()).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs using the given reducer to
|
||
|
* combine values, or null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case it is not combined)
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U reduce(long parallelismThreshold,
|
||
|
BiFunction<? super K, ? super V, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceMappingsTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs using the given reducer to
|
||
|
* combine values, and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public double reduceToDouble(long parallelismThreshold,
|
||
|
ToDoubleBiFunction<? super K, ? super V> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceMappingsToDoubleTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs using the given reducer to
|
||
|
* combine values, and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public long reduceToLong(long parallelismThreshold,
|
||
|
ToLongBiFunction<? super K, ? super V> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceMappingsToLongTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs using the given reducer to
|
||
|
* combine values, and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all (key, value) pairs
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public int reduceToInt(long parallelismThreshold,
|
||
|
ToIntBiFunction<? super K, ? super V> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceMappingsToIntTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each key.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param action the action
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public void forEachKey(long parallelismThreshold,
|
||
|
Consumer<? super K> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
new ForEachKeyTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each non-null transformation
|
||
|
* of each key.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case the action is not applied)
|
||
|
* @param action the action
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> void forEachKey(long parallelismThreshold,
|
||
|
Function<? super K, ? extends U> transformer,
|
||
|
Consumer<? super U> action) {
|
||
|
if (transformer == null || action == null)
|
||
|
throw new NullPointerException();
|
||
|
new ForEachTransformedKeyTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
transformer, action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a non-null result from applying the given search
|
||
|
* function on each key, or null if none. Upon success,
|
||
|
* further element processing is suppressed and the results of
|
||
|
* any other parallel invocations of the search function are
|
||
|
* ignored.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param searchFunction a function returning a non-null
|
||
|
* result on success, else null
|
||
|
* @param <U> the return type of the search function
|
||
|
* @return a non-null result from applying the given search
|
||
|
* function on each key, or null if none
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U searchKeys(long parallelismThreshold,
|
||
|
Function<? super K, ? extends U> searchFunction) {
|
||
|
if (searchFunction == null) throw new NullPointerException();
|
||
|
return new SearchKeysTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
searchFunction, new AtomicReference<U>()).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating all keys using the given
|
||
|
* reducer to combine values, or null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating all keys using the given
|
||
|
* reducer to combine values, or null if none
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public K reduceKeys(long parallelismThreshold,
|
||
|
BiFunction<? super K, ? super K, ? extends K> reducer) {
|
||
|
if (reducer == null) throw new NullPointerException();
|
||
|
return new ReduceKeysTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all keys using the given reducer to combine values, or
|
||
|
* null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case it is not combined)
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all keys
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U reduceKeys(long parallelismThreshold,
|
||
|
Function<? super K, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceKeysTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all keys using the given reducer to combine values, and
|
||
|
* the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all keys
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public double reduceKeysToDouble(long parallelismThreshold,
|
||
|
ToDoubleFunction<? super K> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceKeysToDoubleTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all keys using the given reducer to combine values, and
|
||
|
* the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all keys
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public long reduceKeysToLong(long parallelismThreshold,
|
||
|
ToLongFunction<? super K> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceKeysToLongTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all keys using the given reducer to combine values, and
|
||
|
* the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all keys
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public int reduceKeysToInt(long parallelismThreshold,
|
||
|
ToIntFunction<? super K> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceKeysToIntTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param action the action
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public void forEachValue(long parallelismThreshold,
|
||
|
Consumer<? super V> action) {
|
||
|
if (action == null)
|
||
|
throw new NullPointerException();
|
||
|
new ForEachValueTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each non-null transformation
|
||
|
* of each value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case the action is not applied)
|
||
|
* @param action the action
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> void forEachValue(long parallelismThreshold,
|
||
|
Function<? super V, ? extends U> transformer,
|
||
|
Consumer<? super U> action) {
|
||
|
if (transformer == null || action == null)
|
||
|
throw new NullPointerException();
|
||
|
new ForEachTransformedValueTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
transformer, action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a non-null result from applying the given search
|
||
|
* function on each value, or null if none. Upon success,
|
||
|
* further element processing is suppressed and the results of
|
||
|
* any other parallel invocations of the search function are
|
||
|
* ignored.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param searchFunction a function returning a non-null
|
||
|
* result on success, else null
|
||
|
* @param <U> the return type of the search function
|
||
|
* @return a non-null result from applying the given search
|
||
|
* function on each value, or null if none
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U searchValues(long parallelismThreshold,
|
||
|
Function<? super V, ? extends U> searchFunction) {
|
||
|
if (searchFunction == null) throw new NullPointerException();
|
||
|
return new SearchValuesTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
searchFunction, new AtomicReference<U>()).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating all values using the
|
||
|
* given reducer to combine values, or null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating all values
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public V reduceValues(long parallelismThreshold,
|
||
|
BiFunction<? super V, ? super V, ? extends V> reducer) {
|
||
|
if (reducer == null) throw new NullPointerException();
|
||
|
return new ReduceValuesTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all values using the given reducer to combine values, or
|
||
|
* null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case it is not combined)
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all values
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U reduceValues(long parallelismThreshold,
|
||
|
Function<? super V, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceValuesTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all values using the given reducer to combine values,
|
||
|
* and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all values
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public double reduceValuesToDouble(long parallelismThreshold,
|
||
|
ToDoubleFunction<? super V> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceValuesToDoubleTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all values using the given reducer to combine values,
|
||
|
* and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all values
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public long reduceValuesToLong(long parallelismThreshold,
|
||
|
ToLongFunction<? super V> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceValuesToLongTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all values using the given reducer to combine values,
|
||
|
* and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all values
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public int reduceValuesToInt(long parallelismThreshold,
|
||
|
ToIntFunction<? super V> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceValuesToIntTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each entry.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param action the action
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public void forEachEntry(long parallelismThreshold,
|
||
|
Consumer<? super Map.Entry<K,V>> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs the given action for each non-null transformation
|
||
|
* of each entry.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case the action is not applied)
|
||
|
* @param action the action
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> void forEachEntry(long parallelismThreshold,
|
||
|
Function<Map.Entry<K,V>, ? extends U> transformer,
|
||
|
Consumer<? super U> action) {
|
||
|
if (transformer == null || action == null)
|
||
|
throw new NullPointerException();
|
||
|
new ForEachTransformedEntryTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
transformer, action).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a non-null result from applying the given search
|
||
|
* function on each entry, or null if none. Upon success,
|
||
|
* further element processing is suppressed and the results of
|
||
|
* any other parallel invocations of the search function are
|
||
|
* ignored.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param searchFunction a function returning a non-null
|
||
|
* result on success, else null
|
||
|
* @param <U> the return type of the search function
|
||
|
* @return a non-null result from applying the given search
|
||
|
* function on each entry, or null if none
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U searchEntries(long parallelismThreshold,
|
||
|
Function<Map.Entry<K,V>, ? extends U> searchFunction) {
|
||
|
if (searchFunction == null) throw new NullPointerException();
|
||
|
return new SearchEntriesTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
searchFunction, new AtomicReference<U>()).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating all entries using the
|
||
|
* given reducer to combine values, or null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating all entries
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
|
||
|
BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
|
||
|
if (reducer == null) throw new NullPointerException();
|
||
|
return new ReduceEntriesTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all entries using the given reducer to combine values,
|
||
|
* or null if none.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element, or null if there is no transformation (in
|
||
|
* which case it is not combined)
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @param <U> the return type of the transformer
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all entries
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public <U> U reduceEntries(long parallelismThreshold,
|
||
|
Function<Map.Entry<K,V>, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceEntriesTask<K,V,U>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all entries using the given reducer to combine values,
|
||
|
* and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all entries
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public double reduceEntriesToDouble(long parallelismThreshold,
|
||
|
ToDoubleFunction<Map.Entry<K,V>> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceEntriesToDoubleTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all entries using the given reducer to combine values,
|
||
|
* and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all entries
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public long reduceEntriesToLong(long parallelismThreshold,
|
||
|
ToLongFunction<Map.Entry<K,V>> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceEntriesToLongTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the result of accumulating the given transformation
|
||
|
* of all entries using the given reducer to combine values,
|
||
|
* and the given basis as an identity value.
