1678 lines
60 KiB
Java
1678 lines
60 KiB
Java
![]() |
/*
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This file is available under and governed by the GNU General Public
|
||
|
* License version 2 only, as published by the Free Software Foundation.
|
||
|
* However, the following notice accompanied the original version of this
|
||
|
* file:
|
||
|
*
|
||
|
* Written by Doug Lea and Martin Buchholz with assistance from members of
|
||
|
* JCP JSR-166 Expert Group and released to the public domain, as explained
|
||
|
* at http://creativecommons.org/publicdomain/zero/1.0/
|
||
|
*/
|
||
|
|
||
|
package java.util.concurrent;
|
||
|
|
||
|
import java.lang.invoke.MethodHandles;
|
||
|
import java.lang.invoke.VarHandle;
|
||
|
import java.util.AbstractCollection;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Collection;
|
||
|
import java.util.Deque;
|
||
|
import java.util.Iterator;
|
||
|
import java.util.NoSuchElementException;
|
||
|
import java.util.Objects;
|
||
|
import java.util.Queue;
|
||
|
import java.util.Spliterator;
|
||
|
import java.util.Spliterators;
|
||
|
import java.util.function.Consumer;
|
||
|
import java.util.function.Predicate;
|
||
|
|
||
|
/**
|
||
|
* An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
|
||
|
* Concurrent insertion, removal, and access operations execute safely
|
||
|
* across multiple threads.
|
||
|
* A {@code ConcurrentLinkedDeque} is an appropriate choice when
|
||
|
* many threads will share access to a common collection.
|
||
|
* Like most other concurrent collection implementations, this class
|
||
|
* does not permit the use of {@code null} elements.
|
||
|
*
|
||
|
* <p>Iterators and spliterators are
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* <p>Beware that, unlike in most collections, the {@code size} method
|
||
|
* is <em>NOT</em> a constant-time operation. Because of the
|
||
|
* asynchronous nature of these deques, determining the current number
|
||
|
* of elements requires a traversal of the elements, and so may report
|
||
|
* inaccurate results if this collection is modified during traversal.
|
||
|
*
|
||
|
* <p>Bulk operations that add, remove, or examine multiple elements,
|
||
|
* such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
|
||
|
* are <em>not</em> guaranteed to be performed atomically.
|
||
|
* For example, a {@code forEach} traversal concurrent with an {@code
|
||
|
* addAll} operation might observe only some of the added elements.
|
||
|
*
|
||
|
* <p>This class and its iterator implement all of the <em>optional</em>
|
||
|
* methods of the {@link Deque} and {@link Iterator} interfaces.
|
||
|
*
|
||
|
* <p>Memory consistency effects: As with other concurrent collections,
|
||
|
* actions in a thread prior to placing an object into a
|
||
|
* {@code ConcurrentLinkedDeque}
|
||
|
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
|
||
|
* actions subsequent to the access or removal of that element from
|
||
|
* the {@code ConcurrentLinkedDeque} in another thread.
|
||
|
*
|
||
|
* <p>This class is a member of the
|
||
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
||
|
* Java Collections Framework</a>.
|
||
|
*
|
||
|
* @since 1.7
|
||
|
* @author Doug Lea
|
||
|
* @author Martin Buchholz
|
||
|
* @param <E> the type of elements held in this deque
|
||
|
*/
|
||
|
public class ConcurrentLinkedDeque<E>
|
||
|
extends AbstractCollection<E>
|
||
|
implements Deque<E>, java.io.Serializable {
|
||
|
|
||
|
/*
|
||
|
* This is an implementation of a concurrent lock-free deque
|
||
|
* supporting interior removes but not interior insertions, as
|
||
|
* required to support the entire Deque interface.
|
||
|
*
|
||
|
* We extend the techniques developed for ConcurrentLinkedQueue and
|
||
|
* LinkedTransferQueue (see the internal docs for those classes).
|
||
|
* Understanding the ConcurrentLinkedQueue implementation is a
|
||
|
* prerequisite for understanding the implementation of this class.
|
||
|
*
|
||
|
* The data structure is a symmetrical doubly-linked "GC-robust"
|
||
|
* linked list of nodes. We minimize the number of volatile writes
|
||
|
* using two techniques: advancing multiple hops with a single CAS
|
||
|
* and mixing volatile and non-volatile writes of the same memory
|
||
|
* locations.
|
||
|
*
|
||
|
* A node contains the expected E ("item") and links to predecessor
|
||
|
* ("prev") and successor ("next") nodes:
|
||
|
*
|
||
|
* class Node<E> { volatile Node<E> prev, next; volatile E item; }
|
||
|
*
|
||
|
* A node p is considered "live" if it contains a non-null item
|
||
|
* (p.item != null). When an item is CASed to null, the item is
|
||
|
* atomically logically deleted from the collection.
|
||
|
*
|
||
|
* At any time, there is precisely one "first" node with a null
|
||
|
* prev reference that terminates any chain of prev references
|
||
|
* starting at a live node. Similarly there is precisely one
|
||
|
* "last" node terminating any chain of next references starting at
|
||
|
* a live node. The "first" and "last" nodes may or may not be live.
|
||
|
* The "first" and "last" nodes are always mutually reachable.
|
||
|
*
|
||
|
* A new element is added atomically by CASing the null prev or
|
||
|
* next reference in the first or last node to a fresh node
|
||
|
* containing the element. The element's node atomically becomes
|
||
|
* "live" at that point.
|
||
|
*
|
||
|
* A node is considered "active" if it is a live node, or the
|
||
|
* first or last node. Active nodes cannot be unlinked.
|
||
|
*
|
||
|
* A "self-link" is a next or prev reference that is the same node:
|
||
|
* p.prev == p or p.next == p
|
||
|
* Self-links are used in the node unlinking process. Active nodes
|
||
|
* never have self-links.
|
||
|
*
|
||
|
* A node p is active if and only if:
|
||
|
*
|
||
|
* p.item != null ||
|
||
|
* (p.prev == null && p.next != p) ||
|
||
|
* (p.next == null && p.prev != p)
|
||
|
*
|
||
|
* The deque object has two node references, "head" and "tail".
|
||
|
* The head and tail are only approximations to the first and last
|
||
|
* nodes of the deque. The first node can always be found by
|
||
|
* following prev pointers from head; likewise for tail. However,
|
||
|
* it is permissible for head and tail to be referring to deleted
|
||
|
* nodes that have been unlinked and so may not be reachable from
|
||
|
* any live node.
|
||
|
*
|
||
|
* There are 3 stages of node deletion;
|
||
|
* "logical deletion", "unlinking", and "gc-unlinking".
|
||
|
*
|
||
|
* 1. "logical deletion" by CASing item to null atomically removes
|
||
|
* the element from the collection, and makes the containing node
|
||
|
* eligible for unlinking.
|
||
|
*
|
||
|
* 2. "unlinking" makes a deleted node unreachable from active
|
||
|
* nodes, and thus eventually reclaimable by GC. Unlinked nodes
|
||
|
* may remain reachable indefinitely from an iterator.
|
||
|
*
|
||
|
* Physical node unlinking is merely an optimization (albeit a
|
||
|
* critical one), and so can be performed at our convenience. At
|
||
|
* any time, the set of live nodes maintained by prev and next
|
||
|
* links are identical, that is, the live nodes found via next
|
||
|
* links from the first node is equal to the elements found via
|
||
|
* prev links from the last node. However, this is not true for
|
||
|
* nodes that have already been logically deleted - such nodes may
|
||
|
* be reachable in one direction only.
