1667 lines
64 KiB
Java
1667 lines
64 KiB
Java
![]() |
/*
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This file is available under and governed by the GNU General Public
|
||
|
* License version 2 only, as published by the Free Software Foundation.
|
||
|
* However, the following notice accompanied the original version of this
|
||
|
* file:
|
||
|
*
|
||
|
* Written by Doug Lea with assistance from members of JCP JSR-166
|
||
|
* Expert Group and released to the public domain, as explained at
|
||
|
* http://creativecommons.org/publicdomain/zero/1.0/
|
||
|
*/
|
||
|
|
||
|
package java.util.concurrent;
|
||
|
|
||
|
import java.lang.invoke.MethodHandles;
|
||
|
import java.lang.invoke.VarHandle;
|
||
|
import java.util.AbstractQueue;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Collection;
|
||
|
import java.util.Iterator;
|
||
|
import java.util.NoSuchElementException;
|
||
|
import java.util.Objects;
|
||
|
import java.util.Queue;
|
||
|
import java.util.Spliterator;
|
||
|
import java.util.Spliterators;
|
||
|
import java.util.concurrent.locks.LockSupport;
|
||
|
import java.util.function.Consumer;
|
||
|
import java.util.function.Predicate;
|
||
|
|
||
|
/**
|
||
|
* An unbounded {@link TransferQueue} based on linked nodes.
|
||
|
* This queue orders elements FIFO (first-in-first-out) with respect
|
||
|
* to any given producer. The <em>head</em> of the queue is that
|
||
|
* element that has been on the queue the longest time for some
|
||
|
* producer. The <em>tail</em> of the queue is that element that has
|
||
|
* been on the queue the shortest time for some producer.
|
||
|
*
|
||
|
* <p>Beware that, unlike in most collections, the {@code size} method
|
||
|
* is <em>NOT</em> a constant-time operation. Because of the
|
||
|
* asynchronous nature of these queues, determining the current number
|
||
|
* of elements requires a traversal of the elements, and so may report
|
||
|
* inaccurate results if this collection is modified during traversal.
|
||
|
*
|
||
|
* <p>Bulk operations that add, remove, or examine multiple elements,
|
||
|
* such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
|
||
|
* are <em>not</em> guaranteed to be performed atomically.
|
||
|
* For example, a {@code forEach} traversal concurrent with an {@code
|
||
|
* addAll} operation might observe only some of the added elements.
|
||
|
*
|
||
|
* <p>This class and its iterator implement all of the <em>optional</em>
|
||
|
* methods of the {@link Collection} and {@link Iterator} interfaces.
|
||
|
*
|
||
|
* <p>Memory consistency effects: As with other concurrent
|
||
|
* collections, actions in a thread prior to placing an object into a
|
||
|
* {@code LinkedTransferQueue}
|
||
|
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
|
||
|
* actions subsequent to the access or removal of that element from
|
||
|
* the {@code LinkedTransferQueue} in another thread.
|
||
|
*
|
||
|
* <p>This class is a member of the
|
||
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
||
|
* Java Collections Framework</a>.
|
||
|
*
|
||
|
* @since 1.7
|
||
|
* @author Doug Lea
|
||
|
* @param <E> the type of elements held in this queue
|
||
|
*/
|
||
|
public class LinkedTransferQueue<E> extends AbstractQueue<E>
|
||
|
implements TransferQueue<E>, java.io.Serializable {
|
||
|
private static final long serialVersionUID = -3223113410248163686L;
|
||
|
|
||
|
/*
|
||
|
* *** Overview of Dual Queues with Slack ***
|
||
|
*
|
||
|
* Dual Queues, introduced by Scherer and Scott
|
||
|
* (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
|
||
|
* are (linked) queues in which nodes may represent either data or
|
||
|
* requests. When a thread tries to enqueue a data node, but
|
||
|
* encounters a request node, it instead "matches" and removes it;
|
||
|
* and vice versa for enqueuing requests. Blocking Dual Queues
|
||
|
* arrange that threads enqueuing unmatched requests block until
|
||
|
* other threads provide the match. Dual Synchronous Queues (see
|
||
|
* Scherer, Lea, & Scott
|
||
|
* http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
|
||
|
* additionally arrange that threads enqueuing unmatched data also
|
||
|
* block. Dual Transfer Queues support all of these modes, as
|
||
|
* dictated by callers.
|
||
|
*
|
||
|
* A FIFO dual queue may be implemented using a variation of the
|
||
|
* Michael & Scott (M&S) lock-free queue algorithm
|
||
|
* (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
|
||
|
* It maintains two pointer fields, "head", pointing to a
|
||
|
* (matched) node that in turn points to the first actual
|
||
|
* (unmatched) queue node (or null if empty); and "tail" that
|
||
|
* points to the last node on the queue (or again null if
|
||
|
* empty). For example, here is a possible queue with four data
|
||
|
* elements:
|
||
|
*
|
||
|
* head tail
|
||
|
* | |
|
||
|
* v v
|
||
|
* M -> U -> U -> U -> U
|
||
|
*
|
||
|
* The M&S queue algorithm is known to be prone to scalability and
|
||
|
* overhead limitations when maintaining (via CAS) these head and
|
||
|
* tail pointers. This has led to the development of
|
||
|
* contention-reducing variants such as elimination arrays (see
|
||
|
* Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
|
||
|
* optimistic back pointers (see Ladan-Mozes & Shavit
|
||
|
* http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
|
||
|
* However, the nature of dual queues enables a simpler tactic for
|
||
|
* improving M&S-style implementations when dual-ness is needed.
|
||
|
*
|
||
|
* In a dual queue, each node must atomically maintain its match
|
||
|
* status. While there are other possible variants, we implement
|
||
|
* this here as: for a data-mode node, matching entails CASing an
|
||
|
* "item" field from a non-null data value to null upon match, and
|
||
|
* vice-versa for request nodes, CASing from null to a data
|
||
|
* value. (Note that the linearization properties of this style of
|
||
|
* queue are easy to verify -- elements are made available by
|
||
|
* linking, and unavailable by matching.) Compared to plain M&S
|
||
|
* queues, this property of dual queues requires one additional
|
||
|
* successful atomic operation per enq/deq pair. But it also
|
||
|
* enables lower cost variants of queue maintenance mechanics. (A
|
||
|
* variation of this idea applies even for non-dual queues that
|
||
|
* support deletion of interior elements, such as
|
||
|
* j.u.c.ConcurrentLinkedQueue.)
|
||
|
*
|
||
|
* Once a node is matched, its match status can never again
|
||
|
* change. We may thus arrange that the linked list of them
|
||
|
* contain a prefix of zero or more matched nodes, followed by a
|
||
|
* suffix of zero or more unmatched nodes. (Note that we allow
|
||
|
* both the prefix and suffix to be zero length, which in turn
|
||
|
* means that we do not use a dummy header.) If we were not
|
||
|
* concerned with either time or space efficiency, we could
|
||
|
* correctly perform enqueue and dequeue operations by traversing
|
||
|
* from a pointer to the initial node; CASing the item of the
|
||
|
* first unmatched node on match and CASing the next field of the
|
||
|
* trailing node on appends. While this would be a terrible idea
|
||
|
* in itself, it does have the benefit of not requiring ANY atomic
|
||
|
* updates on head/tail fields.
|
||
|
*
|
||
|
* We introduce here an approach that lies between the extremes of
|
||
|
* never versus always updating queue (head and tail) pointers.
|
||
|
* This offers a tradeoff between sometimes requiring extra
|
||
|
* traversal steps to locate the first and/or last unmatched
|
||
|
* nodes, versus the reduced overhead and contention of fewer
|
||
|
* updates to queue pointers. For example, a possible snapshot of
|
||
|
* a queue is:
|
||
|
*
|
||
|
* head tail
|
||
|
* | |
|
||
|
* v v
|
||
|
* M -> M -> U -> U -> U -> U
|
||
|
*
|
||
|
* The best value for this "slack" (the targeted maximum distance
|
||
|
* between the value of "head" and the first unmatched node, and
|
||
|
* similarly for "tail") is an empirical matter. We have found
|
||
|
* that using very small constants in the range of 1-3 work best
|
||
|
* over a range of platforms. Larger values introduce increasing
|
||
|
* costs of cache misses and risks of long traversal chains, while
|
||
|
* smaller values increase CAS contention and overhead.
