508 lines
20 KiB
Java
508 lines
20 KiB
Java
![]() |
/*
|
||
|
* Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation. Oracle designates this
|
||
|
* particular file as subject to the "Classpath" exception as provided
|
||
|
* by Oracle in the LICENSE file that accompanied this code.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*/
|
||
|
package java.util.stream;
|
||
|
|
||
|
import java.util.Objects;
|
||
|
import java.util.Spliterator;
|
||
|
import java.util.concurrent.ConcurrentHashMap;
|
||
|
import java.util.concurrent.CountedCompleter;
|
||
|
import java.util.function.Consumer;
|
||
|
import java.util.function.DoubleConsumer;
|
||
|
import java.util.function.IntConsumer;
|
||
|
import java.util.function.IntFunction;
|
||
|
import java.util.function.LongConsumer;
|
||
|
|
||
|
/**
|
||
|
* Factory for creating instances of {@code TerminalOp} that perform an
|
||
|
* action for every element of a stream. Supported variants include unordered
|
||
|
* traversal (elements are provided to the {@code Consumer} as soon as they are
|
||
|
* available), and ordered traversal (elements are provided to the
|
||
|
* {@code Consumer} in encounter order.)
|
||
|
*
|
||
|
* <p>Elements are provided to the {@code Consumer} on whatever thread and
|
||
|
* whatever order they become available. For ordered traversals, it is
|
||
|
* guaranteed that processing an element <em>happens-before</em> processing
|
||
|
* subsequent elements in the encounter order.
|
||
|
*
|
||
|
* <p>Exceptions occurring as a result of sending an element to the
|
||
|
* {@code Consumer} will be relayed to the caller and traversal will be
|
||
|
* prematurely terminated.
|
||
|
*
|
||
|
* @since 1.8
|
||
|
*/
|
||
|
final class ForEachOps {
|
||
|
|
||
|
private ForEachOps() { }
|
||
|
|
||
|
/**
|
||
|
* Constructs a {@code TerminalOp} that perform an action for every element
|
||
|
* of a stream.
|
||
|
*
|
||
|
* @param action the {@code Consumer} that receives all elements of a
|
||
|
* stream
|
||
|
* @param ordered whether an ordered traversal is requested
|
||
|
* @param <T> the type of the stream elements
|
||
|
* @return the {@code TerminalOp} instance
|
||
|
*/
|
||
|
public static <T> TerminalOp<T, Void> makeRef(Consumer<? super T> action,
|
||
|
boolean ordered) {
|
||
|
Objects.requireNonNull(action);
|
||
|
return new ForEachOp.OfRef<>(action, ordered);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a {@code TerminalOp} that perform an action for every element
|
||
|
* of an {@code IntStream}.
|
||
|
*
|
||
|
* @param action the {@code IntConsumer} that receives all elements of a
|
||
|
* stream
|
||
|
* @param ordered whether an ordered traversal is requested
|
||
|
* @return the {@code TerminalOp} instance
|
||
|
*/
|
||
|
public static TerminalOp<Integer, Void> makeInt(IntConsumer action,
|
||
|
boolean ordered) {
|
||
|
Objects.requireNonNull(action);
|
||
|
return new ForEachOp.OfInt(action, ordered);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a {@code TerminalOp} that perform an action for every element
|
||
|
* of a {@code LongStream}.
|
||
|
*
|
||
|
* @param action the {@code LongConsumer} that receives all elements of a
|
||
|
* stream
|
||
|
* @param ordered whether an ordered traversal is requested
|
||
|
* @return the {@code TerminalOp} instance
|
||
|
*/
|
||
|
public static TerminalOp<Long, Void> makeLong(LongConsumer action,
|
||
|
boolean ordered) {
|
||
|
Objects.requireNonNull(action);
|
||
|
return new ForEachOp.OfLong(action, ordered);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a {@code TerminalOp} that perform an action for every element
|
||
|
* of a {@code DoubleStream}.
