/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.net; import static android.annotation.SystemApi.Client.MODULE_LIBRARIES; import static android.net.NetworkCapabilities.NET_ENTERPRISE_ID_1; import static android.net.NetworkRequest.Type.BACKGROUND_REQUEST; import static android.net.NetworkRequest.Type.LISTEN; import static android.net.NetworkRequest.Type.LISTEN_FOR_BEST; import static android.net.NetworkRequest.Type.REQUEST; import static android.net.NetworkRequest.Type.TRACK_DEFAULT; import static android.net.NetworkRequest.Type.TRACK_SYSTEM_DEFAULT; import static android.net.QosCallback.QosCallbackRegistrationException; import android.annotation.CallbackExecutor; import android.annotation.FlaggedApi; import android.annotation.IntDef; import android.annotation.NonNull; import android.annotation.Nullable; import android.annotation.RequiresApi; import android.annotation.RequiresPermission; import android.annotation.SdkConstant; import android.annotation.SdkConstant.SdkConstantType; import android.annotation.SuppressLint; import android.annotation.SystemApi; import android.annotation.SystemService; import android.app.PendingIntent; import android.app.admin.DevicePolicyManager; import android.compat.annotation.UnsupportedAppUsage; import android.content.ComponentName; import android.content.Context; import android.content.Intent; import android.net.ConnectivityDiagnosticsManager.DataStallReport.DetectionMethod; import android.net.IpSecManager.UdpEncapsulationSocket; import android.net.SocketKeepalive.Callback; import android.net.TetheringManager.StartTetheringCallback; import android.net.TetheringManager.TetheringEventCallback; import android.net.TetheringManager.TetheringRequest; import android.os.Binder; import android.os.Build; import android.os.Build.VERSION_CODES; import android.os.Bundle; import android.os.Handler; import android.os.IBinder; import android.os.Looper; import android.os.Message; import android.os.Messenger; import android.os.ParcelFileDescriptor; import android.os.PersistableBundle; import android.os.Process; import android.os.RemoteException; import android.os.ResultReceiver; import android.os.ServiceSpecificException; import android.os.UserHandle; import android.provider.Settings; import android.telephony.SubscriptionManager; import android.telephony.TelephonyManager; import android.util.ArrayMap; import android.util.Log; import android.util.Range; import android.util.SparseIntArray; import com.android.internal.annotations.GuardedBy; import com.android.modules.utils.build.SdkLevel; import libcore.net.event.NetworkEventDispatcher; import java.io.IOException; import java.io.UncheckedIOException; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.net.DatagramSocket; import java.net.InetAddress; import java.net.InetSocketAddress; import java.net.Socket; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Objects; import java.util.concurrent.Executor; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.RejectedExecutionException; /** * Class that answers queries about the state of network connectivity. It also * notifies applications when network connectivity changes. *

* The primary responsibilities of this class are to: *

    *
  1. Monitor network connections (Wi-Fi, GPRS, UMTS, etc.)
  2. *
  3. Send broadcast intents when network connectivity changes
  4. *
  5. Attempt to "fail over" to another network when connectivity to a network * is lost
  6. *
  7. Provide an API that allows applications to query the coarse-grained or fine-grained * state of the available networks
  8. *
  9. Provide an API that allows applications to request and select networks for their data * traffic
  10. *
*/ @SystemService(Context.CONNECTIVITY_SERVICE) public class ConnectivityManager { private static final String TAG = "ConnectivityManager"; private static final boolean DEBUG = Log.isLoggable(TAG, Log.DEBUG); // TODO : remove this class when udc-mainline-prod is abandoned and android.net.flags.Flags is // available here /** @hide */ public static class Flags { static final String SET_DATA_SAVER_VIA_CM = "com.android.net.flags.set_data_saver_via_cm"; static final String SUPPORT_IS_UID_NETWORKING_BLOCKED = "com.android.net.flags.support_is_uid_networking_blocked"; static final String BASIC_BACKGROUND_RESTRICTIONS_ENABLED = "com.android.net.flags.basic_background_restrictions_enabled"; static final String METERED_NETWORK_FIREWALL_CHAINS = "com.android.net.flags.metered_network_firewall_chains"; static final String BLOCKED_REASON_OEM_DENY_CHAINS = "com.android.net.flags.blocked_reason_oem_deny_chains"; } /** * A change in network connectivity has occurred. A default connection has either * been established or lost. The NetworkInfo for the affected network is * sent as an extra; it should be consulted to see what kind of * connectivity event occurred. *

* Apps targeting Android 7.0 (API level 24) and higher do not receive this * broadcast if they declare the broadcast receiver in their manifest. Apps * will still receive broadcasts if they register their * {@link android.content.BroadcastReceiver} with * {@link android.content.Context#registerReceiver Context.registerReceiver()} * and that context is still valid. *

* If this is a connection that was the result of failing over from a * disconnected network, then the FAILOVER_CONNECTION boolean extra is * set to true. *

* For a loss of connectivity, if the connectivity manager is attempting * to connect (or has already connected) to another network, the * NetworkInfo for the new network is also passed as an extra. This lets * any receivers of the broadcast know that they should not necessarily * tell the user that no data traffic will be possible. Instead, the * receiver should expect another broadcast soon, indicating either that * the failover attempt succeeded (and so there is still overall data * connectivity), or that the failover attempt failed, meaning that all * connectivity has been lost. *

* For a disconnect event, the boolean extra EXTRA_NO_CONNECTIVITY * is set to {@code true} if there are no connected networks at all. *

* Note that this broadcast is deprecated and generally tries to implement backwards * compatibility with older versions of Android. As such, it may not reflect new * capabilities of the system, like multiple networks being connected at the same * time, the details of newer technology, or changes in tethering state. * * @deprecated apps should use the more versatile {@link #requestNetwork}, * {@link #registerNetworkCallback} or {@link #registerDefaultNetworkCallback} * functions instead for faster and more detailed updates about the network * changes they care about. */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) @Deprecated public static final String CONNECTIVITY_ACTION = "android.net.conn.CONNECTIVITY_CHANGE"; /** * The device has connected to a network that has presented a captive * portal, which is blocking Internet connectivity. The user was presented * with a notification that network sign in is required, * and the user invoked the notification's action indicating they * desire to sign in to the network. Apps handling this activity should * facilitate signing in to the network. This action includes a * {@link Network} typed extra called {@link #EXTRA_NETWORK} that represents * the network presenting the captive portal; all communication with the * captive portal must be done using this {@code Network} object. *

* This activity includes a {@link CaptivePortal} extra named * {@link #EXTRA_CAPTIVE_PORTAL} that can be used to indicate different * outcomes of the captive portal sign in to the system: *

*/ @SdkConstant(SdkConstantType.ACTIVITY_INTENT_ACTION) public static final String ACTION_CAPTIVE_PORTAL_SIGN_IN = "android.net.conn.CAPTIVE_PORTAL"; /** * The lookup key for a {@link NetworkInfo} object. Retrieve with * {@link android.content.Intent#getParcelableExtra(String)}. * * @deprecated The {@link NetworkInfo} object is deprecated, as many of its properties * can't accurately represent modern network characteristics. * Please obtain information about networks from the {@link NetworkCapabilities} * or {@link LinkProperties} objects instead. */ @Deprecated public static final String EXTRA_NETWORK_INFO = "networkInfo"; /** * Network type which triggered a {@link #CONNECTIVITY_ACTION} broadcast. * * @see android.content.Intent#getIntExtra(String, int) * @deprecated The network type is not rich enough to represent the characteristics * of modern networks. Please use {@link NetworkCapabilities} instead, * in particular the transports. */ @Deprecated public static final String EXTRA_NETWORK_TYPE = "networkType"; /** * The lookup key for a boolean that indicates whether a connect event * is for a network to which the connectivity manager was failing over * following a disconnect on another network. * Retrieve it with {@link android.content.Intent#getBooleanExtra(String,boolean)}. * * @deprecated See {@link NetworkInfo}. */ @Deprecated public static final String EXTRA_IS_FAILOVER = "isFailover"; /** * The lookup key for a {@link NetworkInfo} object. This is supplied when * there is another network that it may be possible to connect to. Retrieve with * {@link android.content.Intent#getParcelableExtra(String)}. * * @deprecated See {@link NetworkInfo}. */ @Deprecated public static final String EXTRA_OTHER_NETWORK_INFO = "otherNetwork"; /** * The lookup key for a boolean that indicates whether there is a * complete lack of connectivity, i.e., no network is available. * Retrieve it with {@link android.content.Intent#getBooleanExtra(String,boolean)}. */ public static final String EXTRA_NO_CONNECTIVITY = "noConnectivity"; /** * The lookup key for a string that indicates why an attempt to connect * to a network failed. The string has no particular structure. It is * intended to be used in notifications presented to users. Retrieve * it with {@link android.content.Intent#getStringExtra(String)}. */ public static final String EXTRA_REASON = "reason"; /** * The lookup key for a string that provides optionally supplied * extra information about the network state. The information * may be passed up from the lower networking layers, and its * meaning may be specific to a particular network type. Retrieve * it with {@link android.content.Intent#getStringExtra(String)}. * * @deprecated See {@link NetworkInfo#getExtraInfo()}. */ @Deprecated public static final String EXTRA_EXTRA_INFO = "extraInfo"; /** * The lookup key for an int that provides information about * our connection to the internet at large. 0 indicates no connection, * 100 indicates a great connection. Retrieve it with * {@link android.content.Intent#getIntExtra(String, int)}. * {@hide} */ public static final String EXTRA_INET_CONDITION = "inetCondition"; /** * The lookup key for a {@link CaptivePortal} object included with the * {@link #ACTION_CAPTIVE_PORTAL_SIGN_IN} intent. The {@code CaptivePortal} * object can be used to either indicate to the system that the captive * portal has been dismissed or that the user does not want to pursue * signing in to captive portal. Retrieve it with * {@link android.content.Intent#getParcelableExtra(String)}. */ public static final String EXTRA_CAPTIVE_PORTAL = "android.net.extra.CAPTIVE_PORTAL"; /** * Key for passing a URL to the captive portal login activity. */ public static final String EXTRA_CAPTIVE_PORTAL_URL = "android.net.extra.CAPTIVE_PORTAL_URL"; /** * Key for passing a {@link android.net.captiveportal.CaptivePortalProbeSpec} to the captive * portal login activity. * {@hide} */ @SystemApi public static final String EXTRA_CAPTIVE_PORTAL_PROBE_SPEC = "android.net.extra.CAPTIVE_PORTAL_PROBE_SPEC"; /** * Key for passing a user agent string to the captive portal login activity. * {@hide} */ @SystemApi public static final String EXTRA_CAPTIVE_PORTAL_USER_AGENT = "android.net.extra.CAPTIVE_PORTAL_USER_AGENT"; /** * Broadcast action to indicate the change of data activity status * (idle or active) on a network in a recent period. * The network becomes active when data transmission is started, or * idle if there is no data transmission for a period of time. * {@hide} */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) public static final String ACTION_DATA_ACTIVITY_CHANGE = "android.net.conn.DATA_ACTIVITY_CHANGE"; /** * The lookup key for an enum that indicates the network device type on which this data activity * change happens. * {@hide} */ public static final String EXTRA_DEVICE_TYPE = "deviceType"; /** * The lookup key for a boolean that indicates the device is active or not. {@code true} means * it is actively sending or receiving data and {@code false} means it is idle. * {@hide} */ public static final String EXTRA_IS_ACTIVE = "isActive"; /** * The lookup key for a long that contains the timestamp (nanos) of the radio state change. * {@hide} */ public static final String EXTRA_REALTIME_NS = "tsNanos"; /** * Broadcast Action: The setting for background data usage has changed * values. Use {@link #getBackgroundDataSetting()} to get the current value. *

* If an application uses the network in the background, it should listen * for this broadcast and stop using the background data if the value is * {@code false}. *