|
||
|
*
|
||
|
* Dual queues with slack differ from plain M&S dual queues by
|
||
|
* virtue of only sometimes updating head or tail pointers when
|
||
|
* matching, appending, or even traversing nodes; in order to
|
||
|
* maintain a targeted slack. The idea of "sometimes" may be
|
||
|
* operationalized in several ways. The simplest is to use a
|
||
|
* per-operation counter incremented on each traversal step, and
|
||
|
* to try (via CAS) to update the associated queue pointer
|
||
|
* whenever the count exceeds a threshold. Another, that requires
|
||
|
* more overhead, is to use random number generators to update
|
||
|
* with a given probability per traversal step.
|
||
|
*
|
||
|
* In any strategy along these lines, because CASes updating
|
||
|
* fields may fail, the actual slack may exceed targeted slack.
|
||
|
* However, they may be retried at any time to maintain targets.
|
||
|
* Even when using very small slack values, this approach works
|
||
|
* well for dual queues because it allows all operations up to the
|
||
|
* point of matching or appending an item (hence potentially
|
||
|
* allowing progress by another thread) to be read-only, thus not
|
||
|
* introducing any further contention. As described below, we
|
||
|
* implement this by performing slack maintenance retries only
|
||
|
* after these points.
|
||
|
*
|
||
|
* As an accompaniment to such techniques, traversal overhead can
|
||
|
* be further reduced without increasing contention of head
|
||
|
* pointer updates: Threads may sometimes shortcut the "next" link
|
||
|
* path from the current "head" node to be closer to the currently
|
||
|
* known first unmatched node, and similarly for tail. Again, this
|
||
|
* may be triggered with using thresholds or randomization.
|
||
|
*
|
||
|
* These ideas must be further extended to avoid unbounded amounts
|
||
|
* of costly-to-reclaim garbage caused by the sequential "next"
|
||
|
* links of nodes starting at old forgotten head nodes: As first
|
||
|
* described in detail by Boehm
|
||
|
* (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
|
||
|
* delays noticing that any arbitrarily old node has become
|
||
|
* garbage, all newer dead nodes will also be unreclaimed.
|
||
|
* (Similar issues arise in non-GC environments.) To cope with
|
||
|
* this in our implementation, upon CASing to advance the head
|
||
|
* pointer, we set the "next" link of the previous head to point
|
||
|
* only to itself; thus limiting the length of chains of dead nodes.
|
||
|
* (We also take similar care to wipe out possibly garbage
|
||
|
* retaining values held in other Node fields.) However, doing so
|
||
|
* adds some further complexity to traversal: If any "next"
|
||
|
* pointer links to itself, it indicates that the current thread
|
||
|
* has lagged behind a head-update, and so the traversal must
|
||
|
* continue from the "head". Traversals trying to find the
|
||
|
* current tail starting from "tail" may also encounter
|
||
|
* self-links, in which case they also continue at "head".
|
||
|
*
|
||
|
* It is tempting in slack-based scheme to not even use CAS for
|
||
|
* updates (similarly to Ladan-Mozes & Shavit). However, this
|
||
|
* cannot be done for head updates under the above link-forgetting
|
||
|
* mechanics because an update may leave head at a detached node.
|
||
|
* And while direct writes are possible for tail updates, they
|
||
|
* increase the risk of long retraversals, and hence long garbage
|
||
|
* chains, which can be much more costly than is worthwhile
|
||
|
* considering that the cost difference of performing a CAS vs
|
||
|
* write is smaller when they are not triggered on each operation
|
||
|
* (especially considering that writes and CASes equally require
|
||
|
* additional GC bookkeeping ("write barriers") that are sometimes
|
||
|
* more costly than the writes themselves because of contention).
|
||
|
*
|
||
|
* *** Overview of implementation ***
|
||
|
*
|
||
|
* We use a threshold-based approach to updates, with a slack
|
||
|
* threshold of two -- that is, we update head/tail when the
|
||
|
* current pointer appears to be two or more steps away from the
|
||
|
* first/last node. The slack value is hard-wired: a path greater
|
||
|
* than one is naturally implemented by checking equality of
|
||
|
* traversal pointers except when the list has only one element,
|
||
|
* in which case we keep slack threshold at one. Avoiding tracking
|
||
|
* explicit counts across method calls slightly simplifies an
|
||
|
* already-messy implementation. Using randomization would
|
||
|
* probably work better if there were a low-quality dirt-cheap
|
||
|
* per-thread one available, but even ThreadLocalRandom is too
|
||
|
* heavy for these purposes.
|
||
|
*
|
||
|
* With such a small slack threshold value, it is not worthwhile
|
||
|
* to augment this with path short-circuiting (i.e., unsplicing
|
||
|
* interior nodes) except in the case of cancellation/removal (see
|
||
|
* below).
|
||
|
*
|
||
|
* All enqueue/dequeue operations are handled by the single method
|
||
|
* "xfer" with parameters indicating whether to act as some form
|
||
|
* of offer, put, poll, take, or transfer (each possibly with
|
||
|
* timeout). The relative complexity of using one monolithic
|
||
|
* method outweighs the code bulk and maintenance problems of
|
||
|
* using separate methods for each case.
|
||
|
*
|
||
|
* Operation consists of up to two phases. The first is implemented
|
||
|
* in method xfer, the second in method awaitMatch.
|
||
|
*
|
||
|
* 1. Traverse until matching or appending (method xfer)
|
||
|
*
|
||
|
* Conceptually, we simply traverse all nodes starting from head.
|
||
|
* If we encounter an unmatched node of opposite mode, we match
|
||
|
* it and return, also updating head (by at least 2 hops) to
|
||
|
* one past the matched node (or the node itself if it's the
|
||
|
* pinned trailing node). Traversals also check for the
|
||
|
* possibility of falling off-list, in which case they restart.
|
||
|
*
|
||
|
* If the trailing node of the list is reached, a match is not
|
||
|
* possible. If this call was untimed poll or tryTransfer
|
||
|
* (argument "how" is NOW), return empty-handed immediately.
|
||
|
* Else a new node is CAS-appended. On successful append, if
|
||
|
* this call was ASYNC (e.g. offer), an element was
|
||
|
* successfully added to the end of the queue and we return.
|
||
|
*
|
||
|
* Of course, this naive traversal is O(n) when no match is
|
||
|
* possible. We optimize the traversal by maintaining a tail
|
||
|
* pointer, which is expected to be "near" the end of the list.
|
||
|
* It is only safe to fast-forward to tail (in the presence of
|
||
|
* arbitrary concurrent changes) if it is pointing to a node of
|
||
|
* the same mode, even if it is dead (in this case no preceding
|
||
|
* node could still be matchable by this traversal). If we
|
||
|
* need to restart due to falling off-list, we can again
|
||
|
* fast-forward to tail, but only if it has changed since the
|
||
|
* last traversal (else we might loop forever). If tail cannot
|
||
|
* be used, traversal starts at head (but in this case we
|
||
|
* expect to be able to match near head). As with head, we
|
||
|
* CAS-advance the tail pointer by at least two hops.
|
||
|
*
|
||
|
* 2. Await match or cancellation (method awaitMatch)
|
||
|
*
|
||
|
* Wait for another thread to match node; instead cancelling if
|
||
|
* the current thread was interrupted or the wait timed out. To
|
||
|
* improve performance in common single-source / single-sink
|
||
|
* usages when there are more tasks that cores, an initial
|
||
|
* Thread.yield is tried when there is apparently only one
|
||
|
* waiter. In other cases, waiters may help with some
|
||
|
* bookkeeping, then park/unpark.
