309 lines
14 KiB
Java
309 lines
14 KiB
Java
![]() |
/*
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This file is available under and governed by the GNU General Public
|
||
|
* License version 2 only, as published by the Free Software Foundation.
|
||
|
* However, the following notice accompanied the original version of this
|
||
|
* file:
|
||
|
*
|
||
|
* Written by Doug Lea with assistance from members of JCP JSR-166
|
||
|
* Expert Group and released to the public domain, as explained at
|
||
|
* http://creativecommons.org/publicdomain/zero/1.0/
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Utility classes commonly useful in concurrent programming. This
|
||
|
* package includes a few small standardized extensible frameworks, as
|
||
|
* well as some classes that provide useful functionality and are
|
||
|
* otherwise tedious or difficult to implement. Here are brief
|
||
|
* descriptions of the main components. See also the
|
||
|
* {@link java.util.concurrent.locks} and
|
||
|
* {@link java.util.concurrent.atomic} packages.
|
||
|
*
|
||
|
* <h2>Executors</h2>
|
||
|
*
|
||
|
* <b>Interfaces.</b>
|
||
|
*
|
||
|
* {@link java.util.concurrent.Executor} is a simple standardized
|
||
|
* interface for defining custom thread-like subsystems, including
|
||
|
* thread pools, asynchronous I/O, and lightweight task frameworks.
|
||
|
* Depending on which concrete Executor class is being used, tasks may
|
||
|
* execute in a newly created thread, an existing task-execution thread,
|
||
|
* or the thread calling {@link java.util.concurrent.Executor#execute
|
||
|
* execute}, and may execute sequentially or concurrently.
|
||
|
*
|
||
|
* {@link java.util.concurrent.ExecutorService} provides a more
|
||
|
* complete asynchronous task execution framework. An
|
||
|
* ExecutorService manages queuing and scheduling of tasks,
|
||
|
* and allows controlled shutdown.
|
||
|
*
|
||
|
* The {@link java.util.concurrent.ScheduledExecutorService}
|
||
|
* subinterface and associated interfaces add support for
|
||
|
* delayed and periodic task execution. ExecutorServices
|
||
|
* provide methods arranging asynchronous execution of any
|
||
|
* function expressed as {@link java.util.concurrent.Callable},
|
||
|
* the result-bearing analog of {@link java.lang.Runnable}.
|
||
|
*
|
||
|
* A {@link java.util.concurrent.Future} returns the results of
|
||
|
* a function, allows determination of whether execution has
|
||
|
* completed, and provides a means to cancel execution.
|
||
|
*
|
||
|
* A {@link java.util.concurrent.RunnableFuture} is a {@code Future}
|
||
|
* that possesses a {@code run} method that upon execution,
|
||
|
* sets its results.
|
||
|
*
|
||
|
* <p>
|
||
|
*
|
||
|
* <b>Implementations.</b>
|
||
|
*
|
||
|
* Classes {@link java.util.concurrent.ThreadPoolExecutor} and
|
||
|
* {@link java.util.concurrent.ScheduledThreadPoolExecutor}
|
||
|
* provide tunable, flexible thread pools.
|
||
|
*
|
||
|
* The {@link java.util.concurrent.Executors} class provides
|
||
|
* factory methods for the most common kinds and configurations
|
||
|
* of Executors, as well as a few utility methods for using
|
||
|
* them. Other utilities based on {@code Executors} include the
|
||
|
* concrete class {@link java.util.concurrent.FutureTask}
|
||
|
* providing a common extensible implementation of Futures, and
|
||
|
* {@link java.util.concurrent.ExecutorCompletionService}, that
|
||
|
* assists in coordinating the processing of groups of
|
||
|
* asynchronous tasks.
|
||
|
*
|
||
|
* <p>Class {@link java.util.concurrent.ForkJoinPool} provides an
|
||
|
* Executor primarily designed for processing instances of {@link
|
||
|
* java.util.concurrent.ForkJoinTask} and its subclasses. These
|
||
|
* classes employ a work-stealing scheduler that attains high
|
||
|
* throughput for tasks conforming to restrictions that often hold in
|
||
|
* computation-intensive parallel processing.