|
||
|
*
|
||
|
* @param action the {@code DoubleConsumer} that receives all elements of
|
||
|
* a stream
|
||
|
* @param ordered whether an ordered traversal is requested
|
||
|
* @return the {@code TerminalOp} instance
|
||
|
*/
|
||
|
public static TerminalOp<Double, Void> makeDouble(DoubleConsumer action,
|
||
|
boolean ordered) {
|
||
|
Objects.requireNonNull(action);
|
||
|
return new ForEachOp.OfDouble(action, ordered);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A {@code TerminalOp} that evaluates a stream pipeline and sends the
|
||
|
* output to itself as a {@code TerminalSink}. Elements will be sent in
|
||
|
* whatever thread they become available. If the traversal is unordered,
|
||
|
* they will be sent independent of the stream's encounter order.
|
||
|
*
|
||
|
* <p>This terminal operation is stateless. For parallel evaluation, each
|
||
|
* leaf instance of a {@code ForEachTask} will send elements to the same
|
||
|
* {@code TerminalSink} reference that is an instance of this class.
|
||
|
*
|
||
|
* @param <T> the output type of the stream pipeline
|
||
|
*/
|
||
|
abstract static class ForEachOp<T>
|
||
|
implements TerminalOp<T, Void>, TerminalSink<T, Void> {
|
||
|
private final boolean ordered;
|
||
|
|
||
|
protected ForEachOp(boolean ordered) {
|
||
|
this.ordered = ordered;
|
||
|
}
|
||
|
|
||
|
// TerminalOp
|
||
|
|
||
|
@Override
|
||
|
public int getOpFlags() {
|
||
|
return ordered ? 0 : StreamOpFlag.NOT_ORDERED;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public <S> Void evaluateSequential(PipelineHelper<T> helper,
|
||
|
Spliterator<S> spliterator) {
|
||
|
return helper.wrapAndCopyInto(this, spliterator).get();
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public <S> Void evaluateParallel(PipelineHelper<T> helper,
|
||
|
Spliterator<S> spliterator) {
|
||
|
if (ordered)
|
||
|
new ForEachOrderedTask<>(helper, spliterator, this).invoke();
|
||
|
else
|
||
|
new ForEachTask<>(helper, spliterator, helper.wrapSink(this)).invoke();
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
// TerminalSink
|
||
|
|
||
|
@Override
|
||
|
public Void get() {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
// Implementations
|
||
|
|
||
|
/** Implementation class for reference streams */
|
||
|
static final class OfRef<T> extends ForEachOp<T> {
|
||
|
final Consumer<? super T> consumer;
|
||
|
|
||
|
OfRef(Consumer<? super T> consumer, boolean ordered) {
|
||
|
super(ordered);
|
||
|
this.consumer = consumer;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void accept(T t) {
|
||
|
consumer.accept(t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Implementation class for {@code IntStream} */
|
||
|
static final class OfInt extends ForEachOp<Integer>
|
||
|
implements Sink.OfInt {
|
||
|
final IntConsumer consumer;
|
||
|
|
||
|
OfInt(IntConsumer consumer, boolean ordered) {
|
||
|
super(ordered);
|
||
|
this.consumer = consumer;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public StreamShape inputShape() {
|
||
|
return StreamShape.INT_VALUE;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void accept(int t) {
|
||
|
consumer.accept(t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Implementation class for {@code LongStream} */
|
||
|
static final class OfLong extends ForEachOp<Long>
|
||
|
implements Sink.OfLong {
|
||
|
final LongConsumer consumer;
|
||
|
|
||
|
OfLong(LongConsumer consumer, boolean ordered) {
|
||
|
super(ordered);
|
||
|
this.consumer = consumer;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public StreamShape inputShape() {
|
||
|
return StreamShape.LONG_VALUE;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void accept(long t) {
|
||
|
consumer.accept(t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Implementation class for {@code DoubleStream} */
|
||
|
static final class OfDouble extends ForEachOp<Double>
|
||
|