|
||
|
*
|
||
|
* 3. "gc-unlinking" takes unlinking further by making active
|
||
|
* nodes unreachable from deleted nodes, making it easier for the
|
||
|
* GC to reclaim future deleted nodes. This step makes the data
|
||
|
* structure "gc-robust", as first described in detail by Boehm
|
||
|
* (http://portal.acm.org/citation.cfm?doid=503272.503282).
|
||
|
*
|
||
|
* GC-unlinked nodes may remain reachable indefinitely from an
|
||
|
* iterator, but unlike unlinked nodes, are never reachable from
|
||
|
* head or tail.
|
||
|
*
|
||
|
* Making the data structure GC-robust will eliminate the risk of
|
||
|
* unbounded memory retention with conservative GCs and is likely
|
||
|
* to improve performance with generational GCs.
|
||
|
*
|
||
|
* When a node is dequeued at either end, e.g. via poll(), we would
|
||
|
* like to break any references from the node to active nodes. We
|
||
|
* develop further the use of self-links that was very effective in
|
||
|
* other concurrent collection classes. The idea is to replace
|
||
|
* prev and next pointers with special values that are interpreted
|
||
|
* to mean off-the-list-at-one-end. These are approximations, but
|
||
|
* good enough to preserve the properties we want in our
|
||
|
* traversals, e.g. we guarantee that a traversal will never visit
|
||
|
* the same element twice, but we don't guarantee whether a
|
||
|
* traversal that runs out of elements will be able to see more
|
||
|
* elements later after enqueues at that end. Doing gc-unlinking
|
||
|
* safely is particularly tricky, since any node can be in use
|
||
|
* indefinitely (for example by an iterator). We must ensure that
|
||
|
* the nodes pointed at by head/tail never get gc-unlinked, since
|
||
|
* head/tail are needed to get "back on track" by other nodes that
|
||
|
* are gc-unlinked. gc-unlinking accounts for much of the
|
||
|
* implementation complexity.
|
||
|
*
|
||
|
* Since neither unlinking nor gc-unlinking are necessary for
|
||
|
* correctness, there are many implementation choices regarding
|
||
|
* frequency (eagerness) of these operations. Since volatile
|
||
|
* reads are likely to be much cheaper than CASes, saving CASes by
|
||
|
* unlinking multiple adjacent nodes at a time may be a win.
|
||
|
* gc-unlinking can be performed rarely and still be effective,
|
||
|
* since it is most important that long chains of deleted nodes
|
||
|
* are occasionally broken.
|
||
|
*
|
||
|
* The actual representation we use is that p.next == p means to
|
||
|
* goto the first node (which in turn is reached by following prev
|
||
|
* pointers from head), and p.next == null && p.prev == p means
|
||
|
* that the iteration is at an end and that p is a (static final)
|
||
|
* dummy node, NEXT_TERMINATOR, and not the last active node.
|
||
|
* Finishing the iteration when encountering such a TERMINATOR is
|
||
|
* good enough for read-only traversals, so such traversals can use
|
||
|
* p.next == null as the termination condition. When we need to
|
||
|
* find the last (active) node, for enqueueing a new node, we need
|
||
|
* to check whether we have reached a TERMINATOR node; if so,
|
||
|
* restart traversal from tail.
|
||
|
*
|
||
|
* The implementation is completely directionally symmetrical,
|
||
|
* except that most public methods that iterate through the list
|
||
|
* follow next pointers, in the "forward" direction.
|
||
|
*
|
||
|
* We believe (without full proof) that all single-element Deque
|
||
|
* operations that operate directly at the two ends of the Deque
|
||
|
* (e.g., addFirst, peekLast, pollLast) are linearizable (see
|
||
|
* Herlihy and Shavit's book). However, some combinations of
|
||
|
* operations are known not to be linearizable. In particular,
|
||
|
* when an addFirst(A) is racing with pollFirst() removing B, it
|
||
|
* is possible for an observer iterating over the elements to
|
||
|
* observe first [A B C] and then [A C], even though no interior
|
||
|
* removes are ever performed. Nevertheless, iterators behave
|
||
|
* reasonably, providing the "weakly consistent" guarantees.
|
||
|
*
|
||
|
* Empirically, microbenchmarks suggest that this class adds about
|
||
|
* 40% overhead relative to ConcurrentLinkedQueue, which feels as
|
||
|
* good as we can hope for.
|
||
|
*/
|
||
|
|
||
|
private static final long serialVersionUID = 876323262645176354L;
|
||
|
|
||
|
/**
|
||
|
* A node from which the first node on list (that is, the unique node p
|
||
|
* with p.prev == null && p.next != p) can be reached in O(1) time.
|
||
|
* Invariants:
|
||
|
* - the first node is always O(1) reachable from head via prev links
|
||
|
* - all live nodes are reachable from the first node via succ()
|
||
|
* - head != null
|
||
|
* - (tmp = head).next != tmp || tmp != head
|
||
|
* - head is never gc-unlinked (but may be unlinked)
|
||
|
* Non-invariants:
|
||
|
* - head.item may or may not be null
|
||
|
* - head may not be reachable from the first or last node, or from tail
|
||
|
*/
|
||
|
private transient volatile Node<E> head;
|
||
|
|
||
|
/**
|
||
|
* A node from which the last node on list (that is, the unique node p
|
||
|
* with p.next == null && p.prev != p) can be reached in O(1) time.
|
||
|
* Invariants:
|
||
|
* - the last node is always O(1) reachable from tail via next links
|
||
|
* - all live nodes are reachable from the last node via pred()
|
||
|
* - tail != null
|
||
|
* - tail is never gc-unlinked (but may be unlinked)
|
||
|
* Non-invariants:
|
||
|
* - tail.item may or may not be null
|
||
|
* - tail may not be reachable from the first or last node, or from head
|
||
|
*/
|
||
|
private transient volatile Node<E> tail;
|
||
|
|
||
|
private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
|
||
|
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<E> prevTerminator() {
|
||
|
return (Node<E>) PREV_TERMINATOR;
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<E> nextTerminator() {
|
||
|
return (Node<E>) NEXT_TERMINATOR;
|
||
|
}
|
||
|
|
||
|
static final class Node<E> {
|
||
|
volatile Node<E> prev;
|
||
|
volatile E item;
|
||
|
volatile Node<E> next;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a new node holding item. Uses relaxed write because item
|
||
|
* can only be seen after piggy-backing publication via CAS.
|
||
|
*/
|
||
|
static <E> Node<E> newNode(E item) {
|
||
|
Node<E> node = new Node<E>();
|
||
|
ITEM.set(node, item);
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Links e as first element.
|
||
|
*/
|
||
|
private void linkFirst(E e) {
|
||
|
final Node<E> newNode = newNode(Objects.requireNonNull(e));
|
||
|
|
||
|
restartFromHead:
|
||
|
for (;;)
|
||
|
for (Node<E> h = head, p = h, q;;) {
|
||
|
if ((q = p.prev) != null &&
|
||
|
(q = (p = q).prev) != null)
|
||
|
// Check for head updates every other hop.
|
||
|
// If p == q, we are sure to follow head instead.