|
||
|
*
|
||
|
* ** Unlinking removed interior nodes **
|
||
|
*
|
||
|
* In addition to minimizing garbage retention via self-linking
|
||
|
* described above, we also unlink removed interior nodes. These
|
||
|
* may arise due to timed out or interrupted waits, or calls to
|
||
|
* remove(x) or Iterator.remove. Normally, given a node that was
|
||
|
* at one time known to be the predecessor of some node s that is
|
||
|
* to be removed, we can unsplice s by CASing the next field of
|
||
|
* its predecessor if it still points to s (otherwise s must
|
||
|
* already have been removed or is now offlist). But there are two
|
||
|
* situations in which we cannot guarantee to make node s
|
||
|
* unreachable in this way: (1) If s is the trailing node of list
|
||
|
* (i.e., with null next), then it is pinned as the target node
|
||
|
* for appends, so can only be removed later after other nodes are
|
||
|
* appended. (2) We cannot necessarily unlink s given a
|
||
|
* predecessor node that is matched (including the case of being
|
||
|
* cancelled): the predecessor may already be unspliced, in which
|
||
|
* case some previous reachable node may still point to s.
|
||
|
* (For further explanation see Herlihy & Shavit "The Art of
|
||
|
* Multiprocessor Programming" chapter 9). Although, in both
|
||
|
* cases, we can rule out the need for further action if either s
|
||
|
* or its predecessor are (or can be made to be) at, or fall off
|
||
|
* from, the head of list.
|
||
|
*
|
||
|
* Without taking these into account, it would be possible for an
|
||
|
* unbounded number of supposedly removed nodes to remain reachable.
|
||
|
* Situations leading to such buildup are uncommon but can occur
|
||
|
* in practice; for example when a series of short timed calls to
|
||
|
* poll repeatedly time out at the trailing node but otherwise
|
||
|
* never fall off the list because of an untimed call to take() at
|
||
|
* the front of the queue.
|
||
|
*
|
||
|
* When these cases arise, rather than always retraversing the
|
||
|
* entire list to find an actual predecessor to unlink (which
|
||
|
* won't help for case (1) anyway), we record the need to sweep the
|
||
|
* next time any thread would otherwise block in awaitMatch. Also,
|
||
|
* because traversal operations on the linked list of nodes are a
|
||
|
* natural opportunity to sweep dead nodes, we generally do so,
|
||
|
* including all the operations that might remove elements as they
|
||
|
* traverse, such as removeIf and Iterator.remove. This largely
|
||
|
* eliminates long chains of dead interior nodes, except from
|
||
|
* cancelled or timed out blocking operations.
|
||
|
*
|
||
|
* Note that we cannot self-link unlinked interior nodes during
|
||
|
* sweeps. However, the associated garbage chains terminate when
|
||
|
* some successor ultimately falls off the head of the list and is
|
||
|
* self-linked.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* The number of nanoseconds for which it is faster to spin
|
||
|
* rather than to use timed park. A rough estimate suffices.
|
||
|
* Using a power of two minus one simplifies some comparisons.
|
||
|
*/
|
||
|
static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1023L;
|
||
|
|
||
|
/**
|
||
|
* The maximum number of estimated removal failures (sweepVotes)
|
||
|
* to tolerate before sweeping through the queue unlinking
|
||
|
* cancelled nodes that were not unlinked upon initial
|
||
|
* removal. See above for explanation. The value must be at least
|
||
|
* two to avoid useless sweeps when removing trailing nodes.
|
||
|
*/
|
||
|
static final int SWEEP_THRESHOLD = 32;
|
||
|
|
||
|
/**
|
||
|
* Queue nodes. Uses Object, not E, for items to allow forgetting
|
||
|
* them after use. Writes that are intrinsically ordered wrt
|
||
|
* other accesses or CASes use simple relaxed forms.
|
||
|
*/
|
||
|
static final class Node implements ForkJoinPool.ManagedBlocker {
|
||
|
final boolean isData; // false if this is a request node
|
||
|
volatile Object item; // initially non-null if isData; CASed to match
|
||
|
volatile Node next;
|
||
|
volatile Thread waiter; // null when not waiting for a match
|
||
|
|
||
|
/**
|
||
|
* Constructs a data node holding item if item is non-null,
|
||
|
* else a request node. Uses relaxed write because item can
|
||
|
* only be seen after piggy-backing publication via CAS.
|
||
|
*/
|
||
|
Node(Object item) {
|
||
|
ITEM.set(this, item);
|
||
|
isData = (item != null);
|
||
|
}
|
||
|
|
||
|
/** Constructs a (matched data) dummy node. */
|
||
|
Node() {
|
||
|
isData = true;
|
||
|
}
|
||
|
|
||
|
final boolean casNext(Node cmp, Node val) {
|
||
|
// assert val != null;
|
||
|
return NEXT.compareAndSet(this, cmp, val);
|
||
|
}
|
||
|
|
||
|
final boolean casItem(Object cmp, Object val) {
|
||
|
// assert isData == (cmp != null);
|
||
|
// assert isData == (val == null);
|
||
|
// assert !(cmp instanceof Node);
|
||
|
return ITEM.compareAndSet(this, cmp, val);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Links node to itself to avoid garbage retention. Called
|
||
|
* only after CASing head field, so uses relaxed write.
|
||
|
*/
|
||
|
final void selfLink() {
|
||
|
// assert isMatched();
|
||
|
NEXT.setRelease(this, this);
|
||
|
}
|
||
|
|
||
|
final void appendRelaxed(Node next) {
|
||
|
// assert next != null;
|
||
|
// assert this.next == null;
|
||
|
NEXT.setOpaque(this, next);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if this node has been matched, including the
|
||
|
* case of artificial matches due to cancellation.
|
||
|
*/
|
||
|
final boolean isMatched() {
|
||
|
return isData == (item == null);
|
||
|
}
|
||
|
|
||
|
/** Tries to CAS-match this node; if successful, wakes waiter. */
|
||
|
final boolean tryMatch(Object cmp, Object val) {
|
||
|
if (casItem(cmp, val)) {
|
||
|
LockSupport.unpark(waiter);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if a node with the given mode cannot be
|
||
|
* appended to this node because this node is unmatched and
|
||
|
* has opposite data mode.
|
||
|
*/
|
||
|
final boolean cannotPrecede(boolean haveData) {
|
||
|
boolean d = isData;
|
||
|
return d != haveData && d != (item == null);
|
||
|
}
|
||
|
|
||
|
public final boolean isReleasable() {
|
||
|
return (isData == (item == null)) ||
|
||
|
Thread.currentThread().isInterrupted();
|
||
|
}
|
||
|
|
||
|
public final boolean block() {
|
||
|
while (!isReleasable()) LockSupport.park();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private static final long serialVersionUID = -3375979862319811754L;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A node from which the first live (non-matched) node (if any)
|
||
|
* can be reached in O(1) time.
|
||
|
* Invariants:
|
||
|
* - all live nodes are reachable from head via .next
|
||
|
* - head != null
|
||
|
* - (tmp = head).next != tmp || tmp != head
|
||
|
* Non-invariants:
|
||
|
* - head may or may not be live
|
||
|
* - it is permitted for tail to lag behind head, that is, for tail
|
||
|
* to not be reachable from head!
|
||
|
*/
|
||
|
transient volatile Node head;
|
||
|
|
||
|
/**
|
||
|
* A node from which the last node on list (that is, the unique
|
||
|
* node with node.next == null) can be reached in O(1) time.
|
||
|
* Invariants:
|
||
|
* - the last node is always reachable from tail via .next
|
||
|
* - tail != null
|
||
|
* Non-invariants:
|
||
|
* - tail may or may not be live
|
||
|
* - it is permitted for tail to lag behind head, that is, for tail
|
||
|
* to not be reachable from head!
|
||
|
* - tail.next may or may not be self-linked.