* * @deprecated As of {@link VERSION_CODES#ICE_CREAM_SANDWICH}, availability * of background data depends on several combined factors, and * this broadcast is no longer sent. Instead, when background * data is unavailable, {@link #getActiveNetworkInfo()} will now * appear disconnected. During first boot after a platform * upgrade, this broadcast will be sent once if * {@link #getBackgroundDataSetting()} was {@code false} before * the upgrade. */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) @Deprecated public static final String ACTION_BACKGROUND_DATA_SETTING_CHANGED = "android.net.conn.BACKGROUND_DATA_SETTING_CHANGED"; /** * Broadcast Action: The network connection may not be good * uses {@code ConnectivityManager.EXTRA_INET_CONDITION} and * {@code ConnectivityManager.EXTRA_NETWORK_INFO} to specify * the network and it's condition. * @hide */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) @UnsupportedAppUsage public static final String INET_CONDITION_ACTION = "android.net.conn.INET_CONDITION_ACTION"; /** * Broadcast Action: A tetherable connection has come or gone. * Uses {@code ConnectivityManager.EXTRA_AVAILABLE_TETHER}, * {@code ConnectivityManager.EXTRA_ACTIVE_LOCAL_ONLY}, * {@code ConnectivityManager.EXTRA_ACTIVE_TETHER}, and * {@code ConnectivityManager.EXTRA_ERRORED_TETHER} to indicate * the current state of tethering. Each include a list of * interface names in that state (may be empty). * @hide */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public static final String ACTION_TETHER_STATE_CHANGED = TetheringManager.ACTION_TETHER_STATE_CHANGED; /** * @hide * gives a String[] listing all the interfaces configured for * tethering and currently available for tethering. */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public static final String EXTRA_AVAILABLE_TETHER = TetheringManager.EXTRA_AVAILABLE_TETHER; /** * @hide * gives a String[] listing all the interfaces currently in local-only * mode (ie, has DHCPv4+IPv6-ULA support and no packet forwarding) */ public static final String EXTRA_ACTIVE_LOCAL_ONLY = TetheringManager.EXTRA_ACTIVE_LOCAL_ONLY; /** * @hide * gives a String[] listing all the interfaces currently tethered * (ie, has DHCPv4 support and packets potentially forwarded/NATed) */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public static final String EXTRA_ACTIVE_TETHER = TetheringManager.EXTRA_ACTIVE_TETHER; /** * @hide * gives a String[] listing all the interfaces we tried to tether and * failed. Use {@link #getLastTetherError} to find the error code * for any interfaces listed here. */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public static final String EXTRA_ERRORED_TETHER = TetheringManager.EXTRA_ERRORED_TETHER; /** * Broadcast Action: The captive portal tracker has finished its test. * Sent only while running Setup Wizard, in lieu of showing a user * notification. * @hide */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) public static final String ACTION_CAPTIVE_PORTAL_TEST_COMPLETED = "android.net.conn.CAPTIVE_PORTAL_TEST_COMPLETED"; /** * The lookup key for a boolean that indicates whether a captive portal was detected. * Retrieve it with {@link android.content.Intent#getBooleanExtra(String,boolean)}. * @hide */ public static final String EXTRA_IS_CAPTIVE_PORTAL = "captivePortal"; /** * Action used to display a dialog that asks the user whether to connect to a network that is * not validated. This intent is used to start the dialog in settings via startActivity. * * This action includes a {@link Network} typed extra which is called * {@link ConnectivityManager#EXTRA_NETWORK} that represents the network which is unvalidated. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final String ACTION_PROMPT_UNVALIDATED = "android.net.action.PROMPT_UNVALIDATED"; /** * Action used to display a dialog that asks the user whether to avoid a network that is no * longer validated. This intent is used to start the dialog in settings via startActivity. * * This action includes a {@link Network} typed extra which is called * {@link ConnectivityManager#EXTRA_NETWORK} that represents the network which is no longer * validated. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final String ACTION_PROMPT_LOST_VALIDATION = "android.net.action.PROMPT_LOST_VALIDATION"; /** * Action used to display a dialog that asks the user whether to stay connected to a network * that has not validated. This intent is used to start the dialog in settings via * startActivity. * * This action includes a {@link Network} typed extra which is called * {@link ConnectivityManager#EXTRA_NETWORK} that represents the network which has partial * connectivity. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final String ACTION_PROMPT_PARTIAL_CONNECTIVITY = "android.net.action.PROMPT_PARTIAL_CONNECTIVITY"; /** * Clear DNS Cache Action: This is broadcast when networks have changed and old * DNS entries should be cleared. * @hide */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final String ACTION_CLEAR_DNS_CACHE = "android.net.action.CLEAR_DNS_CACHE"; /** * Invalid tethering type. * @see #startTethering(int, boolean, OnStartTetheringCallback) * @hide */ public static final int TETHERING_INVALID = TetheringManager.TETHERING_INVALID; /** * Wifi tethering type. * @see #startTethering(int, boolean, OnStartTetheringCallback) * @hide */ @SystemApi public static final int TETHERING_WIFI = 0; /** * USB tethering type. * @see #startTethering(int, boolean, OnStartTetheringCallback) * @hide */ @SystemApi public static final int TETHERING_USB = 1; /** * Bluetooth tethering type. * @see #startTethering(int, boolean, OnStartTetheringCallback) * @hide */ @SystemApi public static final int TETHERING_BLUETOOTH = 2; /** * Wifi P2p tethering type. * Wifi P2p tethering is set through events automatically, and don't * need to start from #startTethering(int, boolean, OnStartTetheringCallback). * @hide */ public static final int TETHERING_WIFI_P2P = TetheringManager.TETHERING_WIFI_P2P; /** * Extra used for communicating with the TetherService. Includes the type of tethering to * enable if any. * @hide */ public static final String EXTRA_ADD_TETHER_TYPE = TetheringConstants.EXTRA_ADD_TETHER_TYPE; /** * Extra used for communicating with the TetherService. Includes the type of tethering for * which to cancel provisioning. * @hide */ public static final String EXTRA_REM_TETHER_TYPE = TetheringConstants.EXTRA_REM_TETHER_TYPE; /** * Extra used for communicating with the TetherService. True to schedule a recheck of tether * provisioning. * @hide */ public static final String EXTRA_SET_ALARM = TetheringConstants.EXTRA_SET_ALARM; /** * Tells the TetherService to run a provision check now. * @hide */ public static final String EXTRA_RUN_PROVISION = TetheringConstants.EXTRA_RUN_PROVISION; /** * Extra used for communicating with the TetherService. Contains the {@link ResultReceiver} * which will receive provisioning results. Can be left empty. * @hide */ public static final String EXTRA_PROVISION_CALLBACK = TetheringConstants.EXTRA_PROVISION_CALLBACK; /** * The absence of a connection type. * @hide */ @SystemApi public static final int TYPE_NONE = -1; /** * A Mobile data connection. Devices may support more than one. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasTransport} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request an * appropriate network. See {@link NetworkCapabilities} for supported transports. */ @Deprecated public static final int TYPE_MOBILE = 0; /** * A WIFI data connection. Devices may support more than one. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasTransport} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request an * appropriate network. See {@link NetworkCapabilities} for supported transports. */ @Deprecated public static final int TYPE_WIFI = 1; /** * An MMS-specific Mobile data connection. This network type may use the * same network interface as {@link #TYPE_MOBILE} or it may use a different * one. This is used by applications needing to talk to the carrier's * Multimedia Messaging Service servers. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasCapability} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request a network that * provides the {@link NetworkCapabilities#NET_CAPABILITY_MMS} capability. */ @Deprecated public static final int TYPE_MOBILE_MMS = 2; /** * A SUPL-specific Mobile data connection. This network type may use the * same network interface as {@link #TYPE_MOBILE} or it may use a different * one. This is used by applications needing to talk to the carrier's * Secure User Plane Location servers for help locating the device. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasCapability} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request a network that * provides the {@link NetworkCapabilities#NET_CAPABILITY_SUPL} capability. */ @Deprecated public static final int TYPE_MOBILE_SUPL = 3; /** * A DUN-specific Mobile data connection. This network type may use the * same network interface as {@link #TYPE_MOBILE} or it may use a different * one. This is sometimes by the system when setting up an upstream connection * for tethering so that the carrier is aware of DUN traffic. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasCapability} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request a network that * provides the {@link NetworkCapabilities#NET_CAPABILITY_DUN} capability. */ @Deprecated public static final int TYPE_MOBILE_DUN = 4; /** * A High Priority Mobile data connection. This network type uses the * same network interface as {@link #TYPE_MOBILE} but the routing setup * is different. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasTransport} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request an * appropriate network. See {@link NetworkCapabilities} for supported transports. */ @Deprecated public static final int TYPE_MOBILE_HIPRI = 5; /** * A WiMAX data connection. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasTransport} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request an * appropriate network. See {@link NetworkCapabilities} for supported transports. */ @Deprecated public static final int TYPE_WIMAX = 6; /** * A Bluetooth data connection. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasTransport} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request an * appropriate network. See {@link NetworkCapabilities} for supported transports. */ @Deprecated public static final int TYPE_BLUETOOTH = 7; /** * Fake data connection. This should not be used on shipping devices. * @deprecated This is not used any more. */ @Deprecated public static final int TYPE_DUMMY = 8; /** * An Ethernet data connection. * * @deprecated Applications should instead use {@link NetworkCapabilities#hasTransport} or * {@link #requestNetwork(NetworkRequest, NetworkCallback)} to request an * appropriate network. See {@link NetworkCapabilities} for supported transports. */ @Deprecated public static final int TYPE_ETHERNET = 9; /** * Over the air Administration. * @deprecated Use {@link NetworkCapabilities} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) public static final int TYPE_MOBILE_FOTA = 10; /** * IP Multimedia Subsystem. * @deprecated Use {@link NetworkCapabilities#NET_CAPABILITY_IMS} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage public static final int TYPE_MOBILE_IMS = 11; /** * Carrier Branded Services. * @deprecated Use {@link NetworkCapabilities#NET_CAPABILITY_CBS} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) public static final int TYPE_MOBILE_CBS = 12; /** * A Wi-Fi p2p connection. Only requesting processes will have access to * the peers connected. * @deprecated Use {@link NetworkCapabilities#NET_CAPABILITY_WIFI_P2P} instead. * {@hide} */ @Deprecated @SystemApi public static final int TYPE_WIFI_P2P = 13; /** * The network to use for initially attaching to the network * @deprecated Use {@link NetworkCapabilities#NET_CAPABILITY_IA} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage public static final int TYPE_MOBILE_IA = 14; /** * Emergency PDN connection for emergency services. This * may include IMS and MMS in emergency situations. * @deprecated Use {@link NetworkCapabilities#NET_CAPABILITY_EIMS} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) public static final int TYPE_MOBILE_EMERGENCY = 15; /** * The network that uses proxy to achieve connectivity. * @deprecated Use {@link NetworkCapabilities} instead. * {@hide} */ @Deprecated @SystemApi public static final int TYPE_PROXY = 16; /** * A virtual network using one or more native bearers. * It may or may not be providing security services. * @deprecated Applications should use {@link NetworkCapabilities#TRANSPORT_VPN} instead. */ @Deprecated public static final int TYPE_VPN = 17; /** * A network that is exclusively meant to be used for testing * * @deprecated Use {@link NetworkCapabilities} instead. * @hide */ @Deprecated public static final int TYPE_TEST = 18; // TODO: Remove this once NetworkTypes are unused. /** * @deprecated Use {@link NetworkCapabilities} instead. * @hide */ @Deprecated @Retention(RetentionPolicy.SOURCE) @IntDef(prefix = { "TYPE_" }, value = { TYPE_NONE, TYPE_MOBILE, TYPE_WIFI, TYPE_MOBILE_MMS, TYPE_MOBILE_SUPL, TYPE_MOBILE_DUN, TYPE_MOBILE_HIPRI, TYPE_WIMAX, TYPE_BLUETOOTH, TYPE_DUMMY, TYPE_ETHERNET, TYPE_MOBILE_FOTA, TYPE_MOBILE_IMS, TYPE_MOBILE_CBS, TYPE_WIFI_P2P, TYPE_MOBILE_IA, TYPE_MOBILE_EMERGENCY, TYPE_PROXY, TYPE_VPN, TYPE_TEST }) public @interface LegacyNetworkType {} // Deprecated constants for return values of startUsingNetworkFeature. They used to live // in com.android.internal.telephony.PhoneConstants until they were made inaccessible. private static final int DEPRECATED_PHONE_CONSTANT_APN_ALREADY_ACTIVE = 0; private static final int DEPRECATED_PHONE_CONSTANT_APN_REQUEST_STARTED = 1; private static final int DEPRECATED_PHONE_CONSTANT_APN_REQUEST_FAILED = 3; /** {@hide} */ public static final int MAX_RADIO_TYPE = TYPE_TEST; /** {@hide} */ public static final int MAX_NETWORK_TYPE = TYPE_TEST; private static final int MIN_NETWORK_TYPE = TYPE_MOBILE; /** * If you want to set the default network preference,you can directly * change the networkAttributes array in framework's config.xml. * * @deprecated Since we support so many more networks now, the single * network default network preference can't really express * the hierarchy. Instead, the default is defined by the * networkAttributes in config.xml. You can determine * the current value by calling {@link #getNetworkPreference()} * from an App. */ @Deprecated public static final int DEFAULT_NETWORK_PREFERENCE = TYPE_WIFI; /** * @hide */ public static final int REQUEST_ID_UNSET = 0; /** * Static unique request used as a tombstone for NetworkCallbacks that have been unregistered. * This allows to distinguish when unregistering NetworkCallbacks those that were never * registered from those that were already unregistered. * @hide */ private static final NetworkRequest ALREADY_UNREGISTERED = new NetworkRequest.Builder().clearCapabilities().build(); /** * A NetID indicating no Network is selected. * Keep in sync with bionic/libc/dns/include/resolv_netid.h * @hide */ public static final int NETID_UNSET = 0; /** * Flag to indicate that an app is not subject to any restrictions that could result in its * network access blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_NONE = 0; /** * Flag to indicate that an app is subject to Battery saver restrictions that would * result in its network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_BATTERY_SAVER = 1 << 0; /** * Flag to indicate that an app is subject to Doze restrictions that would * result in its network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_DOZE = 1 << 1; /** * Flag to indicate that an app is subject to App Standby restrictions that would * result in its network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_APP_STANDBY = 1 << 2; /** * Flag to indicate that an app is subject to Restricted mode restrictions that would * result in its network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_RESTRICTED_MODE = 1 << 3; /** * Flag to indicate that an app is blocked because it is subject to an always-on VPN but the VPN * is not currently connected. * * @see DevicePolicyManager#setAlwaysOnVpnPackage(ComponentName, String, boolean) * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_LOCKDOWN_VPN = 1 << 4; /** * Flag to indicate that an app is subject to Low Power Standby restrictions that would * result in its network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_LOW_POWER_STANDBY = 1 << 5; /** * Flag to indicate that an app is subject to default background restrictions that would * result in its network access being blocked. * * @hide */ @FlaggedApi(Flags.BASIC_BACKGROUND_RESTRICTIONS_ENABLED) @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_APP_BACKGROUND = 1 << 6; /** * Flag to indicate that an app is subject to OEM-specific application restrictions that would * result in its network access being blocked. * * @see #FIREWALL_CHAIN_OEM_DENY_1 * @see #FIREWALL_CHAIN_OEM_DENY_2 * @see #FIREWALL_CHAIN_OEM_DENY_3 * @hide */ @FlaggedApi(Flags.BLOCKED_REASON_OEM_DENY_CHAINS) @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_REASON_OEM_DENY = 1 << 7; /** * Flag to indicate that an app is subject to Data saver restrictions that would * result in its metered network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_METERED_REASON_DATA_SAVER = 1 << 16; /** * Flag to indicate that an app is subject to user restrictions that would * result in its metered network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_METERED_REASON_USER_RESTRICTED = 1 << 17; /** * Flag to indicate that an app is subject to Device admin restrictions that would * result in its metered network access being blocked. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_METERED_REASON_ADMIN_DISABLED = 1 << 18; /** * @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(flag = true, prefix = {"BLOCKED_"}, value = { BLOCKED_REASON_NONE, BLOCKED_REASON_BATTERY_SAVER, BLOCKED_REASON_DOZE, BLOCKED_REASON_APP_STANDBY, BLOCKED_REASON_RESTRICTED_MODE, BLOCKED_REASON_LOCKDOWN_VPN, BLOCKED_REASON_LOW_POWER_STANDBY, BLOCKED_REASON_APP_BACKGROUND, BLOCKED_REASON_OEM_DENY, BLOCKED_METERED_REASON_DATA_SAVER, BLOCKED_METERED_REASON_USER_RESTRICTED, BLOCKED_METERED_REASON_ADMIN_DISABLED, }) public @interface BlockedReason {} /** * Set of blocked reasons that are only applicable on metered networks. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) public static final int BLOCKED_METERED_REASON_MASK = 0xffff0000; @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) private final IConnectivityManager mService; /** * Firewall chain for device idle (doze mode). * Allowlist of apps that have network access in device idle. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_DOZABLE = 1; /** * Firewall chain used for app standby. * Denylist of apps that do not have network access. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_STANDBY = 2; /** * Firewall chain used for battery saver. * Allowlist of apps that have network access when battery saver is on. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_POWERSAVE = 3; /** * Firewall chain used for restricted networking mode. * Allowlist of apps that have access in restricted networking mode. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_RESTRICTED = 4; /** * Firewall chain used for low power standby. * Allowlist of apps that have access in low power standby. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_LOW_POWER_STANDBY = 5; /** * Firewall chain used for always-on default background restrictions. * Allowlist of apps that have access because either they are in the foreground or they are * exempted for specific situations while in the background. * @hide */ @FlaggedApi(Flags.BASIC_BACKGROUND_RESTRICTIONS_ENABLED) @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_BACKGROUND = 6; /** * Firewall chain used for OEM-specific application restrictions. * * Denylist of apps that will not have network access due to OEM-specific restrictions. If an * app UID is placed on this chain, and the chain is enabled, the app's packets will be dropped. * * All the {@code FIREWALL_CHAIN_OEM_DENY_x} chains are equivalent, and each one is * independent of the others. The chains can be enabled and disabled independently, and apps can * be added and removed from each chain independently. * * @see #FIREWALL_CHAIN_OEM_DENY_2 * @see #FIREWALL_CHAIN_OEM_DENY_3 * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_OEM_DENY_1 = 7; /** * Firewall chain used for OEM-specific application restrictions. * * Denylist of apps that will not have network access due to OEM-specific restrictions. If an * app UID is placed on this chain, and the chain is enabled, the app's packets will be dropped. * * All the {@code FIREWALL_CHAIN_OEM_DENY_x} chains are equivalent, and each one is * independent of the others. The chains can be enabled and disabled independently, and apps can * be added and removed from each chain independently. * * @see #FIREWALL_CHAIN_OEM_DENY_1 * @see #FIREWALL_CHAIN_OEM_DENY_3 * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_OEM_DENY_2 = 8; /** * Firewall chain used for OEM-specific application restrictions. * * Denylist of apps that will not have network access due to OEM-specific restrictions. If an * app UID is placed on this chain, and the chain is enabled, the app's packets will be dropped. * * All the {@code FIREWALL_CHAIN_OEM_DENY_x} chains are equivalent, and each one is * independent of the others. The chains can be enabled and disabled independently, and apps can * be added and removed from each chain independently. * * @see #FIREWALL_CHAIN_OEM_DENY_1 * @see #FIREWALL_CHAIN_OEM_DENY_2 * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_OEM_DENY_3 = 9; /** * Firewall chain for allow list on metered networks * * UIDs added to this chain have access to metered networks, unless they're also in one of the * denylist, {@link #FIREWALL_CHAIN_METERED_DENY_USER}, * {@link #FIREWALL_CHAIN_METERED_DENY_ADMIN} * * Note that this chain is used from a separate bpf program that is triggered by iptables and * can not be controlled by {@link ConnectivityManager#setFirewallChainEnabled}. * * @hide */ // TODO: Merge this chain with data saver and support setFirewallChainEnabled @FlaggedApi(Flags.METERED_NETWORK_FIREWALL_CHAINS) @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_METERED_ALLOW = 10; /** * Firewall chain for user-set restrictions on metered networks * * UIDs added to this chain do not have access to metered networks. * UIDs should be added to this chain based on user settings. * To restrict metered network based on admin configuration (e.g. enterprise policies), * {@link #FIREWALL_CHAIN_METERED_DENY_ADMIN} should be used. * This chain corresponds to {@link #BLOCKED_METERED_REASON_USER_RESTRICTED} * * Note that this chain is used from a separate bpf program that is triggered by iptables and * can not be controlled by {@link ConnectivityManager#setFirewallChainEnabled}. * * @hide */ // TODO: Support setFirewallChainEnabled to control this chain @FlaggedApi(Flags.METERED_NETWORK_FIREWALL_CHAINS) @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_METERED_DENY_USER = 11; /** * Firewall chain for admin-set restrictions on metered networks * * UIDs added to this chain do not have access to metered networks. * UIDs should be added to this chain based on admin configuration (e.g. enterprise policies). * To restrict metered network based on user settings, {@link #FIREWALL_CHAIN_METERED_DENY_USER} * should be used. * This chain corresponds to {@link #BLOCKED_METERED_REASON_ADMIN_DISABLED} * * Note that this chain is used from a separate bpf program that is triggered by iptables and * can not be controlled by {@link ConnectivityManager#setFirewallChainEnabled}. * * @hide */ // TODO: Support setFirewallChainEnabled to control this chain @FlaggedApi(Flags.METERED_NETWORK_FIREWALL_CHAINS) @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_CHAIN_METERED_DENY_ADMIN = 12; /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(flag = false, prefix = "FIREWALL_CHAIN_", value = { FIREWALL_CHAIN_DOZABLE, FIREWALL_CHAIN_STANDBY, FIREWALL_CHAIN_POWERSAVE, FIREWALL_CHAIN_RESTRICTED, FIREWALL_CHAIN_LOW_POWER_STANDBY, FIREWALL_CHAIN_BACKGROUND, FIREWALL_CHAIN_OEM_DENY_1, FIREWALL_CHAIN_OEM_DENY_2, FIREWALL_CHAIN_OEM_DENY_3, FIREWALL_CHAIN_METERED_ALLOW, FIREWALL_CHAIN_METERED_DENY_USER, FIREWALL_CHAIN_METERED_DENY_ADMIN }) public @interface FirewallChain {} /** * A firewall rule which allows or drops packets depending on existing policy. * Used by {@link #setUidFirewallRule(int, int, int)} to follow existing policy to handle * specific uid's packets in specific firewall chain. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_RULE_DEFAULT = 0; /** * A firewall rule which allows packets. Used by {@link #setUidFirewallRule(int, int, int)} to * allow specific uid's packets in specific firewall chain. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_RULE_ALLOW = 1; /** * A firewall rule which drops packets. Used by {@link #setUidFirewallRule(int, int, int)} to * drop specific uid's packets in specific firewall chain. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int FIREWALL_RULE_DENY = 2; /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(flag = false, prefix = "FIREWALL_RULE_", value = { FIREWALL_RULE_DEFAULT, FIREWALL_RULE_ALLOW, FIREWALL_RULE_DENY }) public @interface FirewallRule {} /** * A kludge to facilitate static access where a Context pointer isn't available, like in the * case of the static set/getProcessDefaultNetwork methods and from the Network class. * TODO: Remove this after deprecating the static methods in favor of non-static methods or * methods that take a Context argument. */ private static ConnectivityManager sInstance; private final Context mContext; @GuardedBy("mTetheringEventCallbacks") private TetheringManager mTetheringManager; private TetheringManager getTetheringManager() { synchronized (mTetheringEventCallbacks) { if (mTetheringManager == null) { mTetheringManager = mContext.getSystemService(TetheringManager.class); } return mTetheringManager; } } /** * Tests if a given integer represents a valid network type. * @param networkType the type to be tested * @return {@code true} if the type is valid, else {@code false} * @deprecated All APIs accepting a network type are deprecated. There should be no need to * validate a network type. */ @Deprecated public static boolean isNetworkTypeValid(int networkType) { return MIN_NETWORK_TYPE <= networkType && networkType <= MAX_NETWORK_TYPE; } /** * Returns a non-localized string representing a given network type. * ONLY used for debugging output. * @param type the type needing naming * @return a String for the given type, or a string version of the type ("87") * if no name is known. * @deprecated Types are deprecated. Use {@link NetworkCapabilities} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public static String getNetworkTypeName(int type) { switch (type) { case TYPE_NONE: return "NONE"; case TYPE_MOBILE: return "MOBILE"; case TYPE_WIFI: return "WIFI"; case TYPE_MOBILE_MMS: return "MOBILE_MMS"; case TYPE_MOBILE_SUPL: return "MOBILE_SUPL"; case TYPE_MOBILE_DUN: return "MOBILE_DUN"; case TYPE_MOBILE_HIPRI: return "MOBILE_HIPRI"; case TYPE_WIMAX: return "WIMAX"; case TYPE_BLUETOOTH: return "BLUETOOTH"; case TYPE_DUMMY: return "DUMMY"; case TYPE_ETHERNET: return "ETHERNET"; case TYPE_MOBILE_FOTA: return "MOBILE_FOTA"; case TYPE_MOBILE_IMS: return "MOBILE_IMS"; case TYPE_MOBILE_CBS: return "MOBILE_CBS"; case TYPE_WIFI_P2P: return "WIFI_P2P"; case TYPE_MOBILE_IA: return "MOBILE_IA"; case TYPE_MOBILE_EMERGENCY: return "MOBILE_EMERGENCY"; case TYPE_PROXY: return "PROXY"; case TYPE_VPN: return "VPN"; case TYPE_TEST: return "TEST"; default: return Integer.toString(type); } } /** * @hide */ @SystemApi(client = MODULE_LIBRARIES) public void systemReady() { try { mService.systemReady(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Checks if a given type uses the cellular data connection. * This should be replaced in the future by a network property. * @param networkType the type to check * @return a boolean - {@code true} if uses cellular network, else {@code false} * @deprecated Types are deprecated. Use {@link NetworkCapabilities} instead. * {@hide} */ @Deprecated @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) public static boolean isNetworkTypeMobile(int networkType) { switch (networkType) { case TYPE_MOBILE: case TYPE_MOBILE_MMS: case TYPE_MOBILE_SUPL: case TYPE_MOBILE_DUN: case TYPE_MOBILE_HIPRI: case TYPE_MOBILE_FOTA: case TYPE_MOBILE_IMS: case TYPE_MOBILE_CBS: case TYPE_MOBILE_IA: case TYPE_MOBILE_EMERGENCY: return true; default: return false; } } /** * Checks if the given network type is backed by a Wi-Fi radio. * * @deprecated Types are deprecated. Use {@link NetworkCapabilities} instead. * @hide */ @Deprecated public static boolean isNetworkTypeWifi(int networkType) { switch (networkType) { case TYPE_WIFI: case TYPE_WIFI_P2P: return true; default: return false; } } /** * Preference for {@link ProfileNetworkPreference.Builder#setPreference(int)}. * See {@link #setProfileNetworkPreferences(UserHandle, List, Executor, Runnable)} * Specify that the traffic for this user should by follow the default rules: * applications in the profile designated by the UserHandle behave like any * other application and use the system default network as their default * network. Compare other PROFILE_NETWORK_PREFERENCE_* settings. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int PROFILE_NETWORK_PREFERENCE_DEFAULT = 0; /** * Preference for {@link ProfileNetworkPreference.Builder#setPreference(int)}. * See {@link #setProfileNetworkPreferences(UserHandle, List, Executor, Runnable)} * Specify that the traffic for this user should by default go on a network with * {@link NetworkCapabilities#NET_CAPABILITY_ENTERPRISE}, and on the system default network * if no such network is available. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int PROFILE_NETWORK_PREFERENCE_ENTERPRISE = 1; /** * Preference for {@link ProfileNetworkPreference.Builder#setPreference(int)}. * See {@link #setProfileNetworkPreferences(UserHandle, List, Executor, Runnable)} * Specify that the traffic for this user should by default go on a network with * {@link NetworkCapabilities#NET_CAPABILITY_ENTERPRISE} and if no such network is available * should not have a default network at all (that is, network accesses that * do not specify a network explicitly terminate with an error), even if there * is a system default network available to apps outside this preference. * The apps can still use a non-enterprise network if they request it explicitly * provided that specific network doesn't require any specific permission they * do not hold. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int PROFILE_NETWORK_PREFERENCE_ENTERPRISE_NO_FALLBACK = 2; /** * Preference for {@link ProfileNetworkPreference.Builder#setPreference(int)}. * See {@link #setProfileNetworkPreferences(UserHandle, List, Executor, Runnable)} * Specify that the traffic for this user should by default go on a network with * {@link NetworkCapabilities#NET_CAPABILITY_ENTERPRISE}. * If there is no such network, the apps will have no default * network at all, even if there are available non-enterprise networks on the * device (that is, network accesses that do not specify a network explicitly * terminate with an error). Additionally, the designated apps should be * blocked from using any non-enterprise network even if they specify it * explicitly, unless they hold specific privilege overriding this (see * {@link android.Manifest.permission.CONNECTIVITY_USE_RESTRICTED_NETWORKS}). * @hide */ @SystemApi(client = MODULE_LIBRARIES) public static final int PROFILE_NETWORK_PREFERENCE_ENTERPRISE_BLOCKING = 3; /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(value = { PROFILE_NETWORK_PREFERENCE_DEFAULT, PROFILE_NETWORK_PREFERENCE_ENTERPRISE, PROFILE_NETWORK_PREFERENCE_ENTERPRISE_NO_FALLBACK }) public @interface ProfileNetworkPreferencePolicy { } /** * Specifies the preferred network type. When the device has more * than one type available the preferred network type will be used. * * @param preference the network type to prefer over all others. It is * unspecified what happens to the old preferred network in the * overall ordering. * @deprecated Functionality has been removed as it no longer makes sense, * with many more than two networks - we'd need an array to express * preference. Instead we use dynamic network properties of * the networks to describe their precedence. */ @Deprecated public void setNetworkPreference(int preference) { } /** * Retrieves the current preferred network type. * * @return an integer representing the preferred network type * * @deprecated Functionality has been removed as it no longer makes sense, * with many more than two networks - we'd need an array to express * preference. Instead we use dynamic network properties of * the networks to describe their precedence. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public int getNetworkPreference() { return TYPE_NONE; } /** * Returns details about the currently active default data network. When * connected, this network is the default route for outgoing connections. * You should always check {@link NetworkInfo#isConnected()} before initiating * network traffic. This may return {@code null} when there is no default * network. * Note that if the default network is a VPN, this method will return the * NetworkInfo for one of its underlying networks instead, or null if the * VPN agent did not specify any. Apps interested in learning about VPNs * should use {@link #getNetworkInfo(android.net.Network)} instead. * * @return a {@link NetworkInfo} object for the current default network * or {@code null} if no default network is currently active * @deprecated See {@link NetworkInfo}. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @Nullable public NetworkInfo getActiveNetworkInfo() { try { return mService.getActiveNetworkInfo(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns a {@link Network} object corresponding to the currently active * default data network. In the event that the current active default data * network disconnects, the returned {@code Network} object will no longer * be usable. This will return {@code null} when there is no default * network, or when the default network is blocked. * * @return a {@link Network} object for the current default network or * {@code null} if no default network is currently active or if * the default network is blocked for the caller */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @Nullable public Network getActiveNetwork() { try { return mService.getActiveNetwork(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns a {@link Network} object corresponding to the currently active * default data network for a specific UID. In the event that the default data * network disconnects, the returned {@code Network} object will no longer * be usable. This will return {@code null} when there is no default * network for the UID. * * @return a {@link Network} object for the current default network for the * given UID or {@code null} if no default network is currently active * * @hide */ @RequiresPermission(android.Manifest.permission.NETWORK_STACK) @Nullable public Network getActiveNetworkForUid(int uid) { return getActiveNetworkForUid(uid, false); } /** {@hide} */ public Network getActiveNetworkForUid(int uid, boolean ignoreBlocked) { try { return mService.getActiveNetworkForUid(uid, ignoreBlocked); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } private static UidRange[] getUidRangeArray(@NonNull Collection> ranges) { Objects.requireNonNull(ranges); final UidRange[] rangesArray = new UidRange[ranges.size()]; int index = 0; for (Range range : ranges) { rangesArray[index++] = new UidRange(range.getLower(), range.getUpper()); } return rangesArray; } /** * Adds or removes a requirement for given UID ranges to use the VPN. * * If set to {@code true}, informs the system that the UIDs in the specified ranges must not * have any connectivity except if a VPN is connected and applies to the UIDs, or if the UIDs * otherwise have permission to bypass the VPN (e.g., because they have the * {@link android.Manifest.permission.CONNECTIVITY_USE_RESTRICTED_NETWORKS} permission, or when * using a socket protected by a method such as {@link VpnService#protect(DatagramSocket)}. If * set to {@code false}, a previously-added restriction is removed. *