|
||
|
p = (h != (h = head)) ? h : q;
|
||
|
else if (p.next == p) // PREV_TERMINATOR
|
||
|
continue restartFromHead;
|
||
|
else {
|
||
|
// p is first node
|
||
|
NEXT.set(newNode, p); // CAS piggyback
|
||
|
if (PREV.compareAndSet(p, null, newNode)) {
|
||
|
// Successful CAS is the linearization point
|
||
|
// for e to become an element of this deque,
|
||
|
// and for newNode to become "live".
|
||
|
if (p != h) // hop two nodes at a time; failure is OK
|
||
|
HEAD.weakCompareAndSet(this, h, newNode);
|
||
|
return;
|
||
|
}
|
||
|
// Lost CAS race to another thread; re-read prev
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Links e as last element.
|
||
|
*/
|
||
|
private void linkLast(E e) {
|
||
|
final Node<E> newNode = newNode(Objects.requireNonNull(e));
|
||
|
|
||
|
restartFromTail:
|
||
|
for (;;)
|
||
|
for (Node<E> t = tail, p = t, q;;) {
|
||
|
if ((q = p.next) != null &&
|
||
|
(q = (p = q).next) != null)
|
||
|
// Check for tail updates every other hop.
|
||
|
// If p == q, we are sure to follow tail instead.
|
||
|
p = (t != (t = tail)) ? t : q;
|
||
|
else if (p.prev == p) // NEXT_TERMINATOR
|
||
|
continue restartFromTail;
|
||
|
else {
|
||
|
// p is last node
|
||
|
PREV.set(newNode, p); // CAS piggyback
|
||
|
if (NEXT.compareAndSet(p, null, newNode)) {
|
||
|
// Successful CAS is the linearization point
|
||
|
// for e to become an element of this deque,
|
||
|
// and for newNode to become "live".
|
||
|
if (p != t) // hop two nodes at a time; failure is OK
|
||
|
TAIL.weakCompareAndSet(this, t, newNode);
|
||
|
return;
|
||
|
}
|
||
|
// Lost CAS race to another thread; re-read next
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private static final int HOPS = 2;
|
||
|
|
||
|
/**
|
||
|
* Unlinks non-null node x.
|
||
|
*/
|
||
|
void unlink(Node<E> x) {
|
||
|
// assert x != null;
|
||
|
// assert x.item == null;
|
||
|
// assert x != PREV_TERMINATOR;
|
||
|
// assert x != NEXT_TERMINATOR;
|
||
|
|
||
|
final Node<E> prev = x.prev;
|
||
|
final Node<E> next = x.next;
|
||
|
if (prev == null) {
|
||
|
unlinkFirst(x, next);
|
||
|
} else if (next == null) {
|
||
|
unlinkLast(x, prev);
|
||
|
} else {
|
||
|
// Unlink interior node.
|
||
|
//
|
||
|
// This is the common case, since a series of polls at the
|
||
|
// same end will be "interior" removes, except perhaps for
|
||
|
// the first one, since end nodes cannot be unlinked.
|
||
|
//
|
||
|
// At any time, all active nodes are mutually reachable by
|
||
|
// following a sequence of either next or prev pointers.
|
||
|
//
|
||
|
// Our strategy is to find the unique active predecessor
|
||
|
// and successor of x. Try to fix up their links so that
|
||
|
// they point to each other, leaving x unreachable from
|
||
|
// active nodes. If successful, and if x has no live
|
||
|
// predecessor/successor, we additionally try to gc-unlink,
|
||
|
// leaving active nodes unreachable from x, by rechecking
|
||
|
// that the status of predecessor and successor are
|
||
|
// unchanged and ensuring that x is not reachable from
|
||
|
// tail/head, before setting x's prev/next links to their
|
||
|
// logical approximate replacements, self/TERMINATOR.
|
||
|
Node<E> activePred, activeSucc;
|
||
|
boolean isFirst, isLast;
|
||
|
int hops = 1;
|
||
|
|
||
|
// Find active predecessor
|
||
|
for (Node<E> p = prev; ; ++hops) {
|
||
|
if (p.item != null) {
|
||
|
activePred = p;
|
||
|
isFirst = false;
|
||
|
break;
|
||
|
}
|
||
|
Node<E> q = p.prev;
|
||
|
if (q == null) {
|
||
|
if (p.next == p)
|
||
|
return;
|
||
|
activePred = p;
|
||
|
isFirst = true;
|
||
|
break;
|
||
|
}
|
||
|
else if (p == q)
|
||
|
return;
|
||
|
else
|
||
|
p = q;
|
||
|
}
|
||
|
|
||
|
// Find active successor
|
||
|
for (Node<E> p = next; ; ++hops) {
|
||
|
if (p.item != null) {
|
||
|
activeSucc = p;
|
||
|
isLast = false;
|
||
|
break;
|
||
|
}
|
||
|
Node<E> q = p.next;
|
||
|
if (q == null) {
|
||
|
if (p.prev == p)
|
||
|
return;
|
||
|
activeSucc = p;
|
||
|
isLast = true;
|
||
|
break;
|
||
|
}
|
||
|
else if (p == q)
|
||
|
return;
|
||
|
else
|
||
|
p = q;
|
||
|
}
|
||
|
|
||
|
// TODO: better HOP heuristics
|
||
|
if (hops < HOPS
|
||
|
// always squeeze out interior deleted nodes
|
||
|
&& (isFirst | isLast))
|
||
|
return;
|
||
|
|
||
|
// Squeeze out deleted nodes between activePred and
|
||
|
// activeSucc, including x.
|
||
|
skipDeletedSuccessors(activePred);
|
||
|
skipDeletedPredecessors(activeSucc);
|
||
|
|
||
|
// Try to gc-unlink, if possible
|
||
|
if ((isFirst | isLast) &&
|
||
|
|
||
|
// Recheck expected state of predecessor and successor
|
||
|
(activePred.next == activeSucc) &&
|
||
|
(activeSucc.prev == activePred) &&
|
||
|
(isFirst ? activePred.prev == null : activePred.item != null) &&
|
||
|
(isLast ? activeSucc.next == null : activeSucc.item != null)) {
|
||
|
|
||
|
updateHead(); // Ensure x is not reachable from head
|
||
|
updateTail(); // Ensure x is not reachable from tail
|
||
|
|
||
|
// Finally, actually gc-unlink
|
||
|
PREV.setRelease(x, isFirst ? prevTerminator() : x);
|
||
|
NEXT.setRelease(x, isLast ? nextTerminator() : x);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Unlinks non-null first node.
|
||
|
*/
|
||
|
private void unlinkFirst(Node<E> first, Node<E> next) {
|
||
|
// assert first != null;
|
||
|
// assert next != null;
|
||
|
// assert first.item == null;
|
||
|
for (Node<E> o = null, p = next, q;;) {
|
||
|
if (p.item != null || (q = p.next) == null) {
|
||
|
if (o != null && p.prev != p &&
|
||
|
NEXT.compareAndSet(first, next, p)) {
|
||
|
skipDeletedPredecessors(p);
|
||
|
if (first.prev == null &&
|
||
|
(p.next == null || p.item != null) &&
|
||
|
p.prev == first) {
|
||
|
|
||
|
updateHead(); // Ensure o is not reachable from head
|
||
|
updateTail(); // Ensure o is not reachable from tail
|
||
|
|
||
|
// Finally, actually gc-unlink
|
||
|
NEXT.setRelease(o, o);
|
||
|
PREV.setRelease(o, prevTerminator());
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
else if (p == q)
|
||
|
return;
|
||
|
else {
|
||
|
o = p;
|
||
|
p = q;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Unlinks non-null last node.