implements Sink.OfDouble {
|
||
|
final DoubleConsumer consumer;
|
||
|
|
||
|
OfDouble(DoubleConsumer consumer, boolean ordered) {
|
||
|
super(ordered);
|
||
|
this.consumer = consumer;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public StreamShape inputShape() {
|
||
|
return StreamShape.DOUBLE_VALUE;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void accept(double t) {
|
||
|
consumer.accept(t);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** A {@code ForkJoinTask} for performing a parallel for-each operation */
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachTask<S, T> extends CountedCompleter<Void> {
|
||
|
private Spliterator<S> spliterator;
|
||
|
private final Sink<S> sink;
|
||
|
private final PipelineHelper<T> helper;
|
||
|
private long targetSize;
|
||
|
|
||
|
ForEachTask(PipelineHelper<T> helper,
|
||
|
Spliterator<S> spliterator,
|
||
|
Sink<S> sink) {
|
||
|
super(null);
|
||
|
this.sink = sink;
|
||
|
this.helper = helper;
|
||
|
this.spliterator = spliterator;
|
||
|
this.targetSize = 0L;
|
||
|
}
|
||
|
|
||
|
ForEachTask(ForEachTask<S, T> parent, Spliterator<S> spliterator) {
|
||
|
super(parent);
|
||
|
this.spliterator = spliterator;
|
||
|
this.sink = parent.sink;
|
||
|
this.targetSize = parent.targetSize;
|
||
|
this.helper = parent.helper;
|
||
|
}
|
||
|
|
||
|
// Similar to AbstractTask but doesn't need to track child tasks
|
||
|
public void compute() {
|
||
|
Spliterator<S> rightSplit = spliterator, leftSplit;
|
||
|
long sizeEstimate = rightSplit.estimateSize(), sizeThreshold;
|
||
|
if ((sizeThreshold = targetSize) == 0L)
|
||
|
targetSize = sizeThreshold = AbstractTask.suggestTargetSize(sizeEstimate);
|
||
|
boolean isShortCircuit = StreamOpFlag.SHORT_CIRCUIT.isKnown(helper.getStreamAndOpFlags());
|
||
|
boolean forkRight = false;
|
||
|
Sink<S> taskSink = sink;
|
||
|
ForEachTask<S, T> task = this;
|
||
|
while (!isShortCircuit || !taskSink.cancellationRequested()) {
|
||
|
if (sizeEstimate <= sizeThreshold ||
|
||
|
(leftSplit = rightSplit.trySplit()) == null) {
|
||
|
task.helper.copyInto(taskSink, rightSplit);
|
||
|
break;
|
||
|
}
|
||
|
ForEachTask<S, T> leftTask = new ForEachTask<>(task, leftSplit);
|
||
|
task.addToPendingCount(1);
|
||
|
ForEachTask<S, T> taskToFork;
|
||
|
if (forkRight) {
|
||
|
forkRight = false;
|
||
|
rightSplit = leftSplit;
|
||
|
taskToFork = task;
|
||
|
task = leftTask;
|
||
|
}
|
||
|
else {
|
||
|
forkRight = true;
|
||
|
taskToFork = leftTask;
|
||
|
}
|
||
|
taskToFork.fork();
|
||
|
sizeEstimate = rightSplit.estimateSize();
|
||
|
}
|
||
|
task.spliterator = null;
|
||
|
task.propagateCompletion();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A {@code ForkJoinTask} for performing a parallel for-each operation
|
||
|
* which visits the elements in encounter order
|
||
|
*/
|
||
|
@SuppressWarnings("serial")
|
||
|
static final class ForEachOrderedTask<S, T> extends CountedCompleter<Void> {
|
||
|
/*
|
||
|
* Our goal is to ensure that the elements associated with a task are
|
||
|
* processed according to an in-order traversal of the computation tree.
|
||
|
* We use completion counts for representing these dependencies, so that
|
||
|
* a task does not complete until all the tasks preceding it in this
|
||
|
* order complete. We use the "completion map" to associate the next
|
||
|
* task in this order for any left child. We increase the pending count
|
||
|
* of any node on the right side of such a mapping by one to indicate
|
||
|
* its dependency, and when a node on the left side of such a mapping
|
||
|
* completes, it decrements the pending count of its corresponding right
|
||
|
* side. As the computation tree is expanded by splitting, we must
|
||
|
* atomically update the mappings to maintain the invariant that the
|
||
|
* completion map maps left children to the next node in the in-order
|
||
|
* traversal.