|
||
|
*/
|
||
|
private transient volatile Node tail;
|
||
|
|
||
|
/** The number of apparent failures to unsplice cancelled nodes */
|
||
|
private transient volatile boolean needSweep;
|
||
|
|
||
|
private boolean casTail(Node cmp, Node val) {
|
||
|
// assert cmp != null;
|
||
|
// assert val != null;
|
||
|
return TAIL.compareAndSet(this, cmp, val);
|
||
|
}
|
||
|
|
||
|
private boolean casHead(Node cmp, Node val) {
|
||
|
return HEAD.compareAndSet(this, cmp, val);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Tries to CAS pred.next (or head, if pred is null) from c to p.
|
||
|
* Caller must ensure that we're not unlinking the trailing node.
|
||
|
*/
|
||
|
private boolean tryCasSuccessor(Node pred, Node c, Node p) {
|
||
|
// assert p != null;
|
||
|
// assert c.isData != (c.item != null);
|
||
|
// assert c != p;
|
||
|
if (pred != null)
|
||
|
return pred.casNext(c, p);
|
||
|
if (casHead(c, p)) {
|
||
|
c.selfLink();
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Collapses dead (matched) nodes between pred and q.
|
||
|
* @param pred the last known live node, or null if none
|
||
|
* @param c the first dead node
|
||
|
* @param p the last dead node
|
||
|
* @param q p.next: the next live node, or null if at end
|
||
|
* @return pred if pred still alive and CAS succeeded; else p
|
||
|
*/
|
||
|
private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
|
||
|
// assert pred != c;
|
||
|
// assert p != q;
|
||
|
// assert c.isMatched();
|
||
|
// assert p.isMatched();
|
||
|
if (q == null) {
|
||
|
// Never unlink trailing node.
|
||
|
if (c == p) return pred;
|
||
|
q = p;
|
||
|
}
|
||
|
return (tryCasSuccessor(pred, c, q)
|
||
|
&& (pred == null || !pred.isMatched()))
|
||
|
? pred : p;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Collapses dead (matched) nodes from h (which was once head) to p.
|
||
|
* Caller ensures all nodes from h up to and including p are dead.
|
||
|
*/
|
||
|
private void skipDeadNodesNearHead(Node h, Node p) {
|
||
|
// assert h != null;
|
||
|
// assert h != p;
|
||
|
// assert p.isMatched();
|
||
|
for (;;) {
|
||
|
final Node q;
|
||
|
if ((q = p.next) == null) break;
|
||
|
else if (!q.isMatched()) { p = q; break; }
|
||
|
else if (p == (p = q)) return;
|
||
|
}
|
||
|
if (casHead(h, p))
|
||
|
h.selfLink();
|
||
|
}
|
||
|
|
||
|
/* Possible values for "how" argument in xfer method. */
|
||
|
|
||
|
private static final int NOW = 0; // for untimed poll, tryTransfer
|
||
|
private static final int ASYNC = 1; // for offer, put, add
|
||
|
private static final int SYNC = 2; // for transfer, take
|
||
|
private static final int TIMED = 3; // for timed poll, tryTransfer
|
||
|
|
||
|
/**
|
||
|
* Implements all queuing methods. See above for explanation.
|
||
|
*
|
||
|
* @param e the item or null for take
|
||
|
* @param haveData true if this is a put, else a take
|
||
|
* @param how NOW, ASYNC, SYNC, or TIMED
|
||
|
* @param nanos timeout in nanosecs, used only if mode is TIMED
|
||
|
* @return an item if matched, else e
|
||
|
* @throws NullPointerException if haveData mode but e is null
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
private E xfer(E e, boolean haveData, int how, long nanos) {
|
||
|
if (haveData && (e == null))
|
||
|
throw new NullPointerException();
|
||
|
|
||
|
restart: for (Node s = null, t = null, h = null;;) {
|
||
|
for (Node p = (t != (t = tail) && t.isData == haveData) ? t
|
||
|
: (h = head);; ) {
|
||
|
final Node q; final Object item;
|
||
|
if (p.isData != haveData
|
||
|
&& haveData == ((item = p.item) == null)) {
|
||
|
if (h == null) h = head;
|
||
|
if (p.tryMatch(item, e)) {
|
||
|
if (h != p) skipDeadNodesNearHead(h, p);
|
||
|
return (E) item;
|
||
|
}
|
||
|
}
|
||
|
if ((q = p.next) == null) {
|
||
|
if (how == NOW) return e;
|
||
|
if (s == null) s = new Node(e);
|
||
|
if (!p.casNext(null, s)) continue;
|
||
|
if (p != t) casTail(t, s);
|
||
|
if (how == ASYNC) return e;
|
||
|
return awaitMatch(s, p, e, (how == TIMED), nanos);
|
||
|
}
|
||
|
if (p == (p = q)) continue restart;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Possibly blocks until node s is matched or caller gives up.
|
||
|
*
|
||
|
* @param s the waiting node
|
||
|
* @param pred the predecessor of s, or null if unknown (the null
|
||
|
* case does not occur in any current calls but may in possible
|
||
|
* future extensions)
|
||
|
* @param e the comparison value for checking match
|
||
|
* @param timed if true, wait only until timeout elapses
|
||
|
* @param nanos timeout in nanosecs, used only if timed is true
|
||
|
* @return matched item, or e if unmatched on interrupt or timeout
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
|
||
|
final boolean isData = s.isData;
|
||
|
final long deadline = timed ? System.nanoTime() + nanos : 0L;
|
||
|
final Thread w = Thread.currentThread();
|
||
|
int stat = -1; // -1: may yield, +1: park, else 0
|
||
|
Object item;
|
||
|
while ((item = s.item) == e) {
|
||
|
if (needSweep) // help clean
|
||
|
sweep();
|
||
|
else if ((timed && nanos <= 0L) || w.isInterrupted()) {
|
||
|
if (s.casItem(e, (e == null) ? s : null)) {
|
||
|
unsplice(pred, s); // cancelled
|
||
|
return e;
|
||
|
}
|
||
|
}
|
||
|
else if (stat <= 0) {
|
||
|
if (pred != null && pred.next == s) {
|
||
|
if (stat < 0 &&
|
||
|
(pred.isData != isData || pred.isMatched())) {
|
||
|
stat = 0; // yield once if first
|
||
|
Thread.yield();
|
||
|
}
|
||
|
else {
|
||
|
stat = 1;
|
||
|
s.waiter = w; // enable unpark
|
||
|
}
|
||
|
} // else signal in progress
|
||
|
}
|
||
|
else if ((item = s.item) != e)
|
||
|
break; // recheck
|
||
|
else if (!timed) {
|
||
|
LockSupport.setCurrentBlocker(this);
|
||
|
try {
|
||
|
ForkJoinPool.managedBlock(s);
|
||
|
} catch (InterruptedException cannotHappen) { }
|
||
|
LockSupport.setCurrentBlocker(null);
|
||
|
}
|
||
|
else {
|
||
|
nanos = deadline - System.nanoTime();
|
||
|
if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
|
||
|
LockSupport.parkNanos(this, nanos);
|
||
|
}
|
||
|
}
|
||
|
if (stat == 1)
|
||
|
WAITER.set(s, null);
|
||
|
if (!isData)
|
||
|
ITEM.set(s, s); // self-link to avoid garbage
|
||
|
return (E) item;
|
||
|
}
|
||
|
|
||
|
/* -------------- Traversal methods -------------- */
|
||
|
|
||
|
/**
|
||
|
* Returns the first unmatched data node, or null if none.
|
||
|
* Callers must recheck if the returned node is unmatched
|
||
|
* before using.
|
||
|
*/
|
||
|
final Node firstDataNode() {
|
||
|
Node first = null;
|
||
|
restartFromHead: for (;;) {
|
||
|
Node h = head, p = h;
|
||
|
while (p != null) {
|
||
|
if (p.item != null) {
|
||
|
if (p.isData) {
|
||
|
first = p;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (!p.isData)
|
||
|
break;
|
||
|
final Node q;
|
||
|
if ((q = p.next) == null)
|
||
|
break;
|
||
|
if (p == (p = q))
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
if (p != h && casHead(h, p))
|
||
|
h.selfLink();
|
||
|
return first;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Traverses and counts unmatched nodes of the given mode.