* Each of the UID ranges specified by this method is added and removed as is, and no processing * is performed on the ranges to de-duplicate, merge, split, or intersect them. In order to * remove a previously-added range, the exact range must be removed as is. *

* The changes are applied asynchronously and may not have been applied by the time the method * returns. Apps will be notified about any changes that apply to them via * {@link NetworkCallback#onBlockedStatusChanged} callbacks called after the changes take * effect. *

* This method will block the specified UIDs from accessing non-VPN networks, but does not * affect what the UIDs get as their default network. * Compare {@link #setVpnDefaultForUids(String, Collection)}, which declares that the UIDs * should only have a VPN as their default network, but does not block them from accessing other * networks if they request them explicitly with the {@link Network} API. *

* This method should be called only by the VPN code. * * @param ranges the UID ranges to restrict * @param requireVpn whether the specified UID ranges must use a VPN * * @hide */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) @SystemApi(client = MODULE_LIBRARIES) public void setRequireVpnForUids(boolean requireVpn, @NonNull Collection> ranges) { Objects.requireNonNull(ranges); // The Range class is not parcelable. Convert to UidRange, which is what is used internally. // This method is not necessarily expected to be used outside the system server, so // parceling may not be necessary, but it could be used out-of-process, e.g., by the network // stack process, or by tests. final UidRange[] rangesArray = getUidRangeArray(ranges); try { mService.setRequireVpnForUids(requireVpn, rangesArray); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Inform the system that this VPN session should manage the passed UIDs. * * A VPN with the specified session ID may call this method to inform the system that the UIDs * in the specified range are subject to a VPN. * When this is called, the system will only choose a VPN for the default network of the UIDs in * the specified ranges. * * This method declares that the UIDs in the range will only have a VPN for their default * network, but does not block the UIDs from accessing other networks (permissions allowing) by * explicitly requesting it with the {@link Network} API. * Compare {@link #setRequireVpnForUids(boolean, Collection)}, which does not affect what * network the UIDs get as default, but will block them from accessing non-VPN networks. * * @param session The VPN session which manages the passed UIDs. * @param ranges The uid ranges which will treat VPN as their only default network. * * @hide */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) @SystemApi(client = MODULE_LIBRARIES) public void setVpnDefaultForUids(@NonNull String session, @NonNull Collection> ranges) { Objects.requireNonNull(ranges); final UidRange[] rangesArray = getUidRangeArray(ranges); try { mService.setVpnNetworkPreference(session, rangesArray); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Temporarily set automaticOnOff keeplaive TCP polling alarm timer to 1 second. * * TODO: Remove this when the TCP polling design is replaced with callback. * @param timeMs The time of expiry, with System.currentTimeMillis() base. The value should be * set no more than 5 minutes in the future. * @hide */ public void setTestLowTcpPollingTimerForKeepalive(long timeMs) { try { mService.setTestLowTcpPollingTimerForKeepalive(timeMs); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Informs ConnectivityService of whether the legacy lockdown VPN, as implemented by * LockdownVpnTracker, is in use. This is deprecated for new devices starting from Android 12 * but is still supported for backwards compatibility. *

* This type of VPN is assumed always to use the system default network, and must always declare * exactly one underlying network, which is the network that was the default when the VPN * connected. *

* Calling this method with {@code true} enables legacy behaviour, specifically: *