|
||
|
*/
|
||
|
private void unlinkLast(Node<E> last, Node<E> prev) {
|
||
|
// assert last != null;
|
||
|
// assert prev != null;
|
||
|
// assert last.item == null;
|
||
|
for (Node<E> o = null, p = prev, q;;) {
|
||
|
if (p.item != null || (q = p.prev) == null) {
|
||
|
if (o != null && p.next != p &&
|
||
|
PREV.compareAndSet(last, prev, p)) {
|
||
|
skipDeletedSuccessors(p);
|
||
|
if (last.next == null &&
|
||
|
(p.prev == null || p.item != null) &&
|
||
|
p.next == last) {
|
||
|
|
||
|
updateHead(); // Ensure o is not reachable from head
|
||
|
updateTail(); // Ensure o is not reachable from tail
|
||
|
|
||
|
// Finally, actually gc-unlink
|
||
|
PREV.setRelease(o, o);
|
||
|
NEXT.setRelease(o, nextTerminator());
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
else if (p == q)
|
||
|
return;
|
||
|
else {
|
||
|
o = p;
|
||
|
p = q;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Guarantees that any node which was unlinked before a call to
|
||
|
* this method will be unreachable from head after it returns.
|
||
|
* Does not guarantee to eliminate slack, only that head will
|
||
|
* point to a node that was active while this method was running.
|
||
|
*/
|
||
|
private final void updateHead() {
|
||
|
// Either head already points to an active node, or we keep
|
||
|
// trying to cas it to the first node until it does.
|
||
|
Node<E> h, p, q;
|
||
|
restartFromHead:
|
||
|
while ((h = head).item == null && (p = h.prev) != null) {
|
||
|
for (;;) {
|
||
|
if ((q = p.prev) == null ||
|
||
|
(q = (p = q).prev) == null) {
|
||
|
// It is possible that p is PREV_TERMINATOR,
|
||
|
// but if so, the CAS is guaranteed to fail.
|
||
|
if (HEAD.compareAndSet(this, h, p))
|
||
|
return;
|
||
|
else
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
else if (h != head)
|
||
|
continue restartFromHead;
|
||
|
else
|
||
|
p = q;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Guarantees that any node which was unlinked before a call to
|
||
|
* this method will be unreachable from tail after it returns.
|
||
|
* Does not guarantee to eliminate slack, only that tail will
|
||
|
* point to a node that was active while this method was running.
|
||
|
*/
|
||
|
private final void updateTail() {
|
||
|
// Either tail already points to an active node, or we keep
|
||
|
// trying to cas it to the last node until it does.
|
||
|
Node<E> t, p, q;
|
||
|
restartFromTail:
|
||
|
while ((t = tail).item == null && (p = t.next) != null) {
|
||
|
for (;;) {
|
||
|
if ((q = p.next) == null ||
|
||
|
(q = (p = q).next) == null) {
|
||
|
// It is possible that p is NEXT_TERMINATOR,
|
||
|
// but if so, the CAS is guaranteed to fail.
|
||
|
if (TAIL.compareAndSet(this, t, p))
|
||
|
return;
|
||
|
else
|
||
|
continue restartFromTail;
|
||
|
}
|
||
|
else if (t != tail)
|
||
|
continue restartFromTail;
|
||
|
else
|
||
|
p = q;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private void skipDeletedPredecessors(Node<E> x) {
|
||
|
whileActive:
|
||
|
do {
|
||
|
Node<E> prev = x.prev;
|
||
|
// assert prev != null;
|
||
|
// assert x != NEXT_TERMINATOR;
|
||
|
// assert x != PREV_TERMINATOR;
|
||
|
Node<E> p = prev;
|
||
|
findActive:
|
||
|
for (;;) {
|
||
|
if (p.item != null)
|
||
|
break findActive;
|
||
|
Node<E> q = p.prev;
|
||
|
if (q == null) {
|
||
|
if (p.next == p)
|
||
|
continue whileActive;
|
||
|
break findActive;
|
||
|
}
|
||
|
else if (p == q)
|
||
|
continue whileActive;
|
||
|
else
|
||
|
p = q;
|
||
|
}
|
||
|
|
||
|
// found active CAS target
|
||
|
if (prev == p || PREV.compareAndSet(x, prev, p))
|
||
|
return;
|
||
|
|
||
|
} while (x.item != null || x.next == null);
|
||
|
}
|
||
|
|
||
|
private void skipDeletedSuccessors(Node<E> x) {
|
||
|
whileActive:
|
||
|
do {
|
||
|
Node<E> next = x.next;
|
||
|
// assert next != null;
|
||
|
// assert x != NEXT_TERMINATOR;
|
||
|
// assert x != PREV_TERMINATOR;
|
||
|
Node<E> p = next;
|
||
|
findActive:
|
||
|
for (;;) {
|
||
|
if (p.item != null)
|
||
|
break findActive;
|
||
|
Node<E> q = p.next;
|
||
|
if (q == null) {
|
||
|
if (p.prev == p)
|
||
|
continue whileActive;
|
||
|
break findActive;
|
||
|
}
|
||
|
else if (p == q)
|
||
|
continue whileActive;
|
||
|
else
|
||
|
p = q;
|
||
|
}
|
||
|
|
||
|
// found active CAS target
|
||
|
if (next == p || NEXT.compareAndSet(x, next, p))
|
||
|
return;
|
||
|
|
||
|
} while (x.item != null || x.prev == null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the successor of p, or the first node if p.next has been
|
||
|
* linked to self, which will only be true if traversing with a
|
||
|
* stale pointer that is now off the list.
|
||
|
*/
|
||
|
final Node<E> succ(Node<E> p) {
|
||
|
// TODO: should we skip deleted nodes here?
|
||
|
if (p == (p = p.next))
|
||
|
p = first();
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the predecessor of p, or the last node if p.prev has been
|
||
|
* linked to self, which will only be true if traversing with a
|
||
|
* stale pointer that is now off the list.
|
||
|
*/
|
||
|
final Node<E> pred(Node<E> p) {
|
||
|
if (p == (p = p.prev))
|
||
|
p = last();
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the first node, the unique node p for which:
|
||
|
* p.prev == null && p.next != p
|
||
|
* The returned node may or may not be logically deleted.
|
||
|
* Guarantees that head is set to the returned node.
|
||
|
*/
|
||
|
Node<E> first() {
|
||
|
restartFromHead:
|
||
|
for (;;)
|
||
|
for (Node<E> h = head, p = h, q;;) {
|
||
|
if ((q = p.prev) != null &&
|
||
|
(q = (p = q).prev) != null)
|
||
|
// Check for head updates every other hop.
|
||
|
// If p == q, we are sure to follow head instead.
|
||
|
p = (h != (h = head)) ? h : q;
|
||
|
else if (p == h
|
||
|
// It is possible that p is PREV_TERMINATOR,
|
||
|
// but if so, the CAS is guaranteed to fail.
|
||
|
|| HEAD.compareAndSet(this, h, p))
|
||
|
return p;
|
||
|
else
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the last node, the unique node p for which:
|
||
|
* p.next == null && p.prev != p
|
||
|
* The returned node may or may not be logically deleted.