|
||
|
*
|
||
|
* Take, for example, the following computation tree of tasks:
|
||
|
*
|
||
|
* a
|
||
|
* / \
|
||
|
* b c
|
||
|
* / \ / \
|
||
|
* d e f g
|
||
|
*
|
||
|
* The complete map will contain (not necessarily all at the same time)
|
||
|
* the following associations:
|
||
|
*
|
||
|
* d -> e
|
||
|
* b -> f
|
||
|
* f -> g
|
||
|
*
|
||
|
* Tasks e, f, g will have their pending counts increased by 1.
|
||
|
*
|
||
|
* The following relationships hold:
|
||
|
*
|
||
|
* - completion of d "happens-before" e;
|
||
|
* - completion of d and e "happens-before b;
|
||
|
* - completion of b "happens-before" f; and
|
||
|
* - completion of f "happens-before" g
|
||
|
*
|
||
|
* Thus overall the "happens-before" relationship holds for the
|
||
|
* reporting of elements, covered by tasks d, e, f and g, as specified
|
||
|
* by the forEachOrdered operation.
|
||
|
*/
|
||
|
|
||
|
private final PipelineHelper<T> helper;
|
||
|
private Spliterator<S> spliterator;
|
||
|
private final long targetSize;
|
||
|
private final ConcurrentHashMap<ForEachOrderedTask<S, T>, ForEachOrderedTask<S, T>> completionMap;
|
||
|
private final Sink<T> action;
|
||
|
private final ForEachOrderedTask<S, T> leftPredecessor;
|
||
|
private Node<T> node;
|
||
|
|
||
|
protected ForEachOrderedTask(PipelineHelper<T> helper,
|
||
|
Spliterator<S> spliterator,
|
||
|
Sink<T> action) {
|
||
|
super(null);
|
||
|
this.helper = helper;
|
||
|
this.spliterator = spliterator;
|
||
|
this.targetSize = AbstractTask.suggestTargetSize(spliterator.estimateSize());
|
||
|
// Size map to avoid concurrent re-sizes
|
||
|
this.completionMap = new ConcurrentHashMap<>(Math.max(16, AbstractTask.getLeafTarget() << 1));
|
||
|
this.action = action;
|
||
|
this.leftPredecessor = null;
|
||
|
}
|
||
|
|
||
|
ForEachOrderedTask(ForEachOrderedTask<S, T> parent,
|
||
|
Spliterator<S> spliterator,
|
||
|
ForEachOrderedTask<S, T> leftPredecessor) {
|
||
|
super(parent);
|
||
|
this.helper = parent.helper;
|
||
|
this.spliterator = spliterator;
|
||
|
this.targetSize = parent.targetSize;
|
||
|
this.completionMap = parent.completionMap;
|
||
|
this.action = parent.action;
|
||
|
this.leftPredecessor = leftPredecessor;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public final void compute() {
|
||
|
doCompute(this);
|
||
|
}
|
||
|
|
||
|
private static <S, T> void doCompute(ForEachOrderedTask<S, T> task) {
|
||
|
Spliterator<S> rightSplit = task.spliterator, leftSplit;
|
||
|
long sizeThreshold = task.targetSize;
|
||
|
boolean forkRight = false;
|
||
|
while (rightSplit.estimateSize() > sizeThreshold &&
|
||
|
(leftSplit = rightSplit.trySplit()) != null) {
|
||
|
ForEachOrderedTask<S, T> leftChild =
|
||
|
new ForEachOrderedTask<>(task, leftSplit, task.leftPredecessor);
|
||
|
ForEachOrderedTask<S, T> rightChild =
|
||
|
new ForEachOrderedTask<>(task, rightSplit, leftChild);
|
||
|
|
||
|
// Fork the parent task
|
||
|
// Completion of the left and right children "happens-before"
|
||
|
// completion of the parent
|
||
|
task.addToPendingCount(1);
|
||
|
// Completion of the left child "happens-before" completion of
|
||
|
// the right child
|
||
|
rightChild.addToPendingCount(1);
|
||
|
task.completionMap.put(leftChild, rightChild);
|
||
|
|
||
|
// If task is not on the left spine
|
||
|
if (task.leftPredecessor != null) {
|
||
|
/*
|
||
|
* Completion of left-predecessor, or left subtree,
|
||
|
* "happens-before" completion of left-most leaf node of
|
||
|
* right subtree.