* * @param enabled whether legacy lockdown VPN is enabled or disabled * * @hide */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) @SystemApi(client = MODULE_LIBRARIES) public void setLegacyLockdownVpnEnabled(boolean enabled) { try { mService.setLegacyLockdownVpnEnabled(enabled); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns details about the currently active default data network for a given uid. * This is for privileged use only to avoid spying on other apps. * * @return a {@link NetworkInfo} object for the current default network * for the given uid or {@code null} if no default network is * available for the specified uid. * * {@hide} */ @RequiresPermission(android.Manifest.permission.NETWORK_STACK) @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public NetworkInfo getActiveNetworkInfoForUid(int uid) { return getActiveNetworkInfoForUid(uid, false); } /** {@hide} */ public NetworkInfo getActiveNetworkInfoForUid(int uid, boolean ignoreBlocked) { try { return mService.getActiveNetworkInfoForUid(uid, ignoreBlocked); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns connection status information about a particular network type. * * @param networkType integer specifying which networkType in * which you're interested. * @return a {@link NetworkInfo} object for the requested * network type or {@code null} if the type is not * supported by the device. If {@code networkType} is * TYPE_VPN and a VPN is active for the calling app, * then this method will try to return one of the * underlying networks for the VPN or null if the * VPN agent didn't specify any. * * @deprecated This method does not support multiple connected networks * of the same type. Use {@link #getAllNetworks} and * {@link #getNetworkInfo(android.net.Network)} instead. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @Nullable public NetworkInfo getNetworkInfo(int networkType) { try { return mService.getNetworkInfo(networkType); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns connection status information about a particular Network. * * @param network {@link Network} specifying which network * in which you're interested. * @return a {@link NetworkInfo} object for the requested * network or {@code null} if the {@code Network} * is not valid. * @deprecated See {@link NetworkInfo}. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @Nullable public NetworkInfo getNetworkInfo(@Nullable Network network) { return getNetworkInfoForUid(network, Process.myUid(), false); } /** {@hide} */ public NetworkInfo getNetworkInfoForUid(Network network, int uid, boolean ignoreBlocked) { try { return mService.getNetworkInfoForUid(network, uid, ignoreBlocked); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns connection status information about all network types supported by the device. * * @return an array of {@link NetworkInfo} objects. Check each * {@link NetworkInfo#getType} for which type each applies. * * @deprecated This method does not support multiple connected networks * of the same type. Use {@link #getAllNetworks} and * {@link #getNetworkInfo(android.net.Network)} instead. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @NonNull public NetworkInfo[] getAllNetworkInfo() { try { return mService.getAllNetworkInfo(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Return a list of {@link NetworkStateSnapshot}s, one for each network that is currently * connected. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) @NonNull public List getAllNetworkStateSnapshots() { try { return mService.getAllNetworkStateSnapshots(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns the {@link Network} object currently serving a given type, or * null if the given type is not connected. * * @hide * @deprecated This method does not support multiple connected networks * of the same type. Use {@link #getAllNetworks} and * {@link #getNetworkInfo(android.net.Network)} instead. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage public Network getNetworkForType(int networkType) { try { return mService.getNetworkForType(networkType); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns an array of all {@link Network} currently tracked by the framework. * * @deprecated This method does not provide any notification of network state changes, forcing * apps to call it repeatedly. This is inefficient and prone to race conditions. * Apps should use methods such as * {@link #registerNetworkCallback(NetworkRequest, NetworkCallback)} instead. * Apps that desire to obtain information about networks that do not apply to them * can use {@link NetworkRequest.Builder#setIncludeOtherUidNetworks}. * * @return an array of {@link Network} objects. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @NonNull @Deprecated public Network[] getAllNetworks() { try { return mService.getAllNetworks(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns an array of {@link NetworkCapabilities} objects, representing * the Networks that applications run by the given user will use by default. * @hide */ @UnsupportedAppUsage public NetworkCapabilities[] getDefaultNetworkCapabilitiesForUser(int userId) { try { return mService.getDefaultNetworkCapabilitiesForUser( userId, mContext.getOpPackageName(), getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns the IP information for the current default network. * * @return a {@link LinkProperties} object describing the IP info * for the current default network, or {@code null} if there * is no current default network. * * {@hide} * @deprecated please use {@link #getLinkProperties(Network)} on the return * value of {@link #getActiveNetwork()} instead. In particular, * this method will return non-null LinkProperties even if the * app is blocked by policy from using this network. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 109783091) public LinkProperties getActiveLinkProperties() { try { return mService.getActiveLinkProperties(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns the IP information for a given network type. * * @param networkType the network type of interest. * @return a {@link LinkProperties} object describing the IP info * for the given networkType, or {@code null} if there is * no current default network. * * {@hide} * @deprecated This method does not support multiple connected networks * of the same type. Use {@link #getAllNetworks}, * {@link #getNetworkInfo(android.net.Network)}, and * {@link #getLinkProperties(android.net.Network)} instead. */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) public LinkProperties getLinkProperties(int networkType) { try { return mService.getLinkPropertiesForType(networkType); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Get the {@link LinkProperties} for the given {@link Network}. This * will return {@code null} if the network is unknown. * * @param network The {@link Network} object identifying the network in question. * @return The {@link LinkProperties} for the network, or {@code null}. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @Nullable public LinkProperties getLinkProperties(@Nullable Network network) { try { return mService.getLinkProperties(network); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Redact {@link LinkProperties} for a given package * * Returns an instance of the given {@link LinkProperties} appropriately redacted to send to the * given package, considering its permissions. * * @param lp A {@link LinkProperties} which will be redacted. * @param uid The target uid. * @param packageName The name of the package, for appops logging. * @return A redacted {@link LinkProperties} which is appropriate to send to the given uid, * or null if the uid lacks the ACCESS_NETWORK_STATE permission. * @hide */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) @SystemApi(client = MODULE_LIBRARIES) @Nullable public LinkProperties getRedactedLinkPropertiesForPackage(@NonNull LinkProperties lp, int uid, @NonNull String packageName) { try { return mService.getRedactedLinkPropertiesForPackage( lp, uid, packageName, getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Get the {@link NetworkCapabilities} for the given {@link Network}, or null. * * This will remove any location sensitive data in the returned {@link NetworkCapabilities}. * Some {@link TransportInfo} instances like {@link android.net.wifi.WifiInfo} contain location * sensitive information. To retrieve this location sensitive information (subject to * the caller's location permissions), use a {@link NetworkCallback} with the * {@link NetworkCallback#FLAG_INCLUDE_LOCATION_INFO} flag instead. * * This method returns {@code null} if the network is unknown or if the |network| argument * is null. * * @param network The {@link Network} object identifying the network in question. * @return The {@link NetworkCapabilities} for the network, or {@code null}. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @Nullable public NetworkCapabilities getNetworkCapabilities(@Nullable Network network) { try { return mService.getNetworkCapabilities( network, mContext.getOpPackageName(), getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Redact {@link NetworkCapabilities} for a given package. * * Returns an instance of {@link NetworkCapabilities} that is appropriately redacted to send * to the given package, considering its permissions. If the passed capabilities contain * location-sensitive information, they will be redacted to the correct degree for the location * permissions of the app (COARSE or FINE), and will blame the UID accordingly for retrieving * that level of location. If the UID holds no location permission, the returned object will * contain no location-sensitive information and the UID is not blamed. * * @param nc A {@link NetworkCapabilities} instance which will be redacted. * @param uid The target uid. * @param packageName The name of the package, for appops logging. * @return A redacted {@link NetworkCapabilities} which is appropriate to send to the given uid, * or null if the uid lacks the ACCESS_NETWORK_STATE permission. * @hide */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) @SystemApi(client = MODULE_LIBRARIES) @Nullable public NetworkCapabilities getRedactedNetworkCapabilitiesForPackage( @NonNull NetworkCapabilities nc, int uid, @NonNull String packageName) { try { return mService.getRedactedNetworkCapabilitiesForPackage(nc, uid, packageName, getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Gets a URL that can be used for resolving whether a captive portal is present. * 1. This URL should respond with a 204 response to a GET request to indicate no captive * portal is present. * 2. This URL must be HTTP as redirect responses are used to find captive portal * sign-in pages. Captive portals cannot respond to HTTPS requests with redirects. * * The system network validation may be using different strategies to detect captive portals, * so this method does not necessarily return a URL used by the system. It only returns a URL * that may be relevant for other components trying to detect captive portals. * * @hide * @deprecated This API returns a URL which is not guaranteed to be one of the URLs used by the * system. */ @Deprecated @SystemApi @RequiresPermission(android.Manifest.permission.NETWORK_SETTINGS) public String getCaptivePortalServerUrl() { try { return mService.getCaptivePortalServerUrl(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Tells the underlying networking system that the caller wants to * begin using the named feature. The interpretation of {@code feature} * is completely up to each networking implementation. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* * @param networkType specifies which network the request pertains to * @param feature the name of the feature to be used * @return an integer value representing the outcome of the request. * The interpretation of this value is specific to each networking * implementation+feature combination, except that the value {@code -1} * always indicates failure. * * @deprecated Deprecated in favor of the cleaner * {@link #requestNetwork(NetworkRequest, NetworkCallback)} API. * In {@link VERSION_CODES#M}, and above, this method is unsupported and will * throw {@code UnsupportedOperationException} if called. * @removed */ @Deprecated public int startUsingNetworkFeature(int networkType, String feature) { checkLegacyRoutingApiAccess(); NetworkCapabilities netCap = networkCapabilitiesForFeature(networkType, feature); if (netCap == null) { Log.d(TAG, "Can't satisfy startUsingNetworkFeature for " + networkType + ", " + feature); return DEPRECATED_PHONE_CONSTANT_APN_REQUEST_FAILED; } NetworkRequest request = null; synchronized (sLegacyRequests) { LegacyRequest l = sLegacyRequests.get(netCap); if (l != null) { Log.d(TAG, "renewing startUsingNetworkFeature request " + l.networkRequest); renewRequestLocked(l); if (l.currentNetwork != null) { return DEPRECATED_PHONE_CONSTANT_APN_ALREADY_ACTIVE; } else { return DEPRECATED_PHONE_CONSTANT_APN_REQUEST_STARTED; } } request = requestNetworkForFeatureLocked(netCap); } if (request != null) { Log.d(TAG, "starting startUsingNetworkFeature for request " + request); return DEPRECATED_PHONE_CONSTANT_APN_REQUEST_STARTED; } else { Log.d(TAG, " request Failed"); return DEPRECATED_PHONE_CONSTANT_APN_REQUEST_FAILED; } } /** * Tells the underlying networking system that the caller is finished * using the named feature. The interpretation of {@code feature} * is completely up to each networking implementation. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* * @param networkType specifies which network the request pertains to * @param feature the name of the feature that is no longer needed * @return an integer value representing the outcome of the request. * The interpretation of this value is specific to each networking * implementation+feature combination, except that the value {@code -1} * always indicates failure. * * @deprecated Deprecated in favor of the cleaner * {@link #unregisterNetworkCallback(NetworkCallback)} API. * In {@link VERSION_CODES#M}, and above, this method is unsupported and will * throw {@code UnsupportedOperationException} if called. * @removed */ @Deprecated public int stopUsingNetworkFeature(int networkType, String feature) { checkLegacyRoutingApiAccess(); NetworkCapabilities netCap = networkCapabilitiesForFeature(networkType, feature); if (netCap == null) { Log.d(TAG, "Can't satisfy stopUsingNetworkFeature for " + networkType + ", " + feature); return -1; } if (removeRequestForFeature(netCap)) { Log.d(TAG, "stopUsingNetworkFeature for " + networkType + ", " + feature); } return 1; } @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private NetworkCapabilities networkCapabilitiesForFeature(int networkType, String feature) { if (networkType == TYPE_MOBILE) { switch (feature) { case "enableCBS": return networkCapabilitiesForType(TYPE_MOBILE_CBS); case "enableDUN": case "enableDUNAlways": return networkCapabilitiesForType(TYPE_MOBILE_DUN); case "enableFOTA": return networkCapabilitiesForType(TYPE_MOBILE_FOTA); case "enableHIPRI": return networkCapabilitiesForType(TYPE_MOBILE_HIPRI); case "enableIMS": return networkCapabilitiesForType(TYPE_MOBILE_IMS); case "enableMMS": return networkCapabilitiesForType(TYPE_MOBILE_MMS); case "enableSUPL": return networkCapabilitiesForType(TYPE_MOBILE_SUPL); default: return null; } } else if (networkType == TYPE_WIFI && "p2p".equals(feature)) { return networkCapabilitiesForType(TYPE_WIFI_P2P); } return null; } private int legacyTypeForNetworkCapabilities(NetworkCapabilities netCap) { if (netCap == null) return TYPE_NONE; if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_CBS)) { return TYPE_MOBILE_CBS; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_IMS)) { return TYPE_MOBILE_IMS; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_FOTA)) { return TYPE_MOBILE_FOTA; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_DUN)) { return TYPE_MOBILE_DUN; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_SUPL)) { return TYPE_MOBILE_SUPL; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_MMS)) { return TYPE_MOBILE_MMS; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_INTERNET)) { return TYPE_MOBILE_HIPRI; } if (netCap.hasCapability(NetworkCapabilities.NET_CAPABILITY_WIFI_P2P)) { return TYPE_WIFI_P2P; } return TYPE_NONE; } private static class LegacyRequest { NetworkCapabilities networkCapabilities; NetworkRequest networkRequest; int expireSequenceNumber; Network currentNetwork; int delay = -1; private void clearDnsBinding() { if (currentNetwork != null) { currentNetwork = null; setProcessDefaultNetworkForHostResolution(null); } } NetworkCallback networkCallback = new NetworkCallback() { @Override public void onAvailable(Network network) { currentNetwork = network; Log.d(TAG, "startUsingNetworkFeature got Network:" + network); setProcessDefaultNetworkForHostResolution(network); } @Override public void onLost(Network network) { if (network.equals(currentNetwork)) clearDnsBinding(); Log.d(TAG, "startUsingNetworkFeature lost Network:" + network); } }; } @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private static final HashMap sLegacyRequests = new HashMap<>(); private NetworkRequest findRequestForFeature(NetworkCapabilities netCap) { synchronized (sLegacyRequests) { LegacyRequest l = sLegacyRequests.get(netCap); if (l != null) return l.networkRequest; } return null; } private void renewRequestLocked(LegacyRequest l) { l.expireSequenceNumber++; Log.d(TAG, "renewing request to seqNum " + l.expireSequenceNumber); sendExpireMsgForFeature(l.networkCapabilities, l.expireSequenceNumber, l.delay); } private void expireRequest(NetworkCapabilities netCap, int sequenceNum) { int ourSeqNum = -1; synchronized (sLegacyRequests) { LegacyRequest l = sLegacyRequests.get(netCap); if (l == null) return; ourSeqNum = l.expireSequenceNumber; if (l.expireSequenceNumber == sequenceNum) removeRequestForFeature(netCap); } Log.d(TAG, "expireRequest with " + ourSeqNum + ", " + sequenceNum); } @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private NetworkRequest requestNetworkForFeatureLocked(NetworkCapabilities netCap) { int delay = -1; int type = legacyTypeForNetworkCapabilities(netCap); try { delay = mService.getRestoreDefaultNetworkDelay(type); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } LegacyRequest l = new LegacyRequest(); l.networkCapabilities = netCap; l.delay = delay; l.expireSequenceNumber = 0; l.networkRequest = sendRequestForNetwork( netCap, l.networkCallback, 0, REQUEST, type, getDefaultHandler()); if (l.networkRequest == null) return null; sLegacyRequests.put(netCap, l); sendExpireMsgForFeature(netCap, l.expireSequenceNumber, delay); return l.networkRequest; } private void sendExpireMsgForFeature(NetworkCapabilities netCap, int seqNum, int delay) { if (delay >= 0) { Log.d(TAG, "sending expire msg with seqNum " + seqNum + " and delay " + delay); CallbackHandler handler = getDefaultHandler(); Message msg = handler.obtainMessage(EXPIRE_LEGACY_REQUEST, seqNum, 0, netCap); handler.sendMessageDelayed(msg, delay); } } @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private boolean removeRequestForFeature(NetworkCapabilities netCap) { final LegacyRequest l; synchronized (sLegacyRequests) { l = sLegacyRequests.remove(netCap); } if (l == null) return false; unregisterNetworkCallback(l.networkCallback); l.clearDnsBinding(); return true; } private static final SparseIntArray sLegacyTypeToTransport = new SparseIntArray(); static { sLegacyTypeToTransport.put(TYPE_MOBILE, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_CBS, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_DUN, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_FOTA, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_HIPRI, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_IMS, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_MMS, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_MOBILE_SUPL, NetworkCapabilities.TRANSPORT_CELLULAR); sLegacyTypeToTransport.put(TYPE_WIFI, NetworkCapabilities.TRANSPORT_WIFI); sLegacyTypeToTransport.put(TYPE_WIFI_P2P, NetworkCapabilities.TRANSPORT_WIFI); sLegacyTypeToTransport.put(TYPE_BLUETOOTH, NetworkCapabilities.TRANSPORT_BLUETOOTH); sLegacyTypeToTransport.put(TYPE_ETHERNET, NetworkCapabilities.TRANSPORT_ETHERNET); } private static final SparseIntArray sLegacyTypeToCapability = new SparseIntArray(); static { sLegacyTypeToCapability.put(TYPE_MOBILE_CBS, NetworkCapabilities.NET_CAPABILITY_CBS); sLegacyTypeToCapability.put(TYPE_MOBILE_DUN, NetworkCapabilities.NET_CAPABILITY_DUN); sLegacyTypeToCapability.put(TYPE_MOBILE_FOTA, NetworkCapabilities.NET_CAPABILITY_FOTA); sLegacyTypeToCapability.put(TYPE_MOBILE_IMS, NetworkCapabilities.NET_CAPABILITY_IMS); sLegacyTypeToCapability.put(TYPE_MOBILE_MMS, NetworkCapabilities.NET_CAPABILITY_MMS); sLegacyTypeToCapability.put(TYPE_MOBILE_SUPL, NetworkCapabilities.NET_CAPABILITY_SUPL); sLegacyTypeToCapability.put(TYPE_WIFI_P2P, NetworkCapabilities.NET_CAPABILITY_WIFI_P2P); } /** * Given a legacy type (TYPE_WIFI, ...) returns a NetworkCapabilities * instance suitable for registering a request or callback. Throws an * IllegalArgumentException if no mapping from the legacy type to * NetworkCapabilities is known. * * @deprecated Types are deprecated. Use {@link NetworkCallback} or {@link NetworkRequest} * to find the network instead. * @hide */ public static NetworkCapabilities networkCapabilitiesForType(int type) { final NetworkCapabilities nc = new NetworkCapabilities(); // Map from type to transports. final int NOT_FOUND = -1; final int transport = sLegacyTypeToTransport.get(type, NOT_FOUND); if (transport == NOT_FOUND) { throw new IllegalArgumentException("unknown legacy type: " + type); } nc.addTransportType(transport); // Map from type to capabilities. nc.addCapability(sLegacyTypeToCapability.get( type, NetworkCapabilities.NET_CAPABILITY_INTERNET)); nc.maybeMarkCapabilitiesRestricted(); return nc; } /** @hide */ public static class PacketKeepaliveCallback { @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public PacketKeepaliveCallback() { } /** The requested keepalive was successfully started. */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public void onStarted() {} /** The keepalive was resumed after being paused by the system. */ public void onResumed() {} /** The keepalive was successfully stopped. */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public void onStopped() {} /** The keepalive was paused automatically by the system. */ public void onPaused() {} /** An error occurred. */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public void onError(int error) {} } /** * Allows applications to request that the system periodically send specific packets on their * behalf, using hardware offload to save battery power. * * To request that the system send keepalives, call one of the methods that return a * {@link ConnectivityManager.PacketKeepalive} object, such as {@link #startNattKeepalive}, * passing in a non-null callback. If the callback is successfully started, the callback's * {@code onStarted} method will be called. If an error occurs, {@code onError} will be called, * specifying one of the {@code ERROR_*} constants in this class. * * To stop an existing keepalive, call {@link PacketKeepalive#stop}. The system will call * {@link PacketKeepaliveCallback#onStopped} if the operation was successful or * {@link PacketKeepaliveCallback#onError} if an error occurred. * * @deprecated Use {@link SocketKeepalive} instead. * * @hide */ public class PacketKeepalive { private static final String TAG = "PacketKeepalive"; /** @hide */ public static final int SUCCESS = 0; /** @hide */ public static final int NO_KEEPALIVE = -1; /** @hide */ public static final int BINDER_DIED = -10; /** The specified {@code Network} is not connected. */ public static final int ERROR_INVALID_NETWORK = -20; /** The specified IP addresses are invalid. For example, the specified source IP address is * not configured on the specified {@code Network}. */ public static final int ERROR_INVALID_IP_ADDRESS = -21; /** The requested port is invalid. */ public static final int ERROR_INVALID_PORT = -22; /** The packet length is invalid (e.g., too long). */ public static final int ERROR_INVALID_LENGTH = -23; /** The packet transmission interval is invalid (e.g., too short). */ public static final int ERROR_INVALID_INTERVAL = -24; /** The hardware does not support this request. */ public static final int ERROR_HARDWARE_UNSUPPORTED = -30; /** The hardware returned an error. */ public static final int ERROR_HARDWARE_ERROR = -31; /** The NAT-T destination port for IPsec */ public static final int NATT_PORT = 4500; /** The minimum interval in seconds between keepalive packet transmissions */ public static final int MIN_INTERVAL = 10; private final Network mNetwork; private final ISocketKeepaliveCallback mCallback; private final ExecutorService mExecutor; @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public void stop() { try { mExecutor.execute(() -> { try { mService.stopKeepalive(mCallback); } catch (RemoteException e) { Log.e(TAG, "Error stopping packet keepalive: ", e); throw e.rethrowFromSystemServer(); } }); } catch (RejectedExecutionException e) { // The internal executor has already stopped due to previous event. } } private PacketKeepalive(Network network, PacketKeepaliveCallback callback) { Objects.requireNonNull(network, "network cannot be null"); Objects.requireNonNull(callback, "callback cannot be null"); mNetwork = network; mExecutor = Executors.newSingleThreadExecutor(); mCallback = new ISocketKeepaliveCallback.Stub() { @Override public void onStarted() { final long token = Binder.clearCallingIdentity(); try { mExecutor.execute(() -> { callback.onStarted(); }); } finally { Binder.restoreCallingIdentity(token); } } @Override public void onResumed() { final long token = Binder.clearCallingIdentity(); try { mExecutor.execute(() -> { callback.onResumed(); }); } finally { Binder.restoreCallingIdentity(token); } } @Override public void onStopped() { final long token = Binder.clearCallingIdentity(); try { mExecutor.execute(() -> { callback.onStopped(); }); } finally { Binder.restoreCallingIdentity(token); } mExecutor.shutdown(); } @Override public void onPaused() { final long token = Binder.clearCallingIdentity(); try { mExecutor.execute(() -> { callback.onPaused(); }); } finally { Binder.restoreCallingIdentity(token); } mExecutor.shutdown(); } @Override public void onError(int error) { final long token = Binder.clearCallingIdentity(); try { mExecutor.execute(() -> { callback.onError(error); }); } finally { Binder.restoreCallingIdentity(token); } mExecutor.shutdown(); } @Override public void onDataReceived() { // PacketKeepalive is only used for Nat-T keepalive and as such does not invoke // this callback when data is received. } }; } } /** * Starts an IPsec NAT-T keepalive packet with the specified parameters. * * @deprecated Use {@link #createSocketKeepalive} instead. * * @hide */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public PacketKeepalive startNattKeepalive( Network network, int intervalSeconds, PacketKeepaliveCallback callback, InetAddress srcAddr, int srcPort, InetAddress dstAddr) { final PacketKeepalive k = new PacketKeepalive(network, callback); try { mService.startNattKeepalive(network, intervalSeconds, k.mCallback, srcAddr.getHostAddress(), srcPort, dstAddr.getHostAddress()); } catch (RemoteException e) { Log.e(TAG, "Error starting packet keepalive: ", e); throw e.rethrowFromSystemServer(); } return k; } // Construct an invalid fd. private ParcelFileDescriptor createInvalidFd() { final int invalidFd = -1; return ParcelFileDescriptor.adoptFd(invalidFd); } /** * Request that keepalives be started on a IPsec NAT-T socket. * * @param network The {@link Network} the socket is on. * @param socket The socket that needs to be kept alive. * @param source The source address of the {@link UdpEncapsulationSocket}. * @param destination The destination address of the {@link UdpEncapsulationSocket}. * @param executor The executor on which callback will be invoked. The provided {@link Executor} * must run callback sequentially, otherwise the order of callbacks cannot be * guaranteed. * @param callback A {@link SocketKeepalive.Callback}. Used for notifications about keepalive * changes. Must be extended by applications that use this API. * * @return A {@link SocketKeepalive} object that can be used to control the keepalive on the * given socket. **/ public @NonNull SocketKeepalive createSocketKeepalive(@NonNull Network network, @NonNull UdpEncapsulationSocket socket, @NonNull InetAddress source, @NonNull InetAddress destination, @NonNull @CallbackExecutor Executor executor, @NonNull Callback callback) { ParcelFileDescriptor dup; try { // Dup is needed here as the pfd inside the socket is owned by the IpSecService, // which cannot be obtained by the app process. dup = ParcelFileDescriptor.dup(socket.getFileDescriptor()); } catch (IOException ignored) { // Construct an invalid fd, so that if the user later calls start(), it will fail with // ERROR_INVALID_SOCKET. dup = createInvalidFd(); } return new NattSocketKeepalive(mService, network, dup, socket.getResourceId(), source, destination, executor, callback); } /** * Request that keepalives be started on a IPsec NAT-T socket file descriptor. Directly called * by system apps which don't use IpSecService to create {@link UdpEncapsulationSocket}. * * @param network The {@link Network} the socket is on. * @param pfd The {@link ParcelFileDescriptor} that needs to be kept alive. The provided * {@link ParcelFileDescriptor} must be bound to a port and the keepalives will be sent * from that port. * @param source The source address of the {@link UdpEncapsulationSocket}. * @param destination The destination address of the {@link UdpEncapsulationSocket}. The * keepalive packets will always be sent to port 4500 of the given {@code destination}. * @param executor The executor on which callback will be invoked. The provided {@link Executor} * must run callback sequentially, otherwise the order of callbacks cannot be * guaranteed. * @param callback A {@link SocketKeepalive.Callback}. Used for notifications about keepalive * changes. Must be extended by applications that use this API. * * @return A {@link SocketKeepalive} object that can be used to control the keepalive on the * given socket. * @hide */ @SystemApi @RequiresPermission(android.Manifest.permission.PACKET_KEEPALIVE_OFFLOAD) public @NonNull SocketKeepalive createNattKeepalive(@NonNull Network network, @NonNull ParcelFileDescriptor pfd, @NonNull InetAddress source, @NonNull InetAddress destination, @NonNull @CallbackExecutor Executor executor, @NonNull Callback callback) { ParcelFileDescriptor dup; try { // TODO: Consider remove unnecessary dup. dup = pfd.dup(); } catch (IOException ignored) { // Construct an invalid fd, so that if the user later calls start(), it will fail with // ERROR_INVALID_SOCKET. dup = createInvalidFd(); } return new NattSocketKeepalive(mService, network, dup, -1 /* Unused */, source, destination, executor, callback); } /** * Request that keepalives be started on a TCP socket. The socket must be established. * * @param network The {@link Network} the socket is on. * @param socket The socket that needs to be kept alive. * @param executor The executor on which callback will be invoked. This implementation assumes * the provided {@link Executor} runs the callbacks in sequence with no * concurrency. Failing this, no guarantee of correctness can be made. It is * the responsibility of the caller to ensure the executor provides this * guarantee. A simple way of creating such an executor is with the standard * tool {@code Executors.newSingleThreadExecutor}. * @param callback A {@link SocketKeepalive.Callback}. Used for notifications about keepalive * changes. Must be extended by applications that use this API. * * @return A {@link SocketKeepalive} object that can be used to control the keepalive on the * given socket. * @hide */ @SystemApi @RequiresPermission(android.Manifest.permission.PACKET_KEEPALIVE_OFFLOAD) public @NonNull SocketKeepalive createSocketKeepalive(@NonNull Network network, @NonNull Socket socket, @NonNull @CallbackExecutor Executor executor, @NonNull Callback callback) { ParcelFileDescriptor dup; try { dup = ParcelFileDescriptor.fromSocket(socket); } catch (UncheckedIOException ignored) { // Construct an invalid fd, so that if the user later calls start(), it will fail with // ERROR_INVALID_SOCKET. dup = createInvalidFd(); } return new TcpSocketKeepalive(mService, network, dup, executor, callback); } /** * Get the supported keepalive count for each transport configured in resource overlays. * * @return An array of supported keepalive count for each transport type. * @hide */ @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, // CTS 13 used QUERY_ALL_PACKAGES to get the resource value, which was implemented // as below in KeepaliveUtils. Also allow that permission so that KeepaliveUtils can // use this method and avoid breaking released CTS. Apps that have this permission // can query the resource themselves anyway. android.Manifest.permission.QUERY_ALL_PACKAGES }) public int[] getSupportedKeepalives() { try { return mService.getSupportedKeepalives(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Ensure that a network route exists to deliver traffic to the specified * host via the specified network interface. An attempt to add a route that * already exists is ignored, but treated as successful. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* * @param networkType the type of the network over which traffic to the specified * host is to be routed * @param hostAddress the IP address of the host to which the route is desired * @return {@code true} on success, {@code false} on failure * * @deprecated Deprecated in favor of the * {@link #requestNetwork(NetworkRequest, NetworkCallback)}, * {@link #bindProcessToNetwork} and {@link Network#getSocketFactory} API. * In {@link VERSION_CODES#M}, and above, this method is unsupported and will * throw {@code UnsupportedOperationException} if called. * @removed */ @Deprecated public boolean requestRouteToHost(int networkType, int hostAddress) { return requestRouteToHostAddress(networkType, NetworkUtils.intToInetAddress(hostAddress)); } /** * Ensure that a network route exists to deliver traffic to the specified * host via the specified network interface. An attempt to add a route that * already exists is ignored, but treated as successful. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* * @param networkType the type of the network over which traffic to the specified * host is to be routed * @param hostAddress the IP address of the host to which the route is desired * @return {@code true} on success, {@code false} on failure * @hide * @deprecated Deprecated in favor of the {@link #requestNetwork} and * {@link #bindProcessToNetwork} API. */ @Deprecated @UnsupportedAppUsage @SystemApi(client = MODULE_LIBRARIES) public boolean requestRouteToHostAddress(int networkType, InetAddress hostAddress) { checkLegacyRoutingApiAccess(); try { return mService.requestRouteToHostAddress(networkType, hostAddress.getAddress(), mContext.getOpPackageName(), getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * @return the context's attribution tag */ // TODO: Remove method and replace with direct call once R code is pushed to AOSP private @Nullable String getAttributionTag() { return mContext.getAttributionTag(); } /** * Returns the value of the setting for background data usage. If false, * applications should not use the network if the application is not in the * foreground. Developers should respect this setting, and check the value * of this before performing any background data operations. *