|
||
|
*
|
||
|
* @param parallelismThreshold the (estimated) number of elements
|
||
|
* needed for this operation to be executed in parallel
|
||
|
* @param transformer a function returning the transformation
|
||
|
* for an element
|
||
|
* @param basis the identity (initial default value) for the reduction
|
||
|
* @param reducer a commutative associative combining function
|
||
|
* @return the result of accumulating the given transformation
|
||
|
* of all entries
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public int reduceEntriesToInt(long parallelismThreshold,
|
||
|
ToIntFunction<Map.Entry<K,V>> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
if (transformer == null || reducer == null)
|
||
|
throw new NullPointerException();
|
||
|
return new MapReduceEntriesToIntTask<K,V>
|
||
|
(null, batchFor(parallelismThreshold), 0, 0, table,
|
||
|
null, transformer, basis, reducer).invoke();
|
||
|
}
|
||
|
|
||
|
|
||
|
/* ----------------Views -------------- */
|
||
|
|
||
|
/**
|
||
|
* Base class for views.
|
||
|
*/
|
||
|
abstract static class CollectionView<K,V,E>
|
||
|
implements Collection<E>, java.io.Serializable {
|
||
|
private static final long serialVersionUID = 7249069246763182397L;
|
||
|
final ConcurrentHashMap<K,V> map;
|
||
|
CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
|
||
|
|
||
|
/**
|
||
|
* Returns the map backing this view.
|
||
|
*
|
||
|
* @return the map backing this view
|
||
|
*/
|
||
|
public ConcurrentHashMap<K,V> getMap() { return map; }
|
||
|
|
||
|
/**
|
||
|
* Removes all of the elements from this view, by removing all
|
||
|
* the mappings from the map backing this view.
|
||
|
*/
|
||
|
public final void clear() { map.clear(); }
|
||
|
public final int size() { return map.size(); }
|
||
|
public final boolean isEmpty() { return map.isEmpty(); }
|
||
|
|
||
|
// implementations below rely on concrete classes supplying these
|
||
|
// abstract methods
|
||
|
/**
|
||
|
* Returns an iterator over the elements in this collection.
|
||
|
*
|
||
|
* <p>The returned iterator is
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* @return an iterator over the elements in this collection
|
||
|
*/
|
||
|
public abstract Iterator<E> iterator();
|
||
|
public abstract boolean contains(Object o);
|
||
|
public abstract boolean remove(Object o);
|
||
|
|
||
|
private static final String OOME_MSG = "Required array size too large";
|
||
|
|
||
|
public final Object[] toArray() {
|
||
|
long sz = map.mappingCount();
|
||
|
if (sz > MAX_ARRAY_SIZE)
|
||
|
throw new OutOfMemoryError(OOME_MSG);
|
||
|
int n = (int)sz;
|
||
|
Object[] r = new Object[n];
|
||
|
int i = 0;
|
||
|
for (E e : this) {
|
||
|
if (i == n) {
|
||
|
if (n >= MAX_ARRAY_SIZE)
|
||
|
throw new OutOfMemoryError(OOME_MSG);
|
||
|
if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
|
||
|
n = MAX_ARRAY_SIZE;
|
||
|
else
|
||
|
n += (n >>> 1) + 1;
|
||
|
r = Arrays.copyOf(r, n);
|
||
|
}
|
||
|
r[i++] = e;
|
||
|
}
|
||
|
return (i == n) ? r : Arrays.copyOf(r, i);
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public final <T> T[] toArray(T[] a) {
|
||
|
long sz = map.mappingCount();
|
||
|
if (sz > MAX_ARRAY_SIZE)
|
||
|
throw new OutOfMemoryError(OOME_MSG);
|
||
|
int m = (int)sz;
|
||
|
T[] r = (a.length >= m) ? a :
|
||
|
(T[])java.lang.reflect.Array
|
||
|
.newInstance(a.getClass().getComponentType(), m);
|
||
|
int n = r.length;
|
||
|
int i = 0;
|
||
|
for (E e : this) {
|
||
|
if (i == n) {
|
||
|
if (n >= MAX_ARRAY_SIZE)
|
||
|
throw new OutOfMemoryError(OOME_MSG);
|
||
|
if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
|
||
|
n = MAX_ARRAY_SIZE;
|
||
|
else
|
||
|
n += (n >>> 1) + 1;
|
||
|
r = Arrays.copyOf(r, n);
|
||
|
}
|
||
|
r[i++] = (T)e;
|
||
|
}
|
||
|
if (a == r && i < n) {
|
||
|
r[i] = null; // null-terminate
|
||
|
return r;
|
||
|
}
|
||
|
return (i == n) ? r : Arrays.copyOf(r, i);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a string representation of this collection.
|
||
|
* The string representation consists of the string representations
|
||
|
* of the collection's elements in the order they are returned by
|
||
|
* its iterator, enclosed in square brackets ({@code "[]"}).