|
||
|
* Guarantees that tail is set to the returned node.
|
||
|
*/
|
||
|
Node<E> last() {
|
||
|
restartFromTail:
|
||
|
for (;;)
|
||
|
for (Node<E> t = tail, p = t, q;;) {
|
||
|
if ((q = p.next) != null &&
|
||
|
(q = (p = q).next) != null)
|
||
|
// Check for tail updates every other hop.
|
||
|
// If p == q, we are sure to follow tail instead.
|
||
|
p = (t != (t = tail)) ? t : q;
|
||
|
else if (p == t
|
||
|
// It is possible that p is NEXT_TERMINATOR,
|
||
|
// but if so, the CAS is guaranteed to fail.
|
||
|
|| TAIL.compareAndSet(this, t, p))
|
||
|
return p;
|
||
|
else
|
||
|
continue restartFromTail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Minor convenience utilities
|
||
|
|
||
|
/**
|
||
|
* Returns element unless it is null, in which case throws
|
||
|
* NoSuchElementException.
|
||
|
*
|
||
|
* @param v the element
|
||
|
* @return the element
|
||
|
*/
|
||
|
private E screenNullResult(E v) {
|
||
|
if (v == null)
|
||
|
throw new NoSuchElementException();
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty deque.
|
||
|
*/
|
||
|
public ConcurrentLinkedDeque() {
|
||
|
head = tail = new Node<E>();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a deque initially containing the elements of
|
||
|
* the given collection, added in traversal order of the
|
||
|
* collection's iterator.
|
||
|
*
|
||
|
* @param c the collection of elements to initially contain
|
||
|
* @throws NullPointerException if the specified collection or any
|
||
|
* of its elements are null
|
||
|
*/
|
||
|
public ConcurrentLinkedDeque(Collection<? extends E> c) {
|
||
|
// Copy c into a private chain of Nodes
|
||
|
Node<E> h = null, t = null;
|
||
|
for (E e : c) {
|
||
|
Node<E> newNode = newNode(Objects.requireNonNull(e));
|
||
|
if (h == null)
|
||
|
h = t = newNode;
|
||
|
else {
|
||
|
NEXT.set(t, newNode);
|
||
|
PREV.set(newNode, t);
|
||
|
t = newNode;
|
||
|
}
|
||
|
}
|
||
|
initHeadTail(h, t);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Initializes head and tail, ensuring invariants hold.
|
||
|
*/
|
||
|
private void initHeadTail(Node<E> h, Node<E> t) {
|
||
|
if (h == t) {
|
||
|
if (h == null)
|
||
|
h = t = new Node<E>();
|
||
|
else {
|
||
|
// Avoid edge case of a single Node with non-null item.
|
||
|
Node<E> newNode = new Node<E>();
|
||
|
NEXT.set(t, newNode);
|
||
|
PREV.set(newNode, t);
|
||
|
t = newNode;
|
||
|
}
|
||
|
}
|
||
|
head = h;
|
||
|
tail = t;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the front of this deque.
|
||
|
* As the deque is unbounded, this method will never throw
|
||
|
* {@link IllegalStateException}.
|
||
|
*
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void addFirst(E e) {
|
||
|
linkFirst(e);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the end of this deque.
|
||
|
* As the deque is unbounded, this method will never throw
|
||
|
* {@link IllegalStateException}.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #add}.
|
||
|
*
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void addLast(E e) {
|
||
|
linkLast(e);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the front of this deque.
|
||
|
* As the deque is unbounded, this method will never return {@code false}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by {@link Deque#offerFirst})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offerFirst(E e) {
|
||
|
linkFirst(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the end of this deque.
|
||
|
* As the deque is unbounded, this method will never return {@code false}.
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #add}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by {@link Deque#offerLast})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offerLast(E e) {
|
||
|
linkLast(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public E peekFirst() {
|
||
|
restart: for (;;) {
|
||
|
E item;
|
||
|
Node<E> first = first(), p = first;
|
||
|
while ((item = p.item) == null) {
|
||
|
if (p == (p = p.next)) continue restart;
|
||
|
if (p == null)
|
||
|
break;
|
||
|
}
|
||
|
// recheck for linearizability
|
||
|
if (first.prev != null) continue restart;
|
||
|
return item;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public E peekLast() {
|
||
|
restart: for (;;) {
|
||
|
E item;
|
||
|
Node<E> last = last(), p = last;
|
||
|
while ((item = p.item) == null) {
|
||
|
if (p == (p = p.prev)) continue restart;
|
||
|
if (p == null)
|
||
|
break;
|
||
|
}
|
||
|
// recheck for linearizability
|
||
|
if (last.next != null) continue restart;
|
||
|
return item;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E getFirst() {
|
||
|
return screenNullResult(peekFirst());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E getLast() {
|
||
|
return screenNullResult(peekLast());
|
||
|
}
|
||
|
|
||
|
public E pollFirst() {
|
||
|
restart: for (;;) {
|
||
|
for (Node<E> first = first(), p = first;;) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null) {
|
||
|
// recheck for linearizability
|
||
|
if (first.prev != null) continue restart;
|
||
|
if (ITEM.compareAndSet(p, item, null)) {
|
||
|
unlink(p);
|
||
|
return item;
|
||
|
}
|
||
|
}
|
||
|
if (p == (p = p.next)) continue restart;
|
||
|
if (p == null) {
|
||
|
if (first.prev != null) continue restart;
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public E pollLast() {
|
||
|
restart: for (;;) {
|
||
|
for (Node<E> last = last(), p = last;;) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null) {
|
||
|
// recheck for linearizability
|
||
|
if (last.next != null) continue restart;
|
||
|
if (ITEM.compareAndSet(p, item, null)) {
|
||
|
unlink(p);
|
||
|
return item;
|
||
|
}
|
||
|
}
|
||
|
if (p == (p = p.prev)) continue restart;
|
||
|
if (p == null) {
|
||
|
if (last.next != null) continue restart;
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E removeFirst() {
|
||
|
return screenNullResult(pollFirst());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E removeLast() {
|
||
|
return screenNullResult(pollLast());
|
||
|
}
|
||
|
|
||
|
// *** Queue and stack methods ***
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the tail of this deque.
|
||
|
* As the deque is unbounded, this method will never return {@code false}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by {@link Queue#offer})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offer(E e) {
|
||
|
return offerLast(e);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the tail of this deque.
|
||
|
* As the deque is unbounded, this method will never throw
|
||
|
* {@link IllegalStateException} or return {@code false}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by {@link Collection#add})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean add(E e) {
|
||
|
return offerLast(e);
|
||
|
}
|
||
|
|
||
|
public E poll() { return pollFirst(); }
|
||
|
public E peek() { return peekFirst(); }
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E remove() { return removeFirst(); }
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E pop() { return removeFirst(); }
|
||
|
|
||
|
/**
|
||
|
* @throws NoSuchElementException {@inheritDoc}
|
||
|
*/
|
||
|
public E element() { return getFirst(); }
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public void push(E e) { addFirst(e); }
|
||
|
|
||
|
/**
|
||
|
* Removes the first occurrence of the specified element from this deque.
|
||
|
* If the deque does not contain the element, it is unchanged.
|
||
|
* More formally, removes the first element {@code e} such that
|
||
|
* {@code o.equals(e)} (if such an element exists).