|
||
|
* Used by methods size and getWaitingConsumerCount.
|
||
|
*/
|
||
|
private int countOfMode(boolean data) {
|
||
|
restartFromHead: for (;;) {
|
||
|
int count = 0;
|
||
|
for (Node p = head; p != null;) {
|
||
|
if (!p.isMatched()) {
|
||
|
if (p.isData != data)
|
||
|
return 0;
|
||
|
if (++count == Integer.MAX_VALUE)
|
||
|
break; // @see Collection.size()
|
||
|
}
|
||
|
if (p == (p = p.next))
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public String toString() {
|
||
|
String[] a = null;
|
||
|
restartFromHead: for (;;) {
|
||
|
int charLength = 0;
|
||
|
int size = 0;
|
||
|
for (Node p = head; p != null;) {
|
||
|
Object item = p.item;
|
||
|
if (p.isData) {
|
||
|
if (item != null) {
|
||
|
if (a == null)
|
||
|
a = new String[4];
|
||
|
else if (size == a.length)
|
||
|
a = Arrays.copyOf(a, 2 * size);
|
||
|
String s = item.toString();
|
||
|
a[size++] = s;
|
||
|
charLength += s.length();
|
||
|
}
|
||
|
} else if (item == null)
|
||
|
break;
|
||
|
if (p == (p = p.next))
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
|
||
|
if (size == 0)
|
||
|
return "[]";
|
||
|
|
||
|
return Helpers.toString(a, size, charLength);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private Object[] toArrayInternal(Object[] a) {
|
||
|
Object[] x = a;
|
||
|
restartFromHead: for (;;) {
|
||
|
int size = 0;
|
||
|
for (Node p = head; p != null;) {
|
||
|
Object item = p.item;
|
||
|
if (p.isData) {
|
||
|
if (item != null) {
|
||
|
if (x == null)
|
||
|
x = new Object[4];
|
||
|
else if (size == x.length)
|
||
|
x = Arrays.copyOf(x, 2 * (size + 4));
|
||
|
x[size++] = item;
|
||
|
}
|
||
|
} else if (item == null)
|
||
|
break;
|
||
|
if (p == (p = p.next))
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
if (x == null)
|
||
|
return new Object[0];
|
||
|
else if (a != null && size <= a.length) {
|
||
|
if (a != x)
|
||
|
System.arraycopy(x, 0, a, 0, size);
|
||
|
if (size < a.length)
|
||
|
a[size] = null;
|
||
|
return a;
|
||
|
}
|
||
|
return (size == x.length) ? x : Arrays.copyOf(x, size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing all of the elements in this queue, in
|
||
|
* proper sequence.
|
||
|
*
|
||
|
* <p>The returned array will be "safe" in that no references to it are
|
||
|
* maintained by this queue. (In other words, this method must allocate
|
||
|
* a new array). The caller is thus free to modify the returned array.
|
||
|
*
|
||
|
* <p>This method acts as bridge between array-based and collection-based
|
||
|
* APIs.
|
||
|
*
|
||
|
* @return an array containing all of the elements in this queue
|
||
|
*/
|
||
|
public Object[] toArray() {
|
||
|
return toArrayInternal(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an array containing all of the elements in this queue, in
|
||
|
* proper sequence; the runtime type of the returned array is that of
|
||
|
* the specified array. If the queue fits in the specified array, it
|
||
|
* is returned therein. Otherwise, a new array is allocated with the
|
||
|
* runtime type of the specified array and the size of this queue.
|
||
|
*
|
||
|
* <p>If this queue fits in the specified array with room to spare
|
||
|
* (i.e., the array has more elements than this queue), the element in
|
||
|
* the array immediately following the end of the queue is set to
|
||
|
* {@code null}.
|
||
|
*
|
||
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between
|
||
|
* array-based and collection-based APIs. Further, this method allows
|
||
|
* precise control over the runtime type of the output array, and may,
|
||
|
* under certain circumstances, be used to save allocation costs.
|
||
|
*
|
||
|
* <p>Suppose {@code x} is a queue known to contain only strings.
|
||
|
* The following code can be used to dump the queue into a newly
|
||
|
* allocated array of {@code String}:
|
||
|
*
|
||
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
|
||
|
*
|
||
|
* Note that {@code toArray(new Object[0])} is identical in function to
|
||
|
* {@code toArray()}.
|
||
|
*
|
||
|
* @param a the array into which the elements of the queue are to
|
||
|
* be stored, if it is big enough; otherwise, a new array of the
|
||
|
* same runtime type is allocated for this purpose
|
||
|
* @return an array containing all of the elements in this queue
|
||
|
* @throws ArrayStoreException if the runtime type of the specified array
|
||
|
* is not a supertype of the runtime type of every element in
|
||
|
* this queue
|
||
|
* @throws NullPointerException if the specified array is null
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public <T> T[] toArray(T[] a) {
|
||
|
Objects.requireNonNull(a);
|
||
|
return (T[]) toArrayInternal(a);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Weakly-consistent iterator.
|
||
|
*
|
||
|
* Lazily updated ancestor is expected to be amortized O(1) remove(),
|
||
|
* but O(n) in the worst case, when lastRet is concurrently deleted.
|
||
|
*/
|
||
|
final class Itr implements Iterator<E> {
|
||
|
private Node nextNode; // next node to return item for
|
||
|
private E nextItem; // the corresponding item
|
||
|
private Node lastRet; // last returned node, to support remove
|
||
|
private Node ancestor; // Helps unlink lastRet on remove()
|
||
|
|
||
|
/**
|
||
|
* Moves to next node after pred, or first node if pred null.
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
private void advance(Node pred) {
|
||
|
for (Node p = (pred == null) ? head : pred.next, c = p;
|
||
|
p != null; ) {
|
||
|
final Object item;
|
||
|
if ((item = p.item) != null && p.isData) {
|
||
|
nextNode = p;
|
||
|
nextItem = (E) item;
|
||
|
if (c != p)
|
||
|
tryCasSuccessor(pred, c, p);
|
||
|
return;
|
||
|
}
|
||
|
else if (!p.isData && item == null)
|
||
|
break;
|
||
|
if (c != p && !tryCasSuccessor(pred, c, c = p)) {
|
||
|
pred = p;
|
||
|
c = p = p.next;
|
||
|
}
|
||
|
else if (p == (p = p.next)) {
|
||
|
pred = null;
|
||
|
c = p = head;
|
||
|
}
|
||
|
}
|
||
|
nextItem = null;
|
||
|
nextNode = null;
|
||
|
}
|
||
|
|
||
|
Itr() {
|
||
|
advance(null);
|
||
|
}
|
||
|
|
||
|
public final boolean hasNext() {
|
||
|
return nextNode != null;
|
||
|
}
|
||
|
|
||
|
public final E next() {
|
||
|
final Node p;
|
||
|
if ((p = nextNode) == null) throw new NoSuchElementException();
|
||
|
E e = nextItem;
|
||
|
advance(lastRet = p);
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
Node q = null;
|
||
|
for (Node p; (p = nextNode) != null; advance(q = p))
|
||
|
action.accept(nextItem);
|
||
|
if (q != null)
|
||
|
lastRet = q;
|
||
|
}
|
||
|
|
||
|
public final void remove() {
|
||
|
final Node lastRet = this.lastRet;
|
||
|
if (lastRet == null)
|
||
|
throw new IllegalStateException();
|
||
|
this.lastRet = null;
|
||
|
if (lastRet.item == null) // already deleted?