* All applications that have background services that use the network * should listen to {@link #ACTION_BACKGROUND_DATA_SETTING_CHANGED}. *

* @deprecated As of {@link VERSION_CODES#ICE_CREAM_SANDWICH}, availability of * background data depends on several combined factors, and this method will * always return {@code true}. Instead, when background data is unavailable, * {@link #getActiveNetworkInfo()} will now appear disconnected. * * @return Whether background data usage is allowed. */ @Deprecated public boolean getBackgroundDataSetting() { // assume that background data is allowed; final authority is // NetworkInfo which may be blocked. return true; } /** * Sets the value of the setting for background data usage. * * @param allowBackgroundData Whether an application should use data while * it is in the background. * * @attr ref android.Manifest.permission#CHANGE_BACKGROUND_DATA_SETTING * @see #getBackgroundDataSetting() * @hide */ @Deprecated @UnsupportedAppUsage public void setBackgroundDataSetting(boolean allowBackgroundData) { // ignored } /** * @hide * @deprecated Talk to TelephonyManager directly */ @Deprecated @UnsupportedAppUsage public boolean getMobileDataEnabled() { TelephonyManager tm = mContext.getSystemService(TelephonyManager.class); if (tm != null) { int subId = SubscriptionManager.getDefaultDataSubscriptionId(); Log.d("ConnectivityManager", "getMobileDataEnabled()+ subId=" + subId); boolean retVal = tm.createForSubscriptionId(subId).isDataEnabled(); Log.d("ConnectivityManager", "getMobileDataEnabled()- subId=" + subId + " retVal=" + retVal); return retVal; } Log.d("ConnectivityManager", "getMobileDataEnabled()- remote exception retVal=false"); return false; } /** * Callback for use with {@link ConnectivityManager#addDefaultNetworkActiveListener} * to find out when the system default network has gone in to a high power state. */ public interface OnNetworkActiveListener { /** * Called on the main thread of the process to report that the current data network * has become active, and it is now a good time to perform any pending network * operations. Note that this listener only tells you when the network becomes * active; if at any other time you want to know whether it is active (and thus okay * to initiate network traffic), you can retrieve its instantaneous state with * {@link ConnectivityManager#isDefaultNetworkActive}. */ void onNetworkActive(); } @GuardedBy("mNetworkActivityListeners") private final ArrayMap mNetworkActivityListeners = new ArrayMap<>(); /** * Start listening to reports when the system's default data network is active, meaning it is * a good time to perform network traffic. Use {@link #isDefaultNetworkActive()} * to determine the current state of the system's default network after registering the * listener. *