|
||
|
* Returns {@code true} if this deque contained the specified element
|
||
|
* (or equivalently, if this deque changed as a result of the call).
|
||
|
*
|
||
|
* @param o element to be removed from this deque, if present
|
||
|
* @return {@code true} if the deque contained the specified element
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean removeFirstOccurrence(Object o) {
|
||
|
Objects.requireNonNull(o);
|
||
|
for (Node<E> p = first(); p != null; p = succ(p)) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null
|
||
|
&& o.equals(item)
|
||
|
&& ITEM.compareAndSet(p, item, null)) {
|
||
|
unlink(p);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the last occurrence of the specified element from this deque.
|
||
|
* If the deque does not contain the element, it is unchanged.
|
||
|
* More formally, removes the last element {@code e} such that
|
||
|
* {@code o.equals(e)} (if such an element exists).
|
||
|
* Returns {@code true} if this deque contained the specified element
|
||
|
* (or equivalently, if this deque changed as a result of the call).
|
||
|
*
|
||
|
* @param o element to be removed from this deque, if present
|
||
|
* @return {@code true} if the deque contained the specified element
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean removeLastOccurrence(Object o) {
|
||
|
Objects.requireNonNull(o);
|
||
|
for (Node<E> p = last(); p != null; p = pred(p)) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null
|
||
|
&& o.equals(item)
|
||
|
&& ITEM.compareAndSet(p, item, null)) {
|
||
|
unlink(p);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this deque contains the specified element.
|
||
|
* More formally, returns {@code true} if and only if this deque contains
|
||
|
* at least one element {@code e} such that {@code o.equals(e)}.
|
||
|
*
|
||
|
* @param o element whose presence in this deque is to be tested
|
||
|
* @return {@code true} if this deque contains the specified element
|
||
|
*/
|
||
|
public boolean contains(Object o) {
|
||
|
if (o != null) {
|
||
|
for (Node<E> p = first(); p != null; p = succ(p)) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null && o.equals(item))
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this collection contains no elements.
|
||
|
*
|
||
|
* @return {@code true} if this collection contains no elements
|
||
|
*/
|
||
|
public boolean isEmpty() {
|
||
|
return peekFirst() == null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of elements in this deque. If this deque
|
||
|
* contains more than {@code Integer.MAX_VALUE} elements, it
|
||
|
* returns {@code Integer.MAX_VALUE}.
|
||
|
*
|
||
|
* <p>Beware that, unlike in most collections, this method is
|
||
|
* <em>NOT</em> a constant-time operation. Because of the
|
||
|
* asynchronous nature of these deques, determining the current
|
||
|
* number of elements requires traversing them all to count them.
|
||
|
* Additionally, it is possible for the size to change during
|
||
|
* execution of this method, in which case the returned result
|
||
|
* will be inaccurate. Thus, this method is typically not very
|
||
|
* useful in concurrent applications.
|
||
|
*
|
||
|
* @return the number of elements in this deque
|
||
|
*/
|
||
|
public int size() {
|
||
|
restart: for (;;) {
|
||
|
int count = 0;
|
||
|
for (Node<E> p = first(); p != null;) {
|
||
|
if (p.item != null)
|
||
|
if (++count == Integer.MAX_VALUE)
|
||
|
break; // @see Collection.size()
|
||
|
if (p == (p = p.next))
|
||
|
continue restart;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the first occurrence of the specified element from this deque.
|
||
|
* If the deque does not contain the element, it is unchanged.
|
||
|
* More formally, removes the first element {@code e} such that
|
||
|
* {@code o.equals(e)} (if such an element exists).
|
||
|
* Returns {@code true} if this deque contained the specified element
|
||
|
* (or equivalently, if this deque changed as a result of the call).
|
||
|
*
|
||
|
* <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
|
||
|
*
|
||
|
* @param o element to be removed from this deque, if present
|
||
|
* @return {@code true} if the deque contained the specified element
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean remove(Object o) {
|
||
|
return removeFirstOccurrence(o);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Appends all of the elements in the specified collection to the end of
|
||
|
* this deque, in the order that they are returned by the specified
|
||
|
* collection's iterator. Attempts to {@code addAll} of a deque to
|
||
|
* itself result in {@code IllegalArgumentException}.
|
||
|
*
|
||
|
* @param c the elements to be inserted into this deque
|
||
|
* @return {@code true} if this deque changed as a result of the call
|
||
|
* @throws NullPointerException if the specified collection or any
|
||
|
* of its elements are null
|
||
|
* @throws IllegalArgumentException if the collection is this deque
|
||
|
*/
|
||
|
public boolean addAll(Collection<? extends E> c) {
|
||
|
if (c == this)
|
||
|
// As historically specified in AbstractQueue#addAll
|
||
|
throw new IllegalArgumentException();
|
||
|
|
||
|
// Copy c into a private chain of Nodes
|
||
|
Node<E> beginningOfTheEnd = null, last = null;
|
||
|
for (E e : c) {
|
||
|
Node<E> newNode = newNode(Objects.requireNonNull(e));
|
||
|
if (beginningOfTheEnd == null)
|
||
|
beginningOfTheEnd = last = newNode;
|
||
|
else {
|
||
|
NEXT.set(last, newNode);
|
||
|
PREV.set(newNode, last);
|
||
|
last = newNode;
|
||
|
}
|
||
|
}
|
||
|
if (beginningOfTheEnd == null)
|
||
|
return false;
|
||
|
|
||
|
// Atomically append the chain at the tail of this collection
|
||
|
restartFromTail:
|
||
|
for (;;)
|
||
|
for (Node<E> t = tail, p = t, q;;) {
|
||
|
if ((q = p.next) != null &&
|
||
|
(q = (p = q).next) != null)
|
||
|
// Check for tail updates every other hop.
|
||
|
// If p == q, we are sure to follow tail instead.
|
||
|
p = (t != (t = tail)) ? t : q;
|
||
|
else if (p.prev == p) // NEXT_TERMINATOR
|
||
|
continue restartFromTail;
|
||
|
else {
|
||
|
// p is last node
|
||
|
PREV.set(beginningOfTheEnd, p); // CAS piggyback
|
||
|
if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
|
||
|
// Successful CAS is the linearization point
|
||
|
// for all elements to be added to this deque.
|
||
|
if (!TAIL.weakCompareAndSet(this, t, last)) {
|
||
|
// Try a little harder to update tail,
|
||
|
// since we may be adding many elements.
|
||
|
t = tail;
|
||
|
if (last.next == null)
|
||
|
TAIL.weakCompareAndSet(this, t, last);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
// Lost CAS race to another thread; re-read next
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes all of the elements from this deque.