|
||
|
*
|
||
|
* <h2>Queues</h2>
|
||
|
*
|
||
|
* The {@link java.util.concurrent.ConcurrentLinkedQueue} class
|
||
|
* supplies an efficient scalable thread-safe non-blocking FIFO queue.
|
||
|
* The {@link java.util.concurrent.ConcurrentLinkedDeque} class is
|
||
|
* similar, but additionally supports the {@link java.util.Deque}
|
||
|
* interface.
|
||
|
*
|
||
|
* <p>Five implementations in {@code java.util.concurrent} support
|
||
|
* the extended {@link java.util.concurrent.BlockingQueue}
|
||
|
* interface, that defines blocking versions of put and take:
|
||
|
* {@link java.util.concurrent.LinkedBlockingQueue},
|
||
|
* {@link java.util.concurrent.ArrayBlockingQueue},
|
||
|
* {@link java.util.concurrent.SynchronousQueue},
|
||
|
* {@link java.util.concurrent.PriorityBlockingQueue}, and
|
||
|
* {@link java.util.concurrent.DelayQueue}.
|
||
|
* The different classes cover the most common usage contexts
|
||
|
* for producer-consumer, messaging, parallel tasking, and
|
||
|
* related concurrent designs.
|
||
|
*
|
||
|
* <p>Extended interface {@link java.util.concurrent.TransferQueue},
|
||
|
* and implementation {@link java.util.concurrent.LinkedTransferQueue}
|
||
|
* introduce a synchronous {@code transfer} method (along with related
|
||
|
* features) in which a producer may optionally block awaiting its
|
||
|
* consumer.
|
||
|
*
|
||
|
* <p>The {@link java.util.concurrent.BlockingDeque} interface
|
||
|
* extends {@code BlockingQueue} to support both FIFO and LIFO
|
||
|
* (stack-based) operations.
|
||
|
* Class {@link java.util.concurrent.LinkedBlockingDeque}
|
||
|
* provides an implementation.
|
||
|
*
|
||
|
* <h2>Timing</h2>
|
||
|
*
|
||
|
* The {@link java.util.concurrent.TimeUnit} class provides
|
||
|
* multiple granularities (including nanoseconds) for
|
||
|
* specifying and controlling time-out based operations. Most
|
||
|
* classes in the package contain operations based on time-outs
|
||
|
* in addition to indefinite waits. In all cases that
|
||
|
* time-outs are used, the time-out specifies the minimum time
|
||
|
* that the method should wait before indicating that it
|
||
|
* timed-out. Implementations make a "best effort"
|
||
|
* to detect time-outs as soon as possible after they occur.
|
||
|
* However, an indefinite amount of time may elapse between a
|
||
|
* time-out being detected and a thread actually executing
|
||
|
* again after that time-out. All methods that accept timeout
|
||
|
* parameters treat values less than or equal to zero to mean
|
||
|
* not to wait at all. To wait "forever", you can use a value
|
||
|
* of {@code Long.MAX_VALUE}.
|
||
|
*
|
||
|
* <h2>Synchronizers</h2>
|
||
|
*
|
||
|
* Five classes aid common special-purpose synchronization idioms.
|
||
|
* <ul>
|
||
|
*
|
||
|
* <li>{@link java.util.concurrent.Semaphore} is a classic concurrency tool.
|
||
|
*
|
||
|
* <li>{@link java.util.concurrent.CountDownLatch} is a very simple yet
|
||
|
* very common utility for blocking until a given number of signals,
|
||
|
* events, or conditions hold.
|
||
|
*
|
||
|
* <li>A {@link java.util.concurrent.CyclicBarrier} is a resettable
|
||
|
* multiway synchronization point useful in some styles of parallel
|
||
|
* programming.
|
||
|
*
|
||
|
* <li>A {@link java.util.concurrent.Phaser} provides
|
||
|
* a more flexible form of barrier that may be used to control phased
|
||
|
* computation among multiple threads.