* If the process default network has been set with * {@link ConnectivityManager#bindProcessToNetwork} this function will not * reflect the process's default, but the system default. * * @param l The listener to be told when the network is active. */ public void addDefaultNetworkActiveListener(final OnNetworkActiveListener l) { final INetworkActivityListener rl = new INetworkActivityListener.Stub() { @Override public void onNetworkActive() throws RemoteException { l.onNetworkActive(); } }; synchronized (mNetworkActivityListeners) { try { mService.registerNetworkActivityListener(rl); mNetworkActivityListeners.put(l, rl); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } } /** * Remove network active listener previously registered with * {@link #addDefaultNetworkActiveListener}. * * @param l Previously registered listener. */ public void removeDefaultNetworkActiveListener(@NonNull OnNetworkActiveListener l) { synchronized (mNetworkActivityListeners) { final INetworkActivityListener rl = mNetworkActivityListeners.get(l); if (rl == null) { throw new IllegalArgumentException("Listener was not registered."); } try { mService.unregisterNetworkActivityListener(rl); mNetworkActivityListeners.remove(l); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } } /** * Return whether the data network is currently active. An active network means that * it is currently in a high power state for performing data transmission. On some * types of networks, it may be expensive to move and stay in such a state, so it is * more power efficient to batch network traffic together when the radio is already in * this state. This method tells you whether right now is currently a good time to * initiate network traffic, as the network is already active. */ public boolean isDefaultNetworkActive() { try { return mService.isDefaultNetworkActive(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * {@hide} */ public ConnectivityManager(Context context, IConnectivityManager service) { this(context, service, true /* newStatic */); } private ConnectivityManager(Context context, IConnectivityManager service, boolean newStatic) { mContext = Objects.requireNonNull(context, "missing context"); mService = Objects.requireNonNull(service, "missing IConnectivityManager"); // sInstance is accessed without a lock, so it may actually be reassigned several times with // different ConnectivityManager, but that's still OK considering its usage. if (sInstance == null && newStatic) { final Context appContext = mContext.getApplicationContext(); // Don't create static ConnectivityManager instance again to prevent infinite loop. // If the application context is null, we're either in the system process or // it's the application context very early in app initialization. In both these // cases, the passed-in Context will not be freed, so it's safe to pass it to the // service. http://b/27532714 . sInstance = new ConnectivityManager(appContext != null ? appContext : context, service, false /* newStatic */); } } /** {@hide} */ @UnsupportedAppUsage public static ConnectivityManager from(Context context) { return (ConnectivityManager) context.getSystemService(Context.CONNECTIVITY_SERVICE); } /** @hide */ public NetworkRequest getDefaultRequest() { try { // This is not racy as the default request is final in ConnectivityService. return mService.getDefaultRequest(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Check if the package is allowed to write settings. This also records that such an access * happened. * * @return {@code true} iff the package is allowed to write settings. */ // TODO: Remove method and replace with direct call once R code is pushed to AOSP private static boolean checkAndNoteWriteSettingsOperation(@NonNull Context context, int uid, @NonNull String callingPackage, @Nullable String callingAttributionTag, boolean throwException) { return Settings.checkAndNoteWriteSettingsOperation(context, uid, callingPackage, callingAttributionTag, throwException); } /** * @deprecated - use getSystemService. This is a kludge to support static access in certain * situations where a Context pointer is unavailable. * @hide */ @Deprecated static ConnectivityManager getInstanceOrNull() { return sInstance; } /** * @deprecated - use getSystemService. This is a kludge to support static access in certain * situations where a Context pointer is unavailable. * @hide */ @Deprecated @UnsupportedAppUsage private static ConnectivityManager getInstance() { if (getInstanceOrNull() == null) { throw new IllegalStateException("No ConnectivityManager yet constructed"); } return getInstanceOrNull(); } /** * Get the set of tetherable, available interfaces. This list is limited by * device configuration and current interface existence. * * @return an array of 0 or more Strings of tetherable interface names. * * @deprecated Use {@link TetheringEventCallback#onTetherableInterfacesChanged(List)} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage @Deprecated public String[] getTetherableIfaces() { return getTetheringManager().getTetherableIfaces(); } /** * Get the set of tethered interfaces. * * @return an array of 0 or more String of currently tethered interface names. * * @deprecated Use {@link TetheringEventCallback#onTetherableInterfacesChanged(List)} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage @Deprecated public String[] getTetheredIfaces() { return getTetheringManager().getTetheredIfaces(); } /** * Get the set of interface names which attempted to tether but * failed. Re-attempting to tether may cause them to reset to the Tethered * state. Alternatively, causing the interface to be destroyed and recreated * may cause them to reset to the available state. * {@link ConnectivityManager#getLastTetherError} can be used to get more * information on the cause of the errors. * * @return an array of 0 or more String indicating the interface names * which failed to tether. * * @deprecated Use {@link TetheringEventCallback#onError(String, int)} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage @Deprecated public String[] getTetheringErroredIfaces() { return getTetheringManager().getTetheringErroredIfaces(); } /** * Get the set of tethered dhcp ranges. * * @deprecated This method is not supported. * TODO: remove this function when all of clients are removed. * {@hide} */ @RequiresPermission(android.Manifest.permission.NETWORK_SETTINGS) @Deprecated public String[] getTetheredDhcpRanges() { throw new UnsupportedOperationException("getTetheredDhcpRanges is not supported"); } /** * Attempt to tether the named interface. This will set up a dhcp server * on the interface, forward and NAT IP packets and forward DNS requests * to the best active upstream network interface. Note that if no upstream * IP network interface is available, dhcp will still run and traffic will be * allowed between the tethered devices and this device, though upstream net * access will of course fail until an upstream network interface becomes * active. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* *

WARNING: New clients should not use this function. The only usages should be in PanService * and WifiStateMachine which need direct access. All other clients should use * {@link #startTethering} and {@link #stopTethering} which encapsulate proper provisioning * logic.

* * @param iface the interface name to tether. * @return error a {@code TETHER_ERROR} value indicating success or failure type * @deprecated Use {@link TetheringManager#startTethering} instead * * {@hide} */ @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) @Deprecated public int tether(String iface) { return getTetheringManager().tether(iface); } /** * Stop tethering the named interface. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* *

WARNING: New clients should not use this function. The only usages should be in PanService * and WifiStateMachine which need direct access. All other clients should use * {@link #startTethering} and {@link #stopTethering} which encapsulate proper provisioning * logic.

* * @param iface the interface name to untether. * @return error a {@code TETHER_ERROR} value indicating success or failure type * * {@hide} */ @UnsupportedAppUsage @Deprecated public int untether(String iface) { return getTetheringManager().untether(iface); } /** * Check if the device allows for tethering. It may be disabled via * {@code ro.tether.denied} system property, Settings.TETHER_SUPPORTED or * due to device configuration. * *

If this app does not have permission to use this API, it will always * return false rather than throw an exception.

* *

If the device has a hotspot provisioning app, the caller is required to hold the * {@link android.Manifest.permission.TETHER_PRIVILEGED} permission.

* *

Otherwise, this method requires the caller to hold the ability to modify system * settings as determined by {@link android.provider.Settings.System#canWrite}.

* * @return a boolean - {@code true} indicating Tethering is supported. * * @deprecated Use {@link TetheringEventCallback#onTetheringSupported(boolean)} instead. * {@hide} */ @SystemApi @RequiresPermission(anyOf = {android.Manifest.permission.TETHER_PRIVILEGED, android.Manifest.permission.WRITE_SETTINGS}) public boolean isTetheringSupported() { return getTetheringManager().isTetheringSupported(); } /** * Callback for use with {@link #startTethering} to find out whether tethering succeeded. * * @deprecated Use {@link TetheringManager.StartTetheringCallback} instead. * @hide */ @SystemApi @Deprecated public static abstract class OnStartTetheringCallback { /** * Called when tethering has been successfully started. */ public void onTetheringStarted() {} /** * Called when starting tethering failed. */ public void onTetheringFailed() {} } /** * Convenient overload for * {@link #startTethering(int, boolean, OnStartTetheringCallback, Handler)} which passes a null * handler to run on the current thread's {@link Looper}. * * @deprecated Use {@link TetheringManager#startTethering} instead. * @hide */ @SystemApi @Deprecated @RequiresPermission(android.Manifest.permission.TETHER_PRIVILEGED) public void startTethering(int type, boolean showProvisioningUi, final OnStartTetheringCallback callback) { startTethering(type, showProvisioningUi, callback, null); } /** * Runs tether provisioning for the given type if needed and then starts tethering if * the check succeeds. If no carrier provisioning is required for tethering, tethering is * enabled immediately. If provisioning fails, tethering will not be enabled. It also * schedules tether provisioning re-checks if appropriate. * * @param type The type of tethering to start. Must be one of * {@link ConnectivityManager.TETHERING_WIFI}, * {@link ConnectivityManager.TETHERING_USB}, or * {@link ConnectivityManager.TETHERING_BLUETOOTH}. * @param showProvisioningUi a boolean indicating to show the provisioning app UI if there * is one. This should be true the first time this function is called and also any time * the user can see this UI. It gives users information from their carrier about the * check failing and how they can sign up for tethering if possible. * @param callback an {@link OnStartTetheringCallback} which will be called to notify the caller * of the result of trying to tether. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * * @deprecated Use {@link TetheringManager#startTethering} instead. * @hide */ @SystemApi @Deprecated @RequiresPermission(android.Manifest.permission.TETHER_PRIVILEGED) public void startTethering(int type, boolean showProvisioningUi, final OnStartTetheringCallback callback, Handler handler) { Objects.requireNonNull(callback, "OnStartTetheringCallback cannot be null."); final Executor executor = new Executor() { @Override public void execute(Runnable command) { if (handler == null) { command.run(); } else { handler.post(command); } } }; final StartTetheringCallback tetheringCallback = new StartTetheringCallback() { @Override public void onTetheringStarted() { callback.onTetheringStarted(); } @Override public void onTetheringFailed(final int error) { callback.onTetheringFailed(); } }; final TetheringRequest request = new TetheringRequest.Builder(type) .setShouldShowEntitlementUi(showProvisioningUi).build(); getTetheringManager().startTethering(request, executor, tetheringCallback); } /** * Stops tethering for the given type. Also cancels any provisioning rechecks for that type if * applicable. * * @param type The type of tethering to stop. Must be one of * {@link ConnectivityManager.TETHERING_WIFI}, * {@link ConnectivityManager.TETHERING_USB}, or * {@link ConnectivityManager.TETHERING_BLUETOOTH}. * * @deprecated Use {@link TetheringManager#stopTethering} instead. * @hide */ @SystemApi @Deprecated @RequiresPermission(android.Manifest.permission.TETHER_PRIVILEGED) public void stopTethering(int type) { getTetheringManager().stopTethering(type); } /** * Callback for use with {@link registerTetheringEventCallback} to find out tethering * upstream status. * * @deprecated Use {@link TetheringManager#OnTetheringEventCallback} instead. * @hide */ @SystemApi @Deprecated public abstract static class OnTetheringEventCallback { /** * Called when tethering upstream changed. This can be called multiple times and can be * called any time. * * @param network the {@link Network} of tethering upstream. Null means tethering doesn't * have any upstream. */ public void onUpstreamChanged(@Nullable Network network) {} } @GuardedBy("mTetheringEventCallbacks") private final ArrayMap mTetheringEventCallbacks = new ArrayMap<>(); /** * Start listening to tethering change events. Any new added callback will receive the last * tethering status right away. If callback is registered when tethering has no upstream or * disabled, {@link OnTetheringEventCallback#onUpstreamChanged} will immediately be called * with a null argument. The same callback object cannot be registered twice. * * @param executor the executor on which callback will be invoked. * @param callback the callback to be called when tethering has change events. * * @deprecated Use {@link TetheringManager#registerTetheringEventCallback} instead. * @hide */ @SystemApi @Deprecated @RequiresPermission(android.Manifest.permission.TETHER_PRIVILEGED) public void registerTetheringEventCallback( @NonNull @CallbackExecutor Executor executor, @NonNull final OnTetheringEventCallback callback) { Objects.requireNonNull(callback, "OnTetheringEventCallback cannot be null."); final TetheringEventCallback tetherCallback = new TetheringEventCallback() { @Override public void onUpstreamChanged(@Nullable Network network) { callback.onUpstreamChanged(network); } }; synchronized (mTetheringEventCallbacks) { mTetheringEventCallbacks.put(callback, tetherCallback); getTetheringManager().registerTetheringEventCallback(executor, tetherCallback); } } /** * Remove tethering event callback previously registered with * {@link #registerTetheringEventCallback}. * * @param callback previously registered callback. * * @deprecated Use {@link TetheringManager#unregisterTetheringEventCallback} instead. * @hide */ @SystemApi @Deprecated @RequiresPermission(android.Manifest.permission.TETHER_PRIVILEGED) public void unregisterTetheringEventCallback( @NonNull final OnTetheringEventCallback callback) { Objects.requireNonNull(callback, "The callback must be non-null"); synchronized (mTetheringEventCallbacks) { final TetheringEventCallback tetherCallback = mTetheringEventCallbacks.remove(callback); getTetheringManager().unregisterTetheringEventCallback(tetherCallback); } } /** * Get the list of regular expressions that define any tetherable * USB network interfaces. If USB tethering is not supported by the * device, this list should be empty. * * @return an array of 0 or more regular expression Strings defining * what interfaces are considered tetherable usb interfaces. * * @deprecated Use {@link TetheringEventCallback#onTetherableInterfaceRegexpsChanged} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage @Deprecated public String[] getTetherableUsbRegexs() { return getTetheringManager().getTetherableUsbRegexs(); } /** * Get the list of regular expressions that define any tetherable * Wifi network interfaces. If Wifi tethering is not supported by the * device, this list should be empty. * * @return an array of 0 or more regular expression Strings defining * what interfaces are considered tetherable wifi interfaces. * * @deprecated Use {@link TetheringEventCallback#onTetherableInterfaceRegexpsChanged} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage @Deprecated public String[] getTetherableWifiRegexs() { return getTetheringManager().getTetherableWifiRegexs(); } /** * Get the list of regular expressions that define any tetherable * Bluetooth network interfaces. If Bluetooth tethering is not supported by the * device, this list should be empty. * * @return an array of 0 or more regular expression Strings defining * what interfaces are considered tetherable bluetooth interfaces. * * @deprecated Use {@link TetheringEventCallback#onTetherableInterfaceRegexpsChanged( *TetheringManager.TetheringInterfaceRegexps)} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage @Deprecated public String[] getTetherableBluetoothRegexs() { return getTetheringManager().getTetherableBluetoothRegexs(); } /** * Attempt to both alter the mode of USB and Tethering of USB. A * utility method to deal with some of the complexity of USB - will * attempt to switch to Rndis and subsequently tether the resulting * interface on {@code true} or turn off tethering and switch off * Rndis on {@code false}. * *