|
||
|
*/
|
||
|
public void clear() {
|
||
|
while (pollFirst() != null)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
public String toString() {
|
||
|
String[] a = null;
|
||
|
restart: for (;;) {
|
||
|
int charLength = 0;
|
||
|
int size = 0;
|
||
|
for (Node<E> p = first(); p != null;) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null) {
|
||
|
if (a == null)
|
||
|
a = new String[4];
|
||
|
else if (size == a.length)
|
||
|
a = Arrays.copyOf(a, 2 * size);
|
||
|
String s = item.toString();
|
||
|
a[size++] = s;
|
||
|
charLength += s.length();
|
||
|
}
|
||
|
if (p == (p = p.next))
|
||
|
continue restart;
|
||
|
}
|
||
|
|
||
|
if (size == 0)
|
||
|
return "[]";
|
||
|
|
||
|
return Helpers.toString(a, size, charLength);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private Object[] toArrayInternal(Object[] a) {
|
||
|
Object[] x = a;
|
||
|
restart: for (;;) {
|
||
|
int size = 0;
|
||
|
for (Node<E> p = first(); p != null;) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null) {
|
||
|
if (x == null)
|
||
|
x = new Object[4];
|
||
|
else if (size == x.length)
|
||
|
x = Arrays.copyOf(x, 2 * (size + 4));
|
||
|
x[size++] = item;
|
||
|
}
|
||
|
if (p == (p = p.next))
|
||
|
continue restart;
|
||
|
}
|
||
|
if (x == null)
|
||
|
return new Object[0];
|
||
|
else if (a != null && size <= a.length) {
|
||
|
if (a != x)
|
||
|
System.arraycopy(x, 0, a, 0, size);
|
||
|
if (size < a.length)
|
||
|
a[size] = null;
|
||
|
return a;
|
||
|
}
|
||
|
return (size == x.length) ? x : Arrays.copyOf(x, size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing all of the elements in this deque, in
|
||
|
* proper sequence (from first to last element).
|
||
|
*
|
||
|
* <p>The returned array will be "safe" in that no references to it are
|
||
|
* maintained by this deque. (In other words, this method must allocate
|
||
|
* a new array). The caller is thus free to modify the returned array.
|
||
|
*
|
||
|
* <p>This method acts as bridge between array-based and collection-based
|
||
|
* APIs.
|
||
|
*
|
||
|
* @return an array containing all of the elements in this deque
|
||
|
*/
|
||
|
public Object[] toArray() {
|
||
|
return toArrayInternal(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing all of the elements in this deque,
|
||
|
* in proper sequence (from first to last element); the runtime
|
||
|
* type of the returned array is that of the specified array. If
|
||
|
* the deque fits in the specified array, it is returned therein.
|
||
|
* Otherwise, a new array is allocated with the runtime type of
|
||
|
* the specified array and the size of this deque.
|
||
|
*
|
||
|
* <p>If this deque fits in the specified array with room to spare
|
||
|
* (i.e., the array has more elements than this deque), the element in
|
||
|
* the array immediately following the end of the deque is set to
|
||
|
* {@code null}.
|
||
|
*
|
||
|
* <p>Like the {@link #toArray()} method, this method acts as
|
||
|
* bridge between array-based and collection-based APIs. Further,
|
||
|
* this method allows precise control over the runtime type of the
|
||
|
* output array, and may, under certain circumstances, be used to
|
||
|
* save allocation costs.
|
||
|
*
|
||
|
* <p>Suppose {@code x} is a deque known to contain only strings.
|
||
|
* The following code can be used to dump the deque into a newly
|
||
|
* allocated array of {@code String}:
|
||
|
*
|
||
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
|
||
|
*
|
||
|
* Note that {@code toArray(new Object[0])} is identical in function to
|
||
|
* {@code toArray()}.
|
||
|
*
|
||
|
* @param a the array into which the elements of the deque are to
|
||
|
* be stored, if it is big enough; otherwise, a new array of the
|
||
|
* same runtime type is allocated for this purpose
|
||
|
* @return an array containing all of the elements in this deque
|
||
|
* @throws ArrayStoreException if the runtime type of the specified array
|
||
|
* is not a supertype of the runtime type of every element in
|
||
|
* this deque
|
||
|
* @throws NullPointerException if the specified array is null
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public <T> T[] toArray(T[] a) {
|
||
|
if (a == null) throw new NullPointerException();
|
||
|
return (T[]) toArrayInternal(a);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an iterator over the elements in this deque in proper sequence.
|
||
|
* The elements will be returned in order from first (head) to last (tail).
|
||
|
*
|
||
|
* <p>The returned iterator is
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* @return an iterator over the elements in this deque in proper sequence
|
||
|
*/
|
||
|
public Iterator<E> iterator() {
|
||
|
return new Itr();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an iterator over the elements in this deque in reverse
|
||
|
* sequential order. The elements will be returned in order from
|
||
|
* last (tail) to first (head).
|
||
|
*
|
||
|
* <p>The returned iterator is
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* @return an iterator over the elements in this deque in reverse order
|
||
|
*/
|
||
|
public Iterator<E> descendingIterator() {
|
||
|
return new DescendingItr();
|
||
|
}
|
||
|
|
||
|
private abstract class AbstractItr implements Iterator<E> {
|
||
|
/**
|
||
|
* Next node to return item for.
|
||
|
*/
|
||
|
private Node<E> nextNode;
|
||
|
|
||
|
/**
|
||
|
* nextItem holds on to item fields because once we claim
|
||
|
* that an element exists in hasNext(), we must return it in
|
||
|
* the following next() call even if it was in the process of
|
||
|
* being removed when hasNext() was called.
|
||
|
*/
|
||
|
private E nextItem;
|
||
|
|
||
|
/**
|
||
|
* Node returned by most recent call to next. Needed by remove.
|
||
|
* Reset to null if this element is deleted by a call to remove.
|
||
|
*/
|
||
|
private Node<E> lastRet;
|
||
|
|
||
|
abstract Node<E> startNode();
|
||
|
abstract Node<E> nextNode(Node<E> p);
|
||
|
|
||
|
AbstractItr() {
|
||
|
advance();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets nextNode and nextItem to next valid node, or to null
|
||
|
* if no such.