|
||
|
return;
|
||
|
// Advance ancestor, collapsing intervening dead nodes
|
||
|
Node pred = ancestor;
|
||
|
for (Node p = (pred == null) ? head : pred.next, c = p, q;
|
||
|
p != null; ) {
|
||
|
if (p == lastRet) {
|
||
|
final Object item;
|
||
|
if ((item = p.item) != null)
|
||
|
p.tryMatch(item, null);
|
||
|
if ((q = p.next) == null) q = p;
|
||
|
if (c != q) tryCasSuccessor(pred, c, q);
|
||
|
ancestor = pred;
|
||
|
return;
|
||
|
}
|
||
|
final Object item; final boolean pAlive;
|
||
|
if (pAlive = ((item = p.item) != null && p.isData)) {
|
||
|
// exceptionally, nothing to do
|
||
|
}
|
||
|
else if (!p.isData && item == null)
|
||
|
break;
|
||
|
if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
|
||
|
pred = p;
|
||
|
c = p = p.next;
|
||
|
}
|
||
|
else if (p == (p = p.next)) {
|
||
|
pred = null;
|
||
|
c = p = head;
|
||
|
}
|
||
|
}
|
||
|
// traversal failed to find lastRet; must have been deleted;
|
||
|
// leave ancestor at original location to avoid overshoot;
|
||
|
// better luck next time!
|
||
|
|
||
|
// assert lastRet.isMatched();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** A customized variant of Spliterators.IteratorSpliterator */
|
||
|
final class LTQSpliterator implements Spliterator<E> {
|
||
|
static final int MAX_BATCH = 1 << 25; // max batch array size;
|
||
|
Node current; // current node; null until initialized
|
||
|
int batch; // batch size for splits
|
||
|
boolean exhausted; // true when no more nodes
|
||
|
LTQSpliterator() {}
|
||
|
|
||
|
public Spliterator<E> trySplit() {
|
||
|
Node p, q;
|
||
|
if ((p = current()) == null || (q = p.next) == null)
|
||
|
return null;
|
||
|
int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
|
||
|
Object[] a = null;
|
||
|
do {
|
||
|
final Object item = p.item;
|
||
|
if (p.isData) {
|
||
|
if (item != null) {
|
||
|
if (a == null)
|
||
|
a = new Object[n];
|
||
|
a[i++] = item;
|
||
|
}
|
||
|
} else if (item == null) {
|
||
|
p = null;
|
||
|
break;
|
||
|
}
|
||
|
if (p == (p = q))
|
||
|
p = firstDataNode();
|
||
|
} while (p != null && (q = p.next) != null && i < n);
|
||
|
setCurrent(p);
|
||
|
return (i == 0) ? null :
|
||
|
Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
|
||
|
Spliterator.NONNULL |
|
||
|
Spliterator.CONCURRENT));
|
||
|
}
|
||
|
|
||
|
public void forEachRemaining(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
final Node p;
|
||
|
if ((p = current()) != null) {
|
||
|
current = null;
|
||
|
exhausted = true;
|
||
|
forEachFrom(action, p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@SuppressWarnings("unchecked")
|
||
|
public boolean tryAdvance(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
Node p;
|
||
|
if ((p = current()) != null) {
|
||
|
E e = null;
|
||
|
do {
|
||
|
final Object item = p.item;
|
||
|
final boolean isData = p.isData;
|
||
|
if (p == (p = p.next))
|
||
|
p = head;
|
||
|
if (isData) {
|
||
|
if (item != null) {
|
||
|
e = (E) item;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (item == null)
|
||
|
p = null;
|
||
|
} while (p != null);
|
||
|
setCurrent(p);
|
||
|
if (e != null) {
|
||
|
action.accept(e);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
private void setCurrent(Node p) {
|
||
|
if ((current = p) == null)
|
||
|
exhausted = true;
|
||
|
}
|
||
|
|
||
|
private Node current() {
|
||
|
Node p;
|
||
|
if ((p = current) == null && !exhausted)
|
||
|
setCurrent(p = firstDataNode());
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
public long estimateSize() { return Long.MAX_VALUE; }
|
||
|
|
||
|
public int characteristics() {
|
||
|
return (Spliterator.ORDERED |
|
||
|
Spliterator.NONNULL |
|
||
|
Spliterator.CONCURRENT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link Spliterator} over the elements in this queue.
|
||
|
*
|
||
|
* <p>The returned spliterator is
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
|
||
|
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
|
||
|
*
|
||
|
* @implNote
|
||
|
* The {@code Spliterator} implements {@code trySplit} to permit limited
|
||
|
* parallelism.
|
||
|
*
|
||
|
* @return a {@code Spliterator} over the elements in this queue
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
public Spliterator<E> spliterator() {
|
||
|
return new LTQSpliterator();
|
||
|
}
|
||
|
|
||
|
/* -------------- Removal methods -------------- */
|
||
|
|
||
|
/**
|
||
|
* Unsplices (now or later) the given deleted/cancelled node with
|
||
|
* the given predecessor.
|
||
|
*
|
||
|
* @param pred a node that was at one time known to be the
|
||
|
* predecessor of s
|
||
|
* @param s the node to be unspliced
|
||
|
*/
|
||
|
final void unsplice(Node pred, Node s) {
|
||
|
// assert pred != null;
|
||
|
// assert pred != s;
|
||
|
// assert s != null;
|
||
|
// assert s.isMatched();
|
||
|
// assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
|
||
|
s.waiter = null; // disable signals
|
||
|
/*
|
||
|
* See above for rationale. Briefly: if pred still points to
|
||
|
* s, try to unlink s. If s cannot be unlinked, because it is
|
||
|
* trailing node or pred might be unlinked, and neither pred
|
||
|
* nor s are head or offlist, set needSweep;
|
||
|
*/
|
||
|
if (pred != null && pred.next == s) {
|
||
|
Node n = s.next;
|
||
|
if (n == null ||
|
||
|
(n != s && pred.casNext(s, n) && pred.isMatched())) {
|
||
|
for (;;) { // check if at, or could be, head
|
||
|
Node h = head;
|
||
|
if (h == pred || h == s)
|
||
|
return; // at head or list empty
|
||
|
if (!h.isMatched())
|
||
|
break;
|
||
|
Node hn = h.next;
|
||
|
if (hn == null)
|
||
|
return; // now empty
|
||
|
if (hn != h && casHead(h, hn))
|
||
|
h.selfLink(); // advance head
|
||
|
}
|
||
|
if (pred.next != pred && s.next != s)
|
||
|
needSweep = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Unlinks matched (typically cancelled) nodes encountered in a
|
||
|
* traversal from head.
|
||
|
*/
|
||
|
private void sweep() {
|
||
|
needSweep = false;
|
||
|
for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
|
||
|
if (!s.isMatched())
|
||
|
// Unmatched nodes are never self-linked
|
||
|
p = s;
|
||
|
else if ((n = s.next) == null) // trailing node is pinned
|
||
|
break;
|
||
|
else if (s == n) // stale
|
||
|
// No need to also check for p == s, since that implies s == n
|
||
|
p = head;
|
||
|
else
|
||
|
p.casNext(s, n);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates an initially empty {@code LinkedTransferQueue}.
|
||
|
*/
|
||
|
public LinkedTransferQueue() {
|
||
|
head = tail = new Node();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a {@code LinkedTransferQueue}
|
||
|
* initially containing the elements of the given collection,
|
||
|
* added in traversal order of the collection's iterator.
|
||
|
*
|
||
|
* @param c the collection of elements to initially contain
|
||
|
* @throws NullPointerException if the specified collection or any
|
||
|
* of its elements are null
|
||
|
*/
|
||
|
public LinkedTransferQueue(Collection<? extends E> c) {
|
||
|
Node h = null, t = null;
|
||
|
for (E e : c) {
|
||
|
Node newNode = new Node(Objects.requireNonNull(e));
|
||
|
if (h == null)
|
||
|
h = t = newNode;
|
||
|
else
|
||
|
t.appendRelaxed(t = newNode);
|
||
|
}
|
||
|
if (h == null)
|
||
|
h = t = new Node();
|
||
|
head = h;
|
||
|
tail = t;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the tail of this queue.