|
||
|
* Adjacent elements are separated by the characters {@code ", "}
|
||
|
* (comma and space). Elements are converted to strings as by
|
||
|
* {@link String#valueOf(Object)}.
|
||
|
*
|
||
|
* @return a string representation of this collection
|
||
|
*/
|
||
|
public final String toString() {
|
||
|
StringBuilder sb = new StringBuilder();
|
||
|
sb.append('[');
|
||
|
Iterator<E> it = iterator();
|
||
|
if (it.hasNext()) {
|
||
|
for (;;) {
|
||
|
Object e = it.next();
|
||
|
sb.append(e == this ? "(this Collection)" : e);
|
||
|
if (!it.hasNext())
|
||
|
break;
|
||
|
sb.append(',').append(' ');
|
||
|
}
|
||
|
}
|
||
|
return sb.append(']').toString();
|
||
|
}
|
||
|
|
||
|
public final boolean containsAll(Collection<?> c) {
|
||
|
if (c != this) {
|
||
|
for (Object e : c) {
|
||
|
if (e == null || !contains(e))
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public boolean removeAll(Collection<?> c) {
|
||
|
if (c == null) throw new NullPointerException();
|
||
|
boolean modified = false;
|
||
|
// Use (c instanceof Set) as a hint that lookup in c is as
|
||
|
// efficient as this view
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = map.table) == null) {
|
||
|
return false;
|
||
|
} else if (c instanceof Set<?> && c.size() > t.length) {
|
||
|
for (Iterator<?> it = iterator(); it.hasNext(); ) {
|
||
|
if (c.contains(it.next())) {
|
||
|
it.remove();
|
||
|
modified = true;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
for (Object e : c)
|
||
|
modified |= remove(e);
|
||
|
}
|
||
|
return modified;
|
||
|
}
|
||
|
|
||
|
public final boolean retainAll(Collection<?> c) {
|
||
|
if (c == null) throw new NullPointerException();
|
||
|
boolean modified = false;
|
||
|
for (Iterator<E> it = iterator(); it.hasNext();) {
|
||
|
if (!c.contains(it.next())) {
|
||
|
it.remove();
|
||
|
modified = true;
|
||
|
}
|
||
|
}
|
||
|
return modified;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A view of a ConcurrentHashMap as a {@link Set} of keys, in
|
||
|
* which additions may optionally be enabled by mapping to a
|
||
|
* common value. This class cannot be directly instantiated.
|
||
|
* See {@link #keySet(Object) keySet(V)},
|
||
|
* {@link #newKeySet() newKeySet()},
|
||
|
* {@link #newKeySet(int) newKeySet(int)}.
|
||
|
*
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public static class KeySetView<K,V> extends CollectionView<K,V,K>
|
||
|
implements Set<K>, java.io.Serializable {
|
||
|
private static final long serialVersionUID = 7249069246763182397L;
|
||
|
@SuppressWarnings("serial") // Conditionally serializable
|
||
|
private final V value;
|
||
|
KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
|
||
|
super(map);
|
||
|
this.value = value;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the default mapped value for additions,
|
||
|
* or {@code null} if additions are not supported.
|
||
|
*
|
||
|
* @return the default mapped value for additions, or {@code null}
|
||
|
* if not supported
|
||
|
*/
|
||
|
public V getMappedValue() { return value; }
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public boolean contains(Object o) { return map.containsKey(o); }
|
||
|
|
||
|
/**
|
||
|
* Removes the key from this map view, by removing the key (and its
|
||
|
* corresponding value) from the backing map. This method does
|
||
|
* nothing if the key is not in the map.
|
||
|
*
|
||
|
* @param o the key to be removed from the backing map
|
||
|
* @return {@code true} if the backing map contained the specified key
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
*/
|
||
|
public boolean remove(Object o) { return map.remove(o) != null; }
|
||
|
|
||
|
/**
|
||
|
* @return an iterator over the keys of the backing map
|
||
|
*/
|
||
|
public Iterator<K> iterator() {
|
||
|
Node<K,V>[] t;
|
||
|
ConcurrentHashMap<K,V> m = map;
|
||
|
int f = (t = m.table) == null ? 0 : t.length;
|
||
|
return new KeyIterator<K,V>(t, f, 0, f, m);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds the specified key to this set view by mapping the key to
|
||
|
* the default mapped value in the backing map, if defined.
|
||
|
*
|
||
|
* @param e key to be added
|
||
|
* @return {@code true} if this set changed as a result of the call
|
||
|
* @throws NullPointerException if the specified key is null
|
||
|
* @throws UnsupportedOperationException if no default mapped value
|
||
|
* for additions was provided
|
||
|
*/
|
||
|
public boolean add(K e) {
|
||
|
V v;
|
||
|
if ((v = value) == null)
|
||
|
throw new UnsupportedOperationException();
|
||
|
return map.putVal(e, v, true) == null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds all of the elements in the specified collection to this set,
|
||
|
* as if by calling {@link #add} on each one.
|
||
|
*
|
||
|
* @param c the elements to be inserted into this set
|
||
|
* @return {@code true} if this set changed as a result of the call
|
||
|
* @throws NullPointerException if the collection or any of its
|
||
|
* elements are {@code null}
|
||
|
* @throws UnsupportedOperationException if no default mapped value
|
||
|
* for additions was provided
|
||
|
*/
|
||
|
public boolean addAll(Collection<? extends K> c) {
|
||
|
boolean added = false;
|
||
|
V v;
|
||
|
if ((v = value) == null)
|
||
|
throw new UnsupportedOperationException();
|
||
|
for (K e : c) {
|
||
|
if (map.putVal(e, v, true) == null)
|
||
|
added = true;
|
||
|
}
|
||
|
return added;
|
||
|
}
|
||
|
|
||
|
public int hashCode() {
|
||
|
int h = 0;
|
||
|
for (K e : this)
|
||
|
h += e.hashCode();
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
public boolean equals(Object o) {
|
||
|
Set<?> c;
|
||
|
return ((o instanceof Set) &&
|
||
|
((c = (Set<?>)o) == this ||
|
||
|
(containsAll(c) && c.containsAll(this))));
|
||
|
}
|
||
|
|
||
|
public Spliterator<K> spliterator() {
|
||
|
Node<K,V>[] t;
|
||
|
ConcurrentHashMap<K,V> m = map;
|
||
|
long n = m.sumCount();
|
||
|
int f = (t = m.table) == null ? 0 : t.length;
|
||
|
return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
|
||
|
}
|
||
|
|
||
|
public void forEach(Consumer<? super K> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = map.table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; )
|
||
|
action.accept(p.key);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A view of a ConcurrentHashMap as a {@link Collection} of
|
||
|
* values, in which additions are disabled. This class cannot be
|
||
|
* directly instantiated. See {@link #values()}.