|
||
|
*/
|
||
|
private void advance() {
|
||
|
lastRet = nextNode;
|
||
|
|
||
|
Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
|
||
|
for (;; p = nextNode(p)) {
|
||
|
if (p == null) {
|
||
|
// might be at active end or TERMINATOR node; both are OK
|
||
|
nextNode = null;
|
||
|
nextItem = null;
|
||
|
break;
|
||
|
}
|
||
|
final E item;
|
||
|
if ((item = p.item) != null) {
|
||
|
nextNode = p;
|
||
|
nextItem = item;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public boolean hasNext() {
|
||
|
return nextItem != null;
|
||
|
}
|
||
|
|
||
|
public E next() {
|
||
|
E item = nextItem;
|
||
|
if (item == null) throw new NoSuchElementException();
|
||
|
advance();
|
||
|
return item;
|
||
|
}
|
||
|
|
||
|
public void remove() {
|
||
|
Node<E> l = lastRet;
|
||
|
if (l == null) throw new IllegalStateException();
|
||
|
l.item = null;
|
||
|
unlink(l);
|
||
|
lastRet = null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Forward iterator */
|
||
|
private class Itr extends AbstractItr {
|
||
|
Itr() {} // prevent access constructor creation
|
||
|
Node<E> startNode() { return first(); }
|
||
|
Node<E> nextNode(Node<E> p) { return succ(p); }
|
||
|
}
|
||
|
|
||
|
/** Descending iterator */
|
||
|
private class DescendingItr extends AbstractItr {
|
||
|
DescendingItr() {} // prevent access constructor creation
|
||
|
Node<E> startNode() { return last(); }
|
||
|
Node<E> nextNode(Node<E> p) { return pred(p); }
|
||
|
}
|
||
|
|
||
|
/** A customized variant of Spliterators.IteratorSpliterator */
|
||
|
final class CLDSpliterator implements Spliterator<E> {
|
||
|
static final int MAX_BATCH = 1 << 25; // max batch array size;
|
||
|
Node<E> current; // current node; null until initialized
|
||
|
int batch; // batch size for splits
|
||
|
boolean exhausted; // true when no more nodes
|
||
|
|
||
|
public Spliterator<E> trySplit() {
|
||
|
Node<E> p, q;
|
||
|
if ((p = current()) == null || (q = p.next) == null)
|
||
|
return null;
|
||
|
int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
|
||
|
Object[] a = null;
|
||
|
do {
|
||
|
final E e;
|
||
|
if ((e = p.item) != null) {
|
||
|
if (a == null)
|
||
|
a = new Object[n];
|
||
|
a[i++] = e;
|
||
|
}
|
||
|
if (p == (p = q))
|
||
|
p = first();
|
||
|
} while (p != null && (q = p.next) != null && i < n);
|
||
|
setCurrent(p);
|
||
|
return (i == 0) ? null :
|
||
|
Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
|
||
|
Spliterator.NONNULL |
|
||
|
Spliterator.CONCURRENT));
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
Node<E> p;
|
||
|
if ((p = current()) != null) {
|
||
|
current = null;
|
||
|
exhausted = true;
|
||
|
do {
|
||
|
final E e;
|
||
|
if ((e = p.item) != null)
|
||
|
action.accept(e);
|
||
|
if (p == (p = p.next))
|
||
|
p = first();
|
||
|
} while (p != null);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public boolean tryAdvance(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
Node<E> p;
|
||
|
if ((p = current()) != null) {
|
||
|
E e;
|
||
|
do {
|
||
|
e = p.item;
|
||
|
if (p == (p = p.next))
|
||
|
p = first();
|
||
|
} while (e == null && p != null);
|
||
|
setCurrent(p);
|
||
|
if (e != null) {
|
||
|
action.accept(e);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
private void setCurrent(Node<E> p) {
|
||
|
if ((current = p) == null)
|
||
|
exhausted = true;
|
||
|
}
|
||
|
|
||
|
private Node<E> current() {
|
||
|
Node<E> p;
|
||
|
if ((p = current) == null && !exhausted)
|
||
|
setCurrent(p = first());
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
public long estimateSize() { return Long.MAX_VALUE; }
|
||
|
|
||
|
public int characteristics() {
|
||
|
return (Spliterator.ORDERED |
|
||
|
Spliterator.NONNULL |
|
||
|
Spliterator.CONCURRENT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link Spliterator} over the elements in this deque.
|
||
|
*
|
||
|
* <p>The returned spliterator is
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
|
||
|
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
|
||
|
*
|
||
|
* @implNote
|
||
|
* The {@code Spliterator} implements {@code trySplit} to permit limited
|
||
|
* parallelism.
|
||
|
*
|
||
|
* @return a {@code Spliterator} over the elements in this deque
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public Spliterator<E> spliterator() {
|
||
|
return new CLDSpliterator();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Saves this deque to a stream (that is, serializes it).
|
||
|
*
|
||
|
* @param s the stream
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
* @serialData All of the elements (each an {@code E}) in
|
||
|
* the proper order, followed by a null
|
||
|
*/
|
||
|
private void writeObject(java.io.ObjectOutputStream s)
|
||
|
throws java.io.IOException {
|
||
|
|
||
|
// Write out any hidden stuff
|
||
|
s.defaultWriteObject();
|
||
|
|
||
|
// Write out all elements in the proper order.
|
||
|
for (Node<E> p = first(); p != null; p = succ(p)) {
|
||
|
final E item;
|
||
|
if ((item = p.item) != null)
|
||
|
s.writeObject(item);
|
||
|
}
|
||
|
|
||
|
// Use trailing null as sentinel
|
||
|
s.writeObject(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reconstitutes this deque from a stream (that is, deserializes it).
|
||
|
* @param s the stream
|
||
|
* @throws ClassNotFoundException if the class of a serialized object
|
||
|
* could not be found
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
*/
|
||
|
private void readObject(java.io.ObjectInputStream s)
|
||
|
throws java.io.IOException, ClassNotFoundException {
|
||
|
s.defaultReadObject();
|
||
|
|
||
|
// Read in elements until trailing null sentinel found
|
||
|
Node<E> h = null, t = null;
|
||
|
for (Object item; (item = s.readObject()) != null; ) {
|
||
|
@SuppressWarnings("unchecked")
|
||
|
Node<E> newNode = newNode((E) item);
|
||
|
if (h == null)
|
||
|
h = t = newNode;
|
||
|
else {
|
||
|
NEXT.set(t, newNode);
|
||
|
PREV.set(newNode, t);
|
||
|
t = newNode;
|
||
|
}
|
||
|
}
|
||
|
initHeadTail(h, t);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean removeIf(Predicate<? super E> filter) {
|
||
|
Objects.requireNonNull(filter);
|
||
|
return bulkRemove(filter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean removeAll(Collection<?> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
return bulkRemove(e -> c.contains(e));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean retainAll(Collection<?> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
return bulkRemove(e -> !c.contains(e));
|
||
|
}
|
||
|
|
||
|
/** Implementation of bulk remove methods. */
|
||
|
private boolean bulkRemove(Predicate<? super E> filter) {
|
||
|
boolean removed = false;
|
||
|
for (Node<E> p = first(), succ; p != null; p = succ) {
|
||
|
succ = succ(p);
|
||
|
final E item;
|
||
|
if ((item = p.item) != null
|
||
|
&& filter.test(item)
|
||
|
&& ITEM.compareAndSet(p, item, null)) {
|
||
|
unlink(p);
|
||
|
removed = true;
|
||
|
}
|
||
|
}
|
||
|
return removed;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public void forEach(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
E item;
|
||
|
for (Node<E> p = first(); p != null; p = succ(p))
|
||
|
if ((item = p.item) != null)
|
||
|
action.accept(item);
|
||
|
}
|
||
|
|
||
|
// VarHandle mechanics
|
||
|
private static final VarHandle HEAD;
|
||
|
private static final VarHandle TAIL;
|
||
|
private static final VarHandle PREV;
|
||
|
private static final VarHandle NEXT;
|
||
|
private static final VarHandle ITEM;
|
||
|
static {
|
||
|
PREV_TERMINATOR = new Node<Object>();
|
||
|
PREV_TERMINATOR.next = PREV_TERMINATOR;
|
||
|
NEXT_TERMINATOR = new Node<Object>();
|
||
|
NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
|
||
|
try {
|
||
|
MethodHandles.Lookup l = MethodHandles.lookup();
|
||
|
HEAD = l.findVarHandle(ConcurrentLinkedDeque.class, "head",
|
||
|
Node.class);
|
||
|
TAIL = l.findVarHandle(ConcurrentLinkedDeque.class, "tail",
|
||
|
Node.class);
|
||
|
PREV = l.findVarHandle(Node.class, "prev", Node.class);
|
||
|
NEXT = l.findVarHandle(Node.class, "next", Node.class);
|
||
|
ITEM = l.findVarHandle(Node.class, "item", Object.class);
|
||
|
} catch (ReflectiveOperationException e) {
|
||
|
throw new ExceptionInInitializerError(e);
|
||
|
}
|
||
|
}
|
||
|
}
|