|
||
|
* The left child's pending count needs to be updated before
|
||
|
* it is associated in the completion map, otherwise the
|
||
|
* left child can complete prematurely and violate the
|
||
|
* "happens-before" constraint.
|
||
|
*/
|
||
|
leftChild.addToPendingCount(1);
|
||
|
// Update association of left-predecessor to left-most
|
||
|
// leaf node of right subtree
|
||
|
if (task.completionMap.replace(task.leftPredecessor, task, leftChild)) {
|
||
|
// If replaced, adjust the pending count of the parent
|
||
|
// to complete when its children complete
|
||
|
task.addToPendingCount(-1);
|
||
|
} else {
|
||
|
// Left-predecessor has already completed, parent's
|
||
|
// pending count is adjusted by left-predecessor;
|
||
|
// left child is ready to complete
|
||
|
leftChild.addToPendingCount(-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ForEachOrderedTask<S, T> taskToFork;
|
||
|
if (forkRight) {
|
||
|
forkRight = false;
|
||
|
rightSplit = leftSplit;
|
||
|
task = leftChild;
|
||
|
taskToFork = rightChild;
|
||
|
}
|
||
|
else {
|
||
|
forkRight = true;
|
||
|
task = rightChild;
|
||
|
taskToFork = leftChild;
|
||
|
}
|
||
|
taskToFork.fork();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Task's pending count is either 0 or 1. If 1 then the completion
|
||
|
* map will contain a value that is task, and two calls to
|
||
|
* tryComplete are required for completion, one below and one
|
||
|
* triggered by the completion of task's left-predecessor in
|
||
|
* onCompletion. Therefore there is no data race within the if
|
||
|
* block.
|
||
|
*/
|
||
|
if (task.getPendingCount() > 0) {
|
||
|
// Cannot complete just yet so buffer elements into a Node
|
||
|
// for use when completion occurs
|
||
|
@SuppressWarnings("unchecked")
|
||
|
IntFunction<T[]> generator = size -> (T[]) new Object[size];
|
||
|
Node.Builder<T> nb = task.helper.makeNodeBuilder(
|
||
|
task.helper.exactOutputSizeIfKnown(rightSplit),
|
||
|
generator);
|
||
|
task.node = task.helper.wrapAndCopyInto(nb, rightSplit).build();
|
||
|
task.spliterator = null;
|
||
|
}
|
||
|
task.tryComplete();
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void onCompletion(CountedCompleter<?> caller) {
|
||
|
if (node != null) {
|
||
|
// Dump buffered elements from this leaf into the sink
|
||
|
node.forEach(action);
|
||
|
node = null;
|
||
|
}
|
||
|
else if (spliterator != null) {
|
||
|
// Dump elements output from this leaf's pipeline into the sink
|
||
|
helper.wrapAndCopyInto(action, spliterator);
|
||
|
spliterator = null;
|
||
|
}
|
||
|
|
||
|
// The completion of this task *and* the dumping of elements
|
||
|
// "happens-before" completion of the associated left-most leaf task
|
||
|
// of right subtree (if any, which can be this task's right sibling)
|
||
|
//
|
||
|
ForEachOrderedTask<S, T> leftDescendant = completionMap.remove(this);
|
||
|
if (leftDescendant != null)
|
||
|
leftDescendant.tryComplete();
|
||
|
}
|
||
|
}
|
||
|
}
|