|
||
|
*/
|
||
|
static final class ValuesView<K,V> extends CollectionView<K,V,V>
|
||
|
implements Collection<V>, java.io.Serializable {
|
||
|
private static final long serialVersionUID = 2249069246763182397L;
|
||
|
ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
|
||
|
public final boolean contains(Object o) {
|
||
|
return map.containsValue(o);
|
||
|
}
|
||
|
|
||
|
public final boolean remove(Object o) {
|
||
|
if (o != null) {
|
||
|
for (Iterator<V> it = iterator(); it.hasNext();) {
|
||
|
if (o.equals(it.next())) {
|
||
|
it.remove();
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
public final Iterator<V> iterator() {
|
||
|
ConcurrentHashMap<K,V> m = map;
|
||
|
Node<K,V>[] t;
|
||
|
int f = (t = m.table) == null ? 0 : t.length;
|
||
|
return new ValueIterator<K,V>(t, f, 0, f, m);
|
||
|
}
|
||
|
|
||
|
public final boolean add(V e) {
|
||
|
throw new UnsupportedOperationException();
|
||
|
}
|
||
|
public final boolean addAll(Collection<? extends V> c) {
|
||
|
throw new UnsupportedOperationException();
|
||
|
}
|
||
|
|
||
|
@Override public boolean removeAll(Collection<?> c) {
|
||
|
if (c == null) throw new NullPointerException();
|
||
|
boolean modified = false;
|
||
|
for (Iterator<V> it = iterator(); it.hasNext();) {
|
||
|
if (c.contains(it.next())) {
|
||
|
it.remove();
|
||
|
modified = true;
|
||
|
}
|
||
|
}
|
||
|
return modified;
|
||
|
}
|
||
|
|
||
|
public boolean removeIf(Predicate<? super V> filter) {
|
||
|
return map.removeValueIf(filter);
|
||
|
}
|
||
|
|
||
|
public Spliterator<V> spliterator() {
|
||
|
Node<K,V>[] t;
|
||
|
ConcurrentHashMap<K,V> m = map;
|
||
|
long n = m.sumCount();
|
||
|
int f = (t = m.table) == null ? 0 : t.length;
|
||
|
return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
|
||
|
}
|
||
|
|
||
|
public void forEach(Consumer<? super V> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = map.table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; )
|
||
|
action.accept(p.val);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A view of a ConcurrentHashMap as a {@link Set} of (key, value)
|
||
|
* entries. This class cannot be directly instantiated. See
|
||
|
* {@link #entrySet()}.
|
||
|
*/
|
||
|
static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
|
||
|
implements Set<Map.Entry<K,V>>, java.io.Serializable {
|
||
|
private static final long serialVersionUID = 2249069246763182397L;
|
||
|
EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
|
||
|
|
||
|
public boolean contains(Object o) {
|
||
|
Object k, v, r; Map.Entry<?,?> e;
|
||
|
return ((o instanceof Map.Entry) &&
|
||
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
|
||
|
(r = map.get(k)) != null &&
|
||
|
(v = e.getValue()) != null &&
|
||
|
(v == r || v.equals(r)));
|
||
|
}
|
||
|
|
||
|
public boolean remove(Object o) {
|
||
|
Object k, v; Map.Entry<?,?> e;
|
||
|
return ((o instanceof Map.Entry) &&
|
||
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
|
||
|
(v = e.getValue()) != null &&
|
||
|
map.remove(k, v));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return an iterator over the entries of the backing map
|
||
|
*/
|
||
|
public Iterator<Map.Entry<K,V>> iterator() {
|
||
|
ConcurrentHashMap<K,V> m = map;
|
||
|
Node<K,V>[] t;
|
||
|
int f = (t = m.table) == null ? 0 : t.length;
|
||
|
return new EntryIterator<K,V>(t, f, 0, f, m);
|
||
|
}
|
||
|
|
||
|
public boolean add(Entry<K,V> e) {
|
||
|
return map.putVal(e.getKey(), e.getValue(), false) == null;
|
||
|
}
|
||
|
|
||
|
public boolean addAll(Collection<? extends Entry<K,V>> c) {
|
||
|
boolean added = false;
|
||
|
for (Entry<K,V> e : c) {
|
||
|
if (add(e))
|
||
|
added = true;
|
||
|
}
|
||
|
return added;
|
||
|
}
|
||
|
|
||
|
public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
|
||
|
return map.removeEntryIf(filter);
|
||
|
}
|
||
|
|
||
|
public final int hashCode() {
|
||
|
int h = 0;
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = map.table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; ) {
|
||
|
h += p.hashCode();
|
||
|
}
|
||
|
}
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
public final boolean equals(Object o) {
|
||
|
Set<?> c;
|
||
|
return ((o instanceof Set) &&
|
||
|
((c = (Set<?>)o) == this ||
|
||
|
(containsAll(c) && c.containsAll(this))));
|
||
|
}
|
||
|
|
||
|
public Spliterator<Map.Entry<K,V>> spliterator() {
|
||
|
Node<K,V>[] t;
|
||
|
ConcurrentHashMap<K,V> m = map;
|
||
|
long n = m.sumCount();
|
||
|
int f = (t = m.table) == null ? 0 : t.length;
|
||
|
return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
|
||
|
}
|
||
|
|
||
|
public void forEach(Consumer<? super Map.Entry<K,V>> action) {
|
||
|
if (action == null) throw new NullPointerException();
|
||
|
Node<K,V>[] t;
|
||
|
if ((t = map.table) != null) {
|
||
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
|
||
|
for (Node<K,V> p; (p = it.advance()) != null; )
|
||
|
action.accept(new MapEntry<K,V>(p.key, p.val, map));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Base class for bulk tasks. Repeats some fields and code from
|
||
|
* class Traverser, because we need to subclass CountedCompleter.
|
||
|
*/
|
||
|
@SuppressWarnings("serial")
|
||
|
abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
|
||
|
Node<K,V>[] tab; // same as Traverser
|
||
|
Node<K,V> next;
|
||
|
TableStack<K,V> stack, spare;
|
||
|
int index;
|
||
|
int baseIndex;
|
||
|
int baseLimit;
|
||
|
final int baseSize;
|
||
|
int batch; // split control
|
||
|
|
||
|
BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
|
||
|
super(par);
|
||
|
this.batch = b;
|
||
|
this.index = this.baseIndex = i;
|
||
|
if ((this.tab = t) == null)
|
||
|
this.baseSize = this.baseLimit = 0;
|
||
|
else if (par == null)
|
||
|
this.baseSize = this.baseLimit = t.length;
|
||
|
else {
|
||
|
this.baseLimit = f;
|
||
|
this.baseSize = par.baseSize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Same as Traverser version.