|
||
|
* As the queue is unbounded, this method will never block.
|
||
|
*
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void put(E e) {
|
||
|
xfer(e, true, ASYNC, 0L);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the tail of this queue.
|
||
|
* As the queue is unbounded, this method will never block or
|
||
|
* return {@code false}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by
|
||
|
* {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offer(E e, long timeout, TimeUnit unit) {
|
||
|
xfer(e, true, ASYNC, 0L);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the tail of this queue.
|
||
|
* As the queue is unbounded, this method will never return {@code false}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by {@link Queue#offer})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean offer(E e) {
|
||
|
xfer(e, true, ASYNC, 0L);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts the specified element at the tail of this queue.
|
||
|
* As the queue is unbounded, this method will never throw
|
||
|
* {@link IllegalStateException} or return {@code false}.
|
||
|
*
|
||
|
* @return {@code true} (as specified by {@link Collection#add})
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean add(E e) {
|
||
|
xfer(e, true, ASYNC, 0L);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transfers the element to a waiting consumer immediately, if possible.
|
||
|
*
|
||
|
* <p>More precisely, transfers the specified element immediately
|
||
|
* if there exists a consumer already waiting to receive it (in
|
||
|
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
|
||
|
* otherwise returning {@code false} without enqueuing the element.
|
||
|
*
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean tryTransfer(E e) {
|
||
|
return xfer(e, true, NOW, 0L) == null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transfers the element to a consumer, waiting if necessary to do so.
|
||
|
*
|
||
|
* <p>More precisely, transfers the specified element immediately
|
||
|
* if there exists a consumer already waiting to receive it (in
|
||
|
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
|
||
|
* else inserts the specified element at the tail of this queue
|
||
|
* and waits until the element is received by a consumer.
|
||
|
*
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public void transfer(E e) throws InterruptedException {
|
||
|
if (xfer(e, true, SYNC, 0L) != null) {
|
||
|
Thread.interrupted(); // failure possible only due to interrupt
|
||
|
throw new InterruptedException();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transfers the element to a consumer if it is possible to do so
|
||
|
* before the timeout elapses.
|
||
|
*
|
||
|
* <p>More precisely, transfers the specified element immediately
|
||
|
* if there exists a consumer already waiting to receive it (in
|
||
|
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
|
||
|
* else inserts the specified element at the tail of this queue
|
||
|
* and waits until the element is received by a consumer,
|
||
|
* returning {@code false} if the specified wait time elapses
|
||
|
* before the element can be transferred.
|
||
|
*
|
||
|
* @throws NullPointerException if the specified element is null
|
||
|
*/
|
||
|
public boolean tryTransfer(E e, long timeout, TimeUnit unit)
|
||
|
throws InterruptedException {
|
||
|
if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
|
||
|
return true;
|
||
|
if (!Thread.interrupted())
|
||
|
return false;
|
||
|
throw new InterruptedException();
|
||
|
}
|
||
|
|
||
|
public E take() throws InterruptedException {
|
||
|
E e = xfer(null, false, SYNC, 0L);
|
||
|
if (e != null)
|
||
|
return e;
|
||
|
Thread.interrupted();
|
||
|
throw new InterruptedException();
|
||
|
}
|
||
|
|
||
|
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
|
||
|
E e = xfer(null, false, TIMED, unit.toNanos(timeout));
|
||
|
if (e != null || !Thread.interrupted())
|
||
|
return e;
|
||
|
throw new InterruptedException();
|
||
|
}
|
||
|
|
||
|
public E poll() {
|
||
|
return xfer(null, false, NOW, 0L);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
* @throws IllegalArgumentException {@inheritDoc}
|
||
|
*/
|
||
|
public int drainTo(Collection<? super E> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
if (c == this)
|
||
|
throw new IllegalArgumentException();
|
||
|
int n = 0;
|
||
|
for (E e; (e = poll()) != null; n++)
|
||
|
c.add(e);
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
* @throws IllegalArgumentException {@inheritDoc}
|
||
|
*/
|
||
|
public int drainTo(Collection<? super E> c, int maxElements) {
|
||
|
Objects.requireNonNull(c);
|
||
|
if (c == this)
|
||
|
throw new IllegalArgumentException();
|
||
|
int n = 0;
|
||
|
for (E e; n < maxElements && (e = poll()) != null; n++)
|
||
|
c.add(e);
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns an iterator over the elements in this queue in proper sequence.
|
||
|
* The elements will be returned in order from first (head) to last (tail).
|
||
|
*
|
||
|
* <p>The returned iterator is
|
||
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
||
|
*
|
||
|
* @return an iterator over the elements in this queue in proper sequence
|
||
|
*/
|
||
|
public Iterator<E> iterator() {
|
||
|
return new Itr();
|
||
|
}
|
||
|
|
||
|
public E peek() {
|
||
|
restartFromHead: for (;;) {
|
||
|
for (Node p = head; p != null;) {
|
||
|
Object item = p.item;
|
||
|
if (p.isData) {
|
||
|
if (item != null) {
|
||
|
@SuppressWarnings("unchecked") E e = (E) item;
|
||
|
return e;
|
||
|
}
|
||
|
}
|
||
|
else if (item == null)
|
||
|
break;
|
||
|
if (p == (p = p.next))
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this queue contains no elements.
|
||
|
*
|
||
|
* @return {@code true} if this queue contains no elements
|
||
|
*/
|
||
|
public boolean isEmpty() {
|
||
|
return firstDataNode() == null;
|
||
|
}
|
||
|
|
||
|
public boolean hasWaitingConsumer() {
|
||
|
restartFromHead: for (;;) {
|
||
|
for (Node p = head; p != null;) {
|
||
|
Object item = p.item;
|
||
|
if (p.isData) {
|
||
|
if (item != null)
|
||
|
break;
|
||
|
}
|
||
|
else if (item == null)
|
||
|
return true;
|
||
|
if (p == (p = p.next))
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of elements in this queue. If this queue
|
||
|
* contains more than {@code Integer.MAX_VALUE} elements, returns
|
||
|
* {@code Integer.MAX_VALUE}.
|
||
|
*
|
||
|
* <p>Beware that, unlike in most collections, this method is
|
||
|
* <em>NOT</em> a constant-time operation. Because of the
|
||
|
* asynchronous nature of these queues, determining the current
|
||
|
* number of elements requires an O(n) traversal.
|
||
|
*
|
||
|
* @return the number of elements in this queue
|
||
|
*/
|
||
|
public int size() {
|
||
|
return countOfMode(true);
|
||
|
}
|
||
|
|
||
|
public int getWaitingConsumerCount() {
|
||
|
return countOfMode(false);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes a single instance of the specified element from this queue,
|
||
|
* if it is present. More formally, removes an element {@code e} such
|
||
|
* that {@code o.equals(e)}, if this queue contains one or more such
|
||
|
* elements.
|
||
|
* Returns {@code true} if this queue contained the specified element
|
||
|
* (or equivalently, if this queue changed as a result of the call).
|
||
|
*
|
||
|
* @param o element to be removed from this queue, if present
|
||
|
* @return {@code true} if this queue changed as a result of the call
|
||
|
*/
|
||
|
public boolean remove(Object o) {
|
||
|
if (o == null) return false;
|
||
|
restartFromHead: for (;;) {
|
||
|
for (Node p = head, pred = null; p != null; ) {
|
||
|
Node q = p.next;
|
||
|
final Object item;
|
||
|
if ((item = p.item) != null) {
|
||
|
if (p.isData) {
|
||
|
if (o.equals(item) && p.tryMatch(item, null)) {
|
||
|
skipDeadNodes(pred, p, p, q);
|
||
|
return true;
|
||
|
}
|
||
|
pred = p; p = q; continue;
|
||
|
}
|
||
|
}
|
||
|
else if (!p.isData)
|
||
|
break;
|
||
|
for (Node c = p;; q = p.next) {
|
||
|
if (q == null || !q.isMatched()) {
|
||
|
pred = skipDeadNodes(pred, c, p, q); p = q; break;
|
||
|
}
|
||
|
if (p == (p = q)) continue restartFromHead;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns {@code true} if this queue contains the specified element.