|
||
|
*
|
||
|
* <li>An {@link java.util.concurrent.Exchanger} allows two threads to
|
||
|
* exchange objects at a rendezvous point, and is useful in several
|
||
|
* pipeline designs.
|
||
|
*
|
||
|
* </ul>
|
||
|
*
|
||
|
* <h2>Concurrent Collections</h2>
|
||
|
*
|
||
|
* Besides Queues, this package supplies Collection implementations
|
||
|
* designed for use in multithreaded contexts:
|
||
|
* {@link java.util.concurrent.ConcurrentHashMap},
|
||
|
* {@link java.util.concurrent.ConcurrentSkipListMap},
|
||
|
* {@link java.util.concurrent.ConcurrentSkipListSet},
|
||
|
* {@link java.util.concurrent.CopyOnWriteArrayList}, and
|
||
|
* {@link java.util.concurrent.CopyOnWriteArraySet}.
|
||
|
* When many threads are expected to access a given collection, a
|
||
|
* {@code ConcurrentHashMap} is normally preferable to a synchronized
|
||
|
* {@code HashMap}, and a {@code ConcurrentSkipListMap} is normally
|
||
|
* preferable to a synchronized {@code TreeMap}.
|
||
|
* A {@code CopyOnWriteArrayList} is preferable to a synchronized
|
||
|
* {@code ArrayList} when the expected number of reads and traversals
|
||
|
* greatly outnumber the number of updates to a list.
|
||
|
*
|
||
|
* <p>The "Concurrent" prefix used with some classes in this package
|
||
|
* is a shorthand indicating several differences from similar
|
||
|
* "synchronized" classes. For example {@code java.util.Hashtable} and
|
||
|
* {@code Collections.synchronizedMap(new HashMap())} are
|
||
|
* synchronized. But {@link
|
||
|
* java.util.concurrent.ConcurrentHashMap} is "concurrent". A
|
||
|
* concurrent collection is thread-safe, but not governed by a
|
||
|
* single exclusion lock. In the particular case of
|
||
|
* ConcurrentHashMap, it safely permits any number of
|
||
|
* concurrent reads as well as a large number of concurrent
|
||
|
* writes. "Synchronized" classes can be useful when you need
|
||
|
* to prevent all access to a collection via a single lock, at
|
||
|
* the expense of poorer scalability. In other cases in which
|
||
|
* multiple threads are expected to access a common collection,
|
||
|
* "concurrent" versions are normally preferable. And
|
||
|
* unsynchronized collections are preferable when either
|
||
|
* collections are unshared, or are accessible only when
|
||
|
* holding other locks.
|
||
|
*
|
||
|
* <p id="Weakly">Most concurrent Collection implementations
|
||
|
* (including most Queues) also differ from the usual {@code java.util}
|
||
|
* conventions in that their {@linkplain java.util.Iterator Iterators}
|
||
|
* and {@linkplain java.util.Spliterator Spliterators} provide
|
||
|
* <em>weakly consistent</em> rather than fast-fail traversal:
|
||
|
* <ul>
|
||
|
* <li>they may proceed concurrently with other operations
|
||
|
* <li>they will never throw {@link java.util.ConcurrentModificationException
|
||
|
* ConcurrentModificationException}
|
||
|
* <li>they are guaranteed to traverse elements as they existed upon
|
||
|
* construction exactly once, and may (but are not guaranteed to)
|
||
|
* reflect any modifications subsequent to construction.
|
||
|
* </ul>
|
||
|
*
|
||
|
* <h2 id="MemoryVisibility">Memory Consistency Properties</h2>
|
||
|
*
|
||
|
* Chapter 17 of
|
||
|
* <cite>The Java Language Specification</cite> defines the
|
||
|
* <i>happens-before</i> relation on memory operations such as reads and
|
||
|
* writes of shared variables. The results of a write by one thread are
|
||
|
* guaranteed to be visible to a read by another thread only if the write
|
||
|
* operation <i>happens-before</i> the read operation. The
|
||
|
* {@code synchronized} and {@code volatile} constructs, as well as the
|
||
|
* {@code Thread.start()} and {@code Thread.join()} methods, can form
|
||
|
* <i>happens-before</i> relationships. In particular:
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>Each action in a thread <i>happens-before</i> every action in that
|
||
|
* thread that comes later in the program's order.