|
||
|
*/
|
||
|
final Node<K,V> advance() {
|
||
|
Node<K,V> e;
|
||
|
if ((e = next) != null)
|
||
|
e = e.next;
|
||
|
for (;;) {
|
||
|
Node<K,V>[] t; int i, n;
|
||
|
if (e != null)
|
||
|
return next = e;
|
||
|
if (baseIndex >= baseLimit || (t = tab) == null ||
|
||
|
(n = t.length) <= (i = index) || i < 0)
|
||
|
return next = null;
|
||
|
if ((e = tabAt(t, i)) != null && e.hash < 0) {
|
||
|
if (e instanceof ForwardingNode) {
|
||
|
tab = ((ForwardingNode<K,V>)e).nextTable;
|
||
|
e = null;
|
||
|
pushState(t, i, n);
|
||
|
continue;
|
||
|
}
|
||
|
else if (e instanceof TreeBin)
|
||
|
e = ((TreeBin<K,V>)e).first;
|
||
|
else
|
||
|
e = null;
|
||
|
}
|
||
|
if (stack != null)
|
||
|
recoverState(n);
|
||
|
else if ((index = i + baseSize) >= n)
|
||
|
index = ++baseIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private void pushState(Node<K,V>[] t, int i, int n) {
|
||
|
TableStack<K,V> s = spare;
|
||
|
if (s != null)
|
||
|
spare = s.next;
|
||
|
else
|
||
|
s = new TableStack<K,V>();
|
||
|
s.tab = t;
|
||
|
s.length = n;
|
||
|
s.index = i;
|
||
|
s.next = stack;
|
||
|
stack = s;
|
||
|
}
|
||
|
|
||
|
private void recoverState(int n) {
|
||
|
TableStack<K,V> s; int len;
|
||
|
while ((s = stack) != null && (index += (len = s.length)) >= n) {
|
||
|
n = len;
|
||
|
index = s.index;
|
||
|
tab = s.tab;
|
||
|
s.tab = null;
|
||
|
TableStack<K,V> next = s.next;
|
||
|
s.next = spare; // save for reuse
|
||
|
stack = next;
|
||
|
spare = s;
|
||
|
}
|
||
|
if (s == null && (index += baseSize) >= n)
|
||
|
index = ++baseIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Task classes. Coded in a regular but ugly format/style to
|
||
|
* simplify checks that each variant differs in the right way from
|
||
|
* others. The null screenings exist because compilers cannot tell
|
||
|
* that we've already null-checked task arguments, so we force
|
||
|
* simplest hoisted bypass to help avoid convoluted traps.
|
||
|
*/
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachKeyTask<K,V>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final Consumer<? super K> action;
|
||
|
ForEachKeyTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Consumer<? super K> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final Consumer<? super K> action;
|
||
|
if ((action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachKeyTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null;)
|
||
|
action.accept(p.key);
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachValueTask<K,V>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final Consumer<? super V> action;
|
||
|
ForEachValueTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Consumer<? super V> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final Consumer<? super V> action;
|
||
|
if ((action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachValueTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null;)
|
||
|
action.accept(p.val);
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachEntryTask<K,V>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final Consumer<? super Entry<K,V>> action;
|
||
|
ForEachEntryTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Consumer<? super Entry<K,V>> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final Consumer<? super Entry<K,V>> action;
|
||
|
if ((action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachEntryTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
action.accept(p);
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachMappingTask<K,V>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final BiConsumer<? super K, ? super V> action;
|
||
|
ForEachMappingTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
BiConsumer<? super K,? super V> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final BiConsumer<? super K, ? super V> action;
|
||
|
if ((action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachMappingTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
action.accept(p.key, p.val);
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachTransformedKeyTask<K,V,U>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final Function<? super K, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
ForEachTransformedKeyTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.transformer = transformer; this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final Function<? super K, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachTransformedKeyTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
transformer, action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p.key)) != null)
|
||
|
action.accept(u);
|
||
|
}
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachTransformedValueTask<K,V,U>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final Function<? super V, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
ForEachTransformedValueTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.transformer = transformer; this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final Function<? super V, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachTransformedValueTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
transformer, action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p.val)) != null)
|
||
|
action.accept(u);
|
||
|
}
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachTransformedEntryTask<K,V,U>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final Function<Map.Entry<K,V>, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
ForEachTransformedEntryTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.transformer = transformer; this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final Function<Map.Entry<K,V>, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachTransformedEntryTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
transformer, action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p)) != null)
|
||
|
action.accept(u);
|
||
|
}
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachTransformedMappingTask<K,V,U>
|
||
|
extends BulkTask<K,V,Void> {
|
||
|
final BiFunction<? super K, ? super V, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
ForEachTransformedMappingTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
BiFunction<? super K, ? super V, ? extends U> transformer,
|
||
|
Consumer<? super U> action) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.transformer = transformer; this.action = action;
|
||
|
}
|
||
|
public final void compute() {
|
||
|
final BiFunction<? super K, ? super V, ? extends U> transformer;
|
||
|
final Consumer<? super U> action;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(action = this.action) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
new ForEachTransformedMappingTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
transformer, action).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p.key, p.val)) != null)
|
||
|
action.accept(u);
|
||
|
}
|
||
|
propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class SearchKeysTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final Function<? super K, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
SearchKeysTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Function<? super K, ? extends U> searchFunction,
|
||
|
AtomicReference<U> result) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.searchFunction = searchFunction; this.result = result;
|
||
|
}
|
||
|
public final U getRawResult() { return result.get(); }
|
||
|
public final void compute() {
|
||
|
final Function<? super K, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
if ((searchFunction = this.searchFunction) != null &&
|
||
|
(result = this.result) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
if (result.get() != null)
|
||
|
return;
|
||
|
addToPendingCount(1);
|
||
|
new SearchKeysTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
searchFunction, result).fork();
|
||
|
}
|
||
|
while (result.get() == null) {
|
||
|
U u;
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null) {
|
||
|
propagateCompletion();
|
||
|
break;
|
||
|
}
|
||
|
if ((u = searchFunction.apply(p.key)) != null) {
|
||
|
if (result.compareAndSet(null, u))
|
||