|
||
|
* More formally, returns {@code true} if and only if this queue contains
|
||
|
* at least one element {@code e} such that {@code o.equals(e)}.
|
||
|
*
|
||
|
* @param o object to be checked for containment in this queue
|
||
|
* @return {@code true} if this queue contains the specified element
|
||
|
*/
|
||
|
public boolean contains(Object o) {
|
||
|
if (o == null) return false;
|
||
|
restartFromHead: for (;;) {
|
||
|
for (Node p = head, pred = null; p != null; ) {
|
||
|
Node q = p.next;
|
||
|
final Object item;
|
||
|
if ((item = p.item) != null) {
|
||
|
if (p.isData) {
|
||
|
if (o.equals(item))
|
||
|
return true;
|
||
|
pred = p; p = q; continue;
|
||
|
}
|
||
|
}
|
||
|
else if (!p.isData)
|
||
|
break;
|
||
|
for (Node c = p;; q = p.next) {
|
||
|
if (q == null || !q.isMatched()) {
|
||
|
pred = skipDeadNodes(pred, c, p, q); p = q; break;
|
||
|
}
|
||
|
if (p == (p = q)) continue restartFromHead;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Always returns {@code Integer.MAX_VALUE} because a
|
||
|
* {@code LinkedTransferQueue} is not capacity constrained.
|
||
|
*
|
||
|
* @return {@code Integer.MAX_VALUE} (as specified by
|
||
|
* {@link BlockingQueue#remainingCapacity()})
|
||
|
*/
|
||
|
public int remainingCapacity() {
|
||
|
return Integer.MAX_VALUE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Saves this queue to a stream (that is, serializes it).
|
||
|
*
|
||
|
* @param s the stream
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
* @serialData All of the elements (each an {@code E}) in
|
||
|
* the proper order, followed by a null
|
||
|
*/
|
||
|
private void writeObject(java.io.ObjectOutputStream s)
|
||
|
throws java.io.IOException {
|
||
|
s.defaultWriteObject();
|
||
|
for (E e : this)
|
||
|
s.writeObject(e);
|
||
|
// Use trailing null as sentinel
|
||
|
s.writeObject(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reconstitutes this queue from a stream (that is, deserializes it).
|
||
|
* @param s the stream
|
||
|
* @throws ClassNotFoundException if the class of a serialized object
|
||
|
* could not be found
|
||
|
* @throws java.io.IOException if an I/O error occurs
|
||
|
*/
|
||
|
private void readObject(java.io.ObjectInputStream s)
|
||
|
throws java.io.IOException, ClassNotFoundException {
|
||
|
|
||
|
// Read in elements until trailing null sentinel found
|
||
|
Node h = null, t = null;
|
||
|
for (Object item; (item = s.readObject()) != null; ) {
|
||
|
Node newNode = new Node(item);
|
||
|
if (h == null)
|
||
|
h = t = newNode;
|
||
|
else
|
||
|
t.appendRelaxed(t = newNode);
|
||
|
}
|
||
|
if (h == null)
|
||
|
h = t = new Node();
|
||
|
head = h;
|
||
|
tail = t;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean removeIf(Predicate<? super E> filter) {
|
||
|
Objects.requireNonNull(filter);
|
||
|
return bulkRemove(filter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean removeAll(Collection<?> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
return bulkRemove(e -> c.contains(e));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public boolean retainAll(Collection<?> c) {
|
||
|
Objects.requireNonNull(c);
|
||
|
return bulkRemove(e -> !c.contains(e));
|
||
|
}
|
||
|
|
||
|
public void clear() {
|
||
|
bulkRemove(e -> true);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Tolerate this many consecutive dead nodes before CAS-collapsing.
|
||
|
* Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
|
||
|
*/
|
||
|
private static final int MAX_HOPS = 8;
|
||
|
|
||
|
/** Implementation of bulk remove methods. */
|
||
|
@SuppressWarnings("unchecked")
|
||
|
private boolean bulkRemove(Predicate<? super E> filter) {
|
||
|
boolean removed = false;
|
||
|
restartFromHead: for (;;) {
|
||
|
int hops = MAX_HOPS;
|
||
|
// c will be CASed to collapse intervening dead nodes between
|
||
|
// pred (or head if null) and p.
|
||
|
for (Node p = head, c = p, pred = null, q; p != null; p = q) {
|
||
|
q = p.next;
|
||
|
final Object item; boolean pAlive;
|
||
|
if (pAlive = ((item = p.item) != null && p.isData)) {
|
||
|
if (filter.test((E) item)) {
|
||
|
if (p.tryMatch(item, null))
|
||
|
removed = true;
|
||
|
pAlive = false;
|
||
|
}
|
||
|
}
|
||
|
else if (!p.isData && item == null)
|
||
|
break;
|
||
|
if (pAlive || q == null || --hops == 0) {
|
||
|
// p might already be self-linked here, but if so:
|
||
|
// - CASing head will surely fail
|
||
|
// - CASing pred's next will be useless but harmless.
|
||
|
if ((c != p && !tryCasSuccessor(pred, c, c = p))
|
||
|
|| pAlive) {
|
||
|
// if CAS failed or alive, abandon old pred
|
||
|
hops = MAX_HOPS;
|
||
|
pred = p;
|
||
|
c = q;
|
||
|
}
|
||
|
} else if (p == q)
|
||
|
continue restartFromHead;
|
||
|
}
|
||
|
return removed;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Runs action on each element found during a traversal starting at p.
|
||
|
* If p is null, the action is not run.
|
||
|
*/
|
||
|
@SuppressWarnings("unchecked")
|
||
|
void forEachFrom(Consumer<? super E> action, Node p) {
|
||
|
for (Node pred = null; p != null; ) {
|
||
|
Node q = p.next;
|
||
|
final Object item;
|
||
|
if ((item = p.item) != null) {
|
||
|
if (p.isData) {
|
||
|
action.accept((E) item);
|
||
|
pred = p; p = q; continue;
|
||
|
}
|
||
|
}
|
||
|
else if (!p.isData)
|
||
|
break;
|
||
|
for (Node c = p;; q = p.next) {
|
||
|
if (q == null || !q.isMatched()) {
|
||
|
pred = skipDeadNodes(pred, c, p, q); p = q; break;
|
||
|
}
|
||
|
if (p == (p = q)) { pred = null; p = head; break; }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @throws NullPointerException {@inheritDoc}
|
||
|
*/
|
||
|
public void forEach(Consumer<? super E> action) {
|
||
|
Objects.requireNonNull(action);
|
||
|
forEachFrom(action, head);
|
||
|
}
|
||
|
|
||
|
// VarHandle mechanics
|
||
|
private static final VarHandle HEAD;
|
||
|
private static final VarHandle TAIL;
|
||
|
static final VarHandle ITEM;
|
||
|
static final VarHandle NEXT;
|
||
|
static final VarHandle WAITER;
|
||
|
static {
|
||
|
try {
|
||
|
MethodHandles.Lookup l = MethodHandles.lookup();
|
||
|
HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
|
||
|
Node.class);
|
||
|
TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
|
||
|
Node.class);
|
||
|
ITEM = l.findVarHandle(Node.class, "item", Object.class);
|
||
|
NEXT = l.findVarHandle(Node.class, "next", Node.class);
|
||
|
WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
|
||
|
} catch (ReflectiveOperationException e) {
|
||
|
throw new ExceptionInInitializerError(e);
|
||
|
}
|
||
|
|
||
|
// Reduce the risk of rare disastrous classloading in first call to
|
||
|
// LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
|
||
|
Class<?> ensureLoaded = LockSupport.class;
|
||
|
}
|
||
|
}
|