|
||
|
*
|
||
|
* <li>An unlock ({@code synchronized} block or method exit) of a
|
||
|
* monitor <i>happens-before</i> every subsequent lock ({@code synchronized}
|
||
|
* block or method entry) of that same monitor. And because
|
||
|
* the <i>happens-before</i> relation is transitive, all actions
|
||
|
* of a thread prior to unlocking <i>happen-before</i> all actions
|
||
|
* subsequent to any thread locking that monitor.
|
||
|
*
|
||
|
* <li>A write to a {@code volatile} field <i>happens-before</i> every
|
||
|
* subsequent read of that same field. Writes and reads of
|
||
|
* {@code volatile} fields have similar memory consistency effects
|
||
|
* as entering and exiting monitors, but do <em>not</em> entail
|
||
|
* mutual exclusion locking.
|
||
|
*
|
||
|
* <li>A call to {@code start} on a thread <i>happens-before</i> any
|
||
|
* action in the started thread.
|
||
|
*
|
||
|
* <li>All actions in a thread <i>happen-before</i> any other thread
|
||
|
* successfully returns from a {@code join} on that thread.
|
||
|
*
|
||
|
* </ul>
|
||
|
*
|
||
|
* The methods of all classes in {@code java.util.concurrent} and its
|
||
|
* subpackages extend these guarantees to higher-level
|
||
|
* synchronization. In particular:
|
||
|
*
|
||
|
* <ul>
|
||
|
*
|
||
|
* <li>Actions in a thread prior to placing an object into any concurrent
|
||
|
* collection <i>happen-before</i> actions subsequent to the access or
|
||
|
* removal of that element from the collection in another thread.
|
||
|
*
|
||
|
* <li>Actions in a thread prior to the submission of a {@code Runnable}
|
||
|
* to an {@code Executor} <i>happen-before</i> its execution begins.
|
||
|
* Similarly for {@code Callables} submitted to an {@code ExecutorService}.
|
||
|
*
|
||
|
* <li>Actions taken by the asynchronous computation represented by a
|
||
|
* {@code Future} <i>happen-before</i> actions subsequent to the
|
||
|
* retrieval of the result via {@code Future.get()} in another thread.
|
||
|
*
|
||
|
* <li>Actions prior to "releasing" synchronizer methods such as
|
||
|
* {@code Lock.unlock}, {@code Semaphore.release}, and
|
||
|
* {@code CountDownLatch.countDown} <i>happen-before</i> actions
|
||
|
* subsequent to a successful "acquiring" method such as
|
||
|
* {@code Lock.lock}, {@code Semaphore.acquire},
|
||
|
* {@code Condition.await}, and {@code CountDownLatch.await} on the
|
||
|
* same synchronizer object in another thread.
|
||
|
*
|
||
|
* <li>For each pair of threads that successfully exchange objects via
|
||
|
* an {@code Exchanger}, actions prior to the {@code exchange()}
|
||
|
* in each thread <i>happen-before</i> those subsequent to the
|
||
|
* corresponding {@code exchange()} in another thread.
|
||
|
*
|
||
|
* <li>Actions prior to calling {@code CyclicBarrier.await} and
|
||
|
* {@code Phaser.awaitAdvance} (as well as its variants)
|
||
|
* <i>happen-before</i> actions performed by the barrier action, and
|
||
|
* actions performed by the barrier action <i>happen-before</i> actions
|
||
|
* subsequent to a successful return from the corresponding {@code await}
|
||
|
* in other threads.
|
||
|
*
|
||
|
* </ul>
|
||
|
*
|
||
|
* @jls 17.4.5 Happens-before Order
|
||
|
*
|
||
|
* @since 1.5
|
||
|
*/
|
||
|
package java.util.concurrent;
|