|
quietlyCompleteRoot();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class SearchValuesTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final Function<? super V, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
SearchValuesTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Function<? super V, ? extends U> searchFunction,
|
||
|
AtomicReference<U> result) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.searchFunction = searchFunction; this.result = result;
|
||
|
}
|
||
|
public final U getRawResult() { return result.get(); }
|
||
|
public final void compute() {
|
||
|
final Function<? super V, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
if ((searchFunction = this.searchFunction) != null &&
|
||
|
(result = this.result) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
if (result.get() != null)
|
||
|
return;
|
||
|
addToPendingCount(1);
|
||
|
new SearchValuesTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
searchFunction, result).fork();
|
||
|
}
|
||
|
while (result.get() == null) {
|
||
|
U u;
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null) {
|
||
|
propagateCompletion();
|
||
|
break;
|
||
|
}
|
||
|
if ((u = searchFunction.apply(p.val)) != null) {
|
||
|
if (result.compareAndSet(null, u))
|
||
|
quietlyCompleteRoot();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class SearchEntriesTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final Function<Entry<K,V>, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
SearchEntriesTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
Function<Entry<K,V>, ? extends U> searchFunction,
|
||
|
AtomicReference<U> result) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.searchFunction = searchFunction; this.result = result;
|
||
|
}
|
||
|
public final U getRawResult() { return result.get(); }
|
||
|
public final void compute() {
|
||
|
final Function<Entry<K,V>, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
if ((searchFunction = this.searchFunction) != null &&
|
||
|
(result = this.result) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
if (result.get() != null)
|
||
|
return;
|
||
|
addToPendingCount(1);
|
||
|
new SearchEntriesTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
searchFunction, result).fork();
|
||
|
}
|
||
|
while (result.get() == null) {
|
||
|
U u;
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null) {
|
||
|
propagateCompletion();
|
||
|
break;
|
||
|
}
|
||
|
if ((u = searchFunction.apply(p)) != null) {
|
||
|
if (result.compareAndSet(null, u))
|
||
|
quietlyCompleteRoot();
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class SearchMappingsTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final BiFunction<? super K, ? super V, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
SearchMappingsTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
BiFunction<? super K, ? super V, ? extends U> searchFunction,
|
||
|
AtomicReference<U> result) {
|
||
|
super(p, b, i, f, t);
|
||
|
this.searchFunction = searchFunction; this.result = result;
|
||
|
}
|
||
|
public final U getRawResult() { return result.get(); }
|
||
|
public final void compute() {
|
||
|
final BiFunction<? super K, ? super V, ? extends U> searchFunction;
|
||
|
final AtomicReference<U> result;
|
||
|
if ((searchFunction = this.searchFunction) != null &&
|
||
|
(result = this.result) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
if (result.get() != null)
|
||
|
return;
|
||
|
addToPendingCount(1);
|
||
|
new SearchMappingsTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
searchFunction, result).fork();
|
||
|
}
|
||
|
while (result.get() == null) {
|
||
|
U u;
|
||
|
Node<K,V> p;
|
||
|
if ((p = advance()) == null) {
|
||
|
propagateCompletion();
|
||
|
break;
|
||
|
}
|
||
|
if ((u = searchFunction.apply(p.key, p.val)) != null) {
|
||
|
if (result.compareAndSet(null, u))
|
||
|
quietlyCompleteRoot();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ReduceKeysTask<K,V>
|
||
|
extends BulkTask<K,V,K> {
|
||
|
final BiFunction<? super K, ? super K, ? extends K> reducer;
|
||
|
K result;
|
||
|
ReduceKeysTask<K,V> rights, nextRight;
|
||
|
ReduceKeysTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
ReduceKeysTask<K,V> nextRight,
|
||
|
BiFunction<? super K, ? super K, ? extends K> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final K getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final BiFunction<? super K, ? super K, ? extends K> reducer;
|
||
|
if ((reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new ReduceKeysTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, reducer)).fork();
|
||
|
}
|
||
|
K r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
K u = p.key;
|
||
|
r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
|
||
|
}
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
ReduceKeysTask<K,V>
|
||
|
t = (ReduceKeysTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
K tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ReduceValuesTask<K,V>
|
||
|
extends BulkTask<K,V,V> {
|
||
|
final BiFunction<? super V, ? super V, ? extends V> reducer;
|
||
|
V result;
|
||
|
ReduceValuesTask<K,V> rights, nextRight;
|
||
|
ReduceValuesTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
ReduceValuesTask<K,V> nextRight,
|
||
|
BiFunction<? super V, ? super V, ? extends V> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final V getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final BiFunction<? super V, ? super V, ? extends V> reducer;
|
||
|
if ((reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new ReduceValuesTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, reducer)).fork();
|
||
|
}
|
||
|
V r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
V v = p.val;
|
||
|
r = (r == null) ? v : reducer.apply(r, v);
|
||
|
}
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
ReduceValuesTask<K,V>
|
||
|
t = (ReduceValuesTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
V tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ReduceEntriesTask<K,V>
|
||
|
extends BulkTask<K,V,Map.Entry<K,V>> {
|
||
|
final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
|
||
|
Map.Entry<K,V> result;
|
||
|
ReduceEntriesTask<K,V> rights, nextRight;
|
||
|
ReduceEntriesTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
ReduceEntriesTask<K,V> nextRight,
|
||
|
BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final Map.Entry<K,V> getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
|
||
|
if ((reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new ReduceEntriesTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, reducer)).fork();
|
||
|
}
|
||
|
Map.Entry<K,V> r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = (r == null) ? p : reducer.apply(r, p);
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
ReduceEntriesTask<K,V>
|
||
|
t = (ReduceEntriesTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
Map.Entry<K,V> tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceKeysTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final Function<? super K, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
U result;
|
||
|
MapReduceKeysTask<K,V,U> rights, nextRight;
|
||
|
MapReduceKeysTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceKeysTask<K,V,U> nextRight,
|
||
|
Function<? super K, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final U getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final Function<? super K, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceKeysTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, reducer)).fork();
|
||
|
}
|
||
|
U r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p.key)) != null)
|
||
|
r = (r == null) ? u : reducer.apply(r, u);
|
||
|
}
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceKeysTask<K,V,U>
|
||
|
t = (MapReduceKeysTask<K,V,U>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
U tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceValuesTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final Function<? super V, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
U result;
|
||
|
MapReduceValuesTask<K,V,U> rights, nextRight;
|
||
|
MapReduceValuesTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceValuesTask<K,V,U> nextRight,