This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

* * @param enable a boolean - {@code true} to enable tethering * @return error a {@code TETHER_ERROR} value indicating success or failure type * @deprecated Use {@link TetheringManager#startTethering} instead * * {@hide} */ @UnsupportedAppUsage @Deprecated public int setUsbTethering(boolean enable) { return getTetheringManager().setUsbTethering(enable); } /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_NO_ERROR}. * {@hide} */ @SystemApi @Deprecated public static final int TETHER_ERROR_NO_ERROR = 0; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_UNKNOWN_IFACE}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_UNKNOWN_IFACE = TetheringManager.TETHER_ERROR_UNKNOWN_IFACE; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_SERVICE_UNAVAIL}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_SERVICE_UNAVAIL = TetheringManager.TETHER_ERROR_SERVICE_UNAVAIL; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_UNSUPPORTED}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_UNSUPPORTED = TetheringManager.TETHER_ERROR_UNSUPPORTED; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_UNAVAIL_IFACE}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_UNAVAIL_IFACE = TetheringManager.TETHER_ERROR_UNAVAIL_IFACE; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_INTERNAL_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_MASTER_ERROR = TetheringManager.TETHER_ERROR_INTERNAL_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_TETHER_IFACE_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_TETHER_IFACE_ERROR = TetheringManager.TETHER_ERROR_TETHER_IFACE_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_UNTETHER_IFACE_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_UNTETHER_IFACE_ERROR = TetheringManager.TETHER_ERROR_UNTETHER_IFACE_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_ENABLE_FORWARDING_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_ENABLE_NAT_ERROR = TetheringManager.TETHER_ERROR_ENABLE_FORWARDING_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_DISABLE_FORWARDING_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_DISABLE_NAT_ERROR = TetheringManager.TETHER_ERROR_DISABLE_FORWARDING_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_IFACE_CFG_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_IFACE_CFG_ERROR = TetheringManager.TETHER_ERROR_IFACE_CFG_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_PROVISIONING_FAILED}. * {@hide} */ @SystemApi @Deprecated public static final int TETHER_ERROR_PROVISION_FAILED = 11; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_DHCPSERVER_ERROR}. * {@hide} */ @Deprecated public static final int TETHER_ERROR_DHCPSERVER_ERROR = TetheringManager.TETHER_ERROR_DHCPSERVER_ERROR; /** * @deprecated Use {@link TetheringManager#TETHER_ERROR_ENTITLEMENT_UNKNOWN}. * {@hide} */ @SystemApi @Deprecated public static final int TETHER_ERROR_ENTITLEMENT_UNKONWN = 13; /** * Get a more detailed error code after a Tethering or Untethering * request asynchronously failed. * * @param iface The name of the interface of interest * @return error The error code of the last error tethering or untethering the named * interface * * @deprecated Use {@link TetheringEventCallback#onError(String, int)} instead. * {@hide} */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) @Deprecated public int getLastTetherError(String iface) { int error = getTetheringManager().getLastTetherError(iface); if (error == TetheringManager.TETHER_ERROR_UNKNOWN_TYPE) { // TETHER_ERROR_UNKNOWN_TYPE was introduced with TetheringManager and has never been // returned by ConnectivityManager. Convert it to the legacy TETHER_ERROR_UNKNOWN_IFACE // instead. error = TetheringManager.TETHER_ERROR_UNKNOWN_IFACE; } return error; } /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(value = { TETHER_ERROR_NO_ERROR, TETHER_ERROR_PROVISION_FAILED, TETHER_ERROR_ENTITLEMENT_UNKONWN, }) public @interface EntitlementResultCode { } /** * Callback for use with {@link #getLatestTetheringEntitlementResult} to find out whether * entitlement succeeded. * * @deprecated Use {@link TetheringManager#OnTetheringEntitlementResultListener} instead. * @hide */ @SystemApi @Deprecated public interface OnTetheringEntitlementResultListener { /** * Called to notify entitlement result. * * @param resultCode an int value of entitlement result. It may be one of * {@link #TETHER_ERROR_NO_ERROR}, * {@link #TETHER_ERROR_PROVISION_FAILED}, or * {@link #TETHER_ERROR_ENTITLEMENT_UNKONWN}. */ void onTetheringEntitlementResult(@EntitlementResultCode int resultCode); } /** * Get the last value of the entitlement check on this downstream. If the cached value is * {@link #TETHER_ERROR_NO_ERROR} or showEntitlementUi argument is false, this just returns the * cached value. Otherwise, a UI-based entitlement check will be performed. It is not * guaranteed that the UI-based entitlement check will complete in any specific time period * and it may in fact never complete. Any successful entitlement check the platform performs for * any reason will update the cached value. * * @param type the downstream type of tethering. Must be one of * {@link #TETHERING_WIFI}, * {@link #TETHERING_USB}, or * {@link #TETHERING_BLUETOOTH}. * @param showEntitlementUi a boolean indicating whether to run UI-based entitlement check. * @param executor the executor on which callback will be invoked. * @param listener an {@link OnTetheringEntitlementResultListener} which will be called to * notify the caller of the result of entitlement check. The listener may be called zero * or one time. * @deprecated Use {@link TetheringManager#requestLatestTetheringEntitlementResult} instead. * {@hide} */ @SystemApi @Deprecated @RequiresPermission(android.Manifest.permission.TETHER_PRIVILEGED) public void getLatestTetheringEntitlementResult(int type, boolean showEntitlementUi, @NonNull @CallbackExecutor Executor executor, @NonNull final OnTetheringEntitlementResultListener listener) { Objects.requireNonNull(listener, "TetheringEntitlementResultListener cannot be null."); ResultReceiver wrappedListener = new ResultReceiver(null) { @Override protected void onReceiveResult(int resultCode, Bundle resultData) { final long token = Binder.clearCallingIdentity(); try { executor.execute(() -> { listener.onTetheringEntitlementResult(resultCode); }); } finally { Binder.restoreCallingIdentity(token); } } }; getTetheringManager().requestLatestTetheringEntitlementResult(type, wrappedListener, showEntitlementUi); } /** * Report network connectivity status. This is currently used only * to alter status bar UI. *

This method requires the caller to hold the permission * {@link android.Manifest.permission#STATUS_BAR}. * * @param networkType The type of network you want to report on * @param percentage The quality of the connection 0 is bad, 100 is good * @deprecated Types are deprecated. Use {@link #reportNetworkConnectivity} instead. * {@hide} */ public void reportInetCondition(int networkType, int percentage) { printStackTrace(); try { mService.reportInetCondition(networkType, percentage); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Report a problem network to the framework. This provides a hint to the system * that there might be connectivity problems on this network and may cause * the framework to re-evaluate network connectivity and/or switch to another * network. * * @param network The {@link Network} the application was attempting to use * or {@code null} to indicate the current default network. * @deprecated Use {@link #reportNetworkConnectivity} which allows reporting both * working and non-working connectivity. */ @Deprecated public void reportBadNetwork(@Nullable Network network) { printStackTrace(); try { // One of these will be ignored because it matches system's current state. // The other will trigger the necessary reevaluation. mService.reportNetworkConnectivity(network, true); mService.reportNetworkConnectivity(network, false); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Report to the framework whether a network has working connectivity. * This provides a hint to the system that a particular network is providing * working connectivity or not. In response the framework may re-evaluate * the network's connectivity and might take further action thereafter. * * @param network The {@link Network} the application was attempting to use * or {@code null} to indicate the current default network. * @param hasConnectivity {@code true} if the application was able to successfully access the * Internet using {@code network} or {@code false} if not. */ public void reportNetworkConnectivity(@Nullable Network network, boolean hasConnectivity) { printStackTrace(); try { mService.reportNetworkConnectivity(network, hasConnectivity); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Set a network-independent global HTTP proxy. * * This sets an HTTP proxy that applies to all networks and overrides any network-specific * proxy. If set, HTTP libraries that are proxy-aware will use this global proxy when * accessing any network, regardless of what the settings for that network are. * * Note that HTTP proxies are by nature typically network-dependent, and setting a global * proxy is likely to break networking on multiple networks. This method is only meant * for device policy clients looking to do general internal filtering or similar use cases. * * @see #getGlobalProxy * @see LinkProperties#getHttpProxy * * @param p A {@link ProxyInfo} object defining the new global HTTP proxy. Calling this * method with a {@code null} value will clear the global HTTP proxy. * @hide */ // Used by Device Policy Manager to set the global proxy. @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(android.Manifest.permission.NETWORK_STACK) public void setGlobalProxy(@Nullable final ProxyInfo p) { try { mService.setGlobalProxy(p); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Retrieve any network-independent global HTTP proxy. * * @return {@link ProxyInfo} for the current global HTTP proxy or {@code null} * if no global HTTP proxy is set. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @Nullable public ProxyInfo getGlobalProxy() { try { return mService.getGlobalProxy(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Retrieve the global HTTP proxy, or if no global HTTP proxy is set, a * network-specific HTTP proxy. If {@code network} is null, the * network-specific proxy returned is the proxy of the default active * network. * * @return {@link ProxyInfo} for the current global HTTP proxy, or if no * global HTTP proxy is set, {@code ProxyInfo} for {@code network}, * or when {@code network} is {@code null}, * the {@code ProxyInfo} for the default active network. Returns * {@code null} when no proxy applies or the caller doesn't have * permission to use {@code network}. * @hide */ public ProxyInfo getProxyForNetwork(Network network) { try { return mService.getProxyForNetwork(network); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Get the current default HTTP proxy settings. If a global proxy is set it will be returned, * otherwise if this process is bound to a {@link Network} using * {@link #bindProcessToNetwork} then that {@code Network}'s proxy is returned, otherwise * the default network's proxy is returned. * * @return the {@link ProxyInfo} for the current HTTP proxy, or {@code null} if no * HTTP proxy is active. */ @Nullable public ProxyInfo getDefaultProxy() { return getProxyForNetwork(getBoundNetworkForProcess()); } /** * Returns whether the hardware supports the given network type. * * This doesn't indicate there is coverage or such a network is available, just whether the * hardware supports it. For example a GSM phone without a SIM card will return {@code true} * for mobile data, but a WiFi only tablet would return {@code false}. * * @param networkType The network type we'd like to check * @return {@code true} if supported, else {@code false} * @deprecated Types are deprecated. Use {@link NetworkCapabilities} instead. * @hide */ @Deprecated @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 130143562) public boolean isNetworkSupported(int networkType) { try { return mService.isNetworkSupported(networkType); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Returns if the currently active data network is metered. A network is * classified as metered when the user is sensitive to heavy data usage on * that connection due to monetary costs, data limitations or * battery/performance issues. You should check this before doing large * data transfers, and warn the user or delay the operation until another * network is available. * * @return {@code true} if large transfers should be avoided, otherwise * {@code false}. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public boolean isActiveNetworkMetered() { try { return mService.isActiveNetworkMetered(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Set sign in error notification to visible or invisible * * @hide * @deprecated Doesn't properly deal with multiple connected networks of the same type. */ @Deprecated public void setProvisioningNotificationVisible(boolean visible, int networkType, String action) { try { mService.setProvisioningNotificationVisible(visible, networkType, action); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Set the value for enabling/disabling airplane mode * * @param enable whether to enable airplane mode or not * * @hide */ @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_AIRPLANE_MODE, android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_SETUP_WIZARD, android.Manifest.permission.NETWORK_STACK}) @SystemApi public void setAirplaneMode(boolean enable) { try { mService.setAirplaneMode(enable); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Registers the specified {@link NetworkProvider}. * Each listener must only be registered once. The listener can be unregistered with * {@link #unregisterNetworkProvider}. * * @param provider the provider to register * @return the ID of the provider. This ID must be used by the provider when registering * {@link android.net.NetworkAgent}s. * @hide */ @SystemApi @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_FACTORY}) public int registerNetworkProvider(@NonNull NetworkProvider provider) { if (provider.getProviderId() != NetworkProvider.ID_NONE) { throw new IllegalStateException("NetworkProviders can only be registered once"); } try { int providerId = mService.registerNetworkProvider(provider.getMessenger(), provider.getName()); provider.setProviderId(providerId); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } return provider.getProviderId(); } /** * Unregisters the specified NetworkProvider. * * @param provider the provider to unregister * @hide */ @SystemApi @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_FACTORY}) public void unregisterNetworkProvider(@NonNull NetworkProvider provider) { try { mService.unregisterNetworkProvider(provider.getMessenger()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } provider.setProviderId(NetworkProvider.ID_NONE); } /** * Register or update a network offer with ConnectivityService. * * ConnectivityService keeps track of offers made by the various providers and matches * them to networking requests made by apps or the system. A callback identifies an offer * uniquely, and later calls with the same callback update the offer. The provider supplies a * score and the capabilities of the network it might be able to bring up ; these act as * filters used by ConnectivityService to only send those requests that can be fulfilled by the * provider. * * The provider is under no obligation to be able to bring up the network it offers at any * given time. Instead, this mechanism is meant to limit requests received by providers * to those they actually have a chance to fulfill, as providers don't have a way to compare * the quality of the network satisfying a given request to their own offer. * * An offer can be updated by calling this again with the same callback object. This is * similar to calling unofferNetwork and offerNetwork again, but will only update the * provider with the changes caused by the changes in the offer. * * @param provider The provider making this offer. * @param score The prospective score of the network. * @param caps The prospective capabilities of the network. * @param callback The callback to call when this offer is needed or unneeded. * @hide exposed via the NetworkProvider class. */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_FACTORY}) public void offerNetwork(@NonNull final int providerId, @NonNull final NetworkScore score, @NonNull final NetworkCapabilities caps, @NonNull final INetworkOfferCallback callback) { try { mService.offerNetwork(providerId, Objects.requireNonNull(score, "null score"), Objects.requireNonNull(caps, "null caps"), Objects.requireNonNull(callback, "null callback")); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Withdraw a network offer made with {@link #offerNetwork}. * * @param callback The callback passed at registration time. This must be the same object * that was passed to {@link #offerNetwork} * @hide exposed via the NetworkProvider class. */ public void unofferNetwork(@NonNull final INetworkOfferCallback callback) { try { mService.unofferNetwork(Objects.requireNonNull(callback)); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** @hide exposed via the NetworkProvider class. */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_FACTORY}) public void declareNetworkRequestUnfulfillable(@NonNull NetworkRequest request) { try { mService.declareNetworkRequestUnfulfillable(request); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * @hide * Register a NetworkAgent with ConnectivityService. * @return Network corresponding to NetworkAgent. */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_FACTORY}) public Network registerNetworkAgent(@NonNull INetworkAgent na, @NonNull NetworkInfo ni, @NonNull LinkProperties lp, @NonNull NetworkCapabilities nc, @NonNull NetworkScore score, @NonNull NetworkAgentConfig config, int providerId) { return registerNetworkAgent(na, ni, lp, nc, null /* localNetworkConfig */, score, config, providerId); } /** * @hide * Register a NetworkAgent with ConnectivityService. * @return Network corresponding to NetworkAgent. */ @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_FACTORY}) public Network registerNetworkAgent(@NonNull INetworkAgent na, @NonNull NetworkInfo ni, @NonNull LinkProperties lp, @NonNull NetworkCapabilities nc, @Nullable LocalNetworkConfig localNetworkConfig, @NonNull NetworkScore score, @NonNull NetworkAgentConfig config, int providerId) { try { return mService.registerNetworkAgent(na, ni, lp, nc, score, localNetworkConfig, config, providerId); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Base class for {@code NetworkRequest} callbacks. Used for notifications about network * changes. Should be extended by applications wanting notifications. * * A {@code NetworkCallback} is registered by calling * {@link #requestNetwork(NetworkRequest, NetworkCallback)}, * {@link #registerNetworkCallback(NetworkRequest, NetworkCallback)}, * or {@link #registerDefaultNetworkCallback(NetworkCallback)}. A {@code NetworkCallback} is * unregistered by calling {@link #unregisterNetworkCallback(NetworkCallback)}. * A {@code NetworkCallback} should be registered at most once at any time. * A {@code NetworkCallback} that has been unregistered can be registered again. */ public static class NetworkCallback { /** * No flags associated with this callback. * @hide */ public static final int FLAG_NONE = 0; /** * Inclusion of this