|
||
|
Function<? super V, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final U getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final Function<? super V, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceValuesTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, reducer)).fork();
|
||
|
}
|
||
|
U r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p.val)) != null)
|
||
|
r = (r == null) ? u : reducer.apply(r, u);
|
||
|
}
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceValuesTask<K,V,U>
|
||
|
t = (MapReduceValuesTask<K,V,U>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
U tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceEntriesTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final Function<Map.Entry<K,V>, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
U result;
|
||
|
MapReduceEntriesTask<K,V,U> rights, nextRight;
|
||
|
MapReduceEntriesTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceEntriesTask<K,V,U> nextRight,
|
||
|
Function<Map.Entry<K,V>, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final U getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final Function<Map.Entry<K,V>, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceEntriesTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, reducer)).fork();
|
||
|
}
|
||
|
U r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p)) != null)
|
||
|
r = (r == null) ? u : reducer.apply(r, u);
|
||
|
}
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceEntriesTask<K,V,U>
|
||
|
t = (MapReduceEntriesTask<K,V,U>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
U tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceMappingsTask<K,V,U>
|
||
|
extends BulkTask<K,V,U> {
|
||
|
final BiFunction<? super K, ? super V, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
U result;
|
||
|
MapReduceMappingsTask<K,V,U> rights, nextRight;
|
||
|
MapReduceMappingsTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceMappingsTask<K,V,U> nextRight,
|
||
|
BiFunction<? super K, ? super V, ? extends U> transformer,
|
||
|
BiFunction<? super U, ? super U, ? extends U> reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.reducer = reducer;
|
||
|
}
|
||
|
public final U getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final BiFunction<? super K, ? super V, ? extends U> transformer;
|
||
|
final BiFunction<? super U, ? super U, ? extends U> reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceMappingsTask<K,V,U>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, reducer)).fork();
|
||
|
}
|
||
|
U r = null;
|
||
|
for (Node<K,V> p; (p = advance()) != null; ) {
|
||
|
U u;
|
||
|
if ((u = transformer.apply(p.key, p.val)) != null)
|
||
|
r = (r == null) ? u : reducer.apply(r, u);
|
||
|
}
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceMappingsTask<K,V,U>
|
||
|
t = (MapReduceMappingsTask<K,V,U>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
U tr, sr;
|
||
|
if ((sr = s.result) != null)
|
||
|
t.result = (((tr = t.result) == null) ? sr :
|
||
|
reducer.apply(tr, sr));
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceKeysToDoubleTask<K,V>
|
||
|
extends BulkTask<K,V,Double> {
|
||
|
final ToDoubleFunction<? super K> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
final double basis;
|
||
|
double result;
|
||
|
MapReduceKeysToDoubleTask<K,V> rights, nextRight;
|
||
|
MapReduceKeysToDoubleTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceKeysToDoubleTask<K,V> nextRight,
|
||
|
ToDoubleFunction<? super K> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Double getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToDoubleFunction<? super K> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
double r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceKeysToDoubleTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceKeysToDoubleTask<K,V>
|
||
|
t = (MapReduceKeysToDoubleTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsDouble(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceValuesToDoubleTask<K,V>
|
||
|
extends BulkTask<K,V,Double> {
|
||
|
final ToDoubleFunction<? super V> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
final double basis;
|
||
|
double result;
|
||
|
MapReduceValuesToDoubleTask<K,V> rights, nextRight;
|
||
|
MapReduceValuesToDoubleTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceValuesToDoubleTask<K,V> nextRight,
|
||
|
ToDoubleFunction<? super V> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Double getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToDoubleFunction<? super V> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
double r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceValuesToDoubleTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceValuesToDoubleTask<K,V>
|
||
|
t = (MapReduceValuesToDoubleTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsDouble(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceEntriesToDoubleTask<K,V>
|
||
|
extends BulkTask<K,V,Double> {
|
||
|
final ToDoubleFunction<Map.Entry<K,V>> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
final double basis;
|
||
|
double result;
|
||
|
MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
|
||
|
MapReduceEntriesToDoubleTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceEntriesToDoubleTask<K,V> nextRight,
|
||
|
ToDoubleFunction<Map.Entry<K,V>> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Double getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToDoubleFunction<Map.Entry<K,V>> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
double r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceEntriesToDoubleTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceEntriesToDoubleTask<K,V>
|
||
|
t = (MapReduceEntriesToDoubleTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsDouble(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceMappingsToDoubleTask<K,V>
|
||
|
extends BulkTask<K,V,Double> {
|
||
|
final ToDoubleBiFunction<? super K, ? super V> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
final double basis;
|
||
|
double result;
|
||
|
MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
|
||
|
MapReduceMappingsToDoubleTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceMappingsToDoubleTask<K,V> nextRight,
|
||
|
ToDoubleBiFunction<? super K, ? super V> transformer,
|
||
|
double basis,
|
||
|
DoubleBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Double getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToDoubleBiFunction<? super K, ? super V> transformer;
|
||
|
final DoubleBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
double r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceMappingsToDoubleTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceMappingsToDoubleTask<K,V>
|
||
|
t = (MapReduceMappingsToDoubleTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsDouble(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceKeysToLongTask<K,V>
|
||
|
extends BulkTask<K,V,Long> {
|
||
|
final ToLongFunction<? super K> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
final long basis;
|
||
|
long result;
|
||
|
MapReduceKeysToLongTask<K,V> rights, nextRight;
|
||
|
MapReduceKeysToLongTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceKeysToLongTask<K,V> nextRight,
|
||
|
ToLongFunction<? super K> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Long getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToLongFunction<? super K> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
long r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceKeysToLongTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceKeysToLongTask<K,V>
|
||
|
t = (MapReduceKeysToLongTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsLong(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceValuesToLongTask<K,V>
|
||
|
extends BulkTask<K,V,Long> {
|
||
|
final ToLongFunction<? super V> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
final long basis;
|
||
|
long result;
|
||
|
MapReduceValuesToLongTask<K,V> rights, nextRight;
|
||
|
MapReduceValuesToLongTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceValuesToLongTask<K,V> nextRight,
|
||
|
ToLongFunction<? super V> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Long getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToLongFunction<? super V> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
long r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceValuesToLongTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceValuesToLongTask<K,V>
|
||
|
t = (MapReduceValuesToLongTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsLong(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceEntriesToLongTask<K,V>
|
||
|
extends BulkTask<K,V,Long> {
|
||
|
final ToLongFunction<Map.Entry<K,V>> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
final long basis;
|
||
|
long result;
|
||
|
MapReduceEntriesToLongTask<K,V> rights, nextRight;
|
||
|
MapReduceEntriesToLongTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceEntriesToLongTask<K,V> nextRight,
|
||
|
ToLongFunction<Map.Entry<K,V>> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Long getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToLongFunction<Map.Entry<K,V>> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
long r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceEntriesToLongTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceEntriesToLongTask<K,V>
|
||
|
t = (MapReduceEntriesToLongTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsLong(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceMappingsToLongTask<K,V>
|
||
|
extends BulkTask<K,V,Long> {
|
||
|
final ToLongBiFunction<? super K, ? super V> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
final long basis;
|
||
|
long result;
|
||
|
MapReduceMappingsToLongTask<K,V> rights, nextRight;
|
||
|
MapReduceMappingsToLongTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceMappingsToLongTask<K,V> nextRight,
|
||
|
ToLongBiFunction<? super K, ? super V> transformer,
|
||
|
long basis,
|
||
|
LongBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Long getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToLongBiFunction<? super K, ? super V> transformer;
|
||
|
final LongBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
long r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceMappingsToLongTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceMappingsToLongTask<K,V>
|
||
|
t = (MapReduceMappingsToLongTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsLong(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceKeysToIntTask<K,V>
|
||
|
extends BulkTask<K,V,Integer> {
|
||
|
final ToIntFunction<? super K> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
final int basis;
|
||
|
int result;
|
||
|
MapReduceKeysToIntTask<K,V> rights, nextRight;
|
||
|
MapReduceKeysToIntTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceKeysToIntTask<K,V> nextRight,
|
||
|
ToIntFunction<? super K> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Integer getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToIntFunction<? super K> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
int r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceKeysToIntTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceKeysToIntTask<K,V>
|
||
|
t = (MapReduceKeysToIntTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsInt(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceValuesToIntTask<K,V>
|
||
|
extends BulkTask<K,V,Integer> {
|
||
|
final ToIntFunction<? super V> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
final int basis;
|
||
|
int result;
|
||
|
MapReduceValuesToIntTask<K,V> rights, nextRight;
|
||
|
MapReduceValuesToIntTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceValuesToIntTask<K,V> nextRight,
|
||
|
ToIntFunction<? super V> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Integer getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToIntFunction<? super V> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
int r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceValuesToIntTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceValuesToIntTask<K,V>
|
||
|
t = (MapReduceValuesToIntTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsInt(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceEntriesToIntTask<K,V>
|
||
|
extends BulkTask<K,V,Integer> {
|
||
|
final ToIntFunction<Map.Entry<K,V>> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
final int basis;
|
||
|
int result;
|
||
|
MapReduceEntriesToIntTask<K,V> rights, nextRight;
|
||
|
MapReduceEntriesToIntTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceEntriesToIntTask<K,V> nextRight,
|
||
|
ToIntFunction<Map.Entry<K,V>> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Integer getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToIntFunction<Map.Entry<K,V>> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
int r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceEntriesToIntTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceEntriesToIntTask<K,V>
|
||
|
t = (MapReduceEntriesToIntTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsInt(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class MapReduceMappingsToIntTask<K,V>
|
||
|
extends BulkTask<K,V,Integer> {
|
||
|
final ToIntBiFunction<? super K, ? super V> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
final int basis;
|
||
|
int result;
|
||
|
MapReduceMappingsToIntTask<K,V> rights, nextRight;
|
||
|
MapReduceMappingsToIntTask
|
||
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
|
||
|
MapReduceMappingsToIntTask<K,V> nextRight,
|
||
|
ToIntBiFunction<? super K, ? super V> transformer,
|
||
|
int basis,
|
||
|
IntBinaryOperator reducer) {
|
||
|
super(p, b, i, f, t); this.nextRight = nextRight;
|
||
|
this.transformer = transformer;
|
||
|
this.basis = basis; this.reducer = reducer;
|
||
|
}
|
||
|
public final Integer getRawResult() { return result; }
|
||
|
public final void compute() {
|
||
|
final ToIntBiFunction<? super K, ? super V> transformer;
|
||
|
final IntBinaryOperator reducer;
|
||
|
if ((transformer = this.transformer) != null &&
|
||
|
(reducer = this.reducer) != null) {
|
||
|
int r = this.basis;
|
||
|
for (int i = baseIndex, f, h; batch > 0 &&
|
||
|
(h = ((f = baseLimit) + i) >>> 1) > i;) {
|
||
|
addToPendingCount(1);
|
||
|
(rights = new MapReduceMappingsToIntTask<K,V>
|
||
|
(this, batch >>>= 1, baseLimit = h, f, tab,
|
||
|
rights, transformer, r, reducer)).fork();
|
||
|
}
|
||
|
for (Node<K,V> p; (p = advance()) != null; )
|
||
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
|
||
|
result = r;
|
||
|
CountedCompleter<?> c;
|
||
|
for (c = firstComplete(); c != null; c = c.nextComplete()) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
MapReduceMappingsToIntTask<K,V>
|
||
|
t = (MapReduceMappingsToIntTask<K,V>)c,
|
||
|
s = t.rights;
|
||
|
while (s != null) {
|
||
|
t.result = reducer.applyAsInt(t.result, s.result);
|
||
|
s = t.rights = s.nextRight;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Unsafe mechanics
|
||
|
private static final Unsafe U = Unsafe.getUnsafe();
|
||
|
private static final long SIZECTL
|
||
|
= U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
|
||
|
private static final long TRANSFERINDEX
|
||
|
= U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
|
||
|
private static final long BASECOUNT
|
||
|
= U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
|
||
|
private static final long CELLSBUSY
|
||
|
= U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
|
||
|
private static final long CELLVALUE
|
||
|
= U.objectFieldOffset(CounterCell.class, "value");
|
||
|
private static final int ABASE = U.arrayBaseOffset(Node[].class);
|
||
|
private static final int ASHIFT;
|
||
|
|
||
|
static {
|
||
|
int scale = U.arrayIndexScale(Node[].class);
|
||
|
if ((scale & (scale - 1)) != 0)
|
||
|
throw new ExceptionInInitializerError("array index scale not a power of two");
|
||
|
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
|
||
|
|
||
|
// Reduce the risk of rare disastrous classloading in first call to
|
||
|
// LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
|
||
|
Class<?> ensureLoaded = LockSupport.class;
|
||
|
|
||
|
// Eager class load observed to help JIT during startup
|
||
|
ensureLoaded = ReservationNode.class;
|
||
|
}
|
||
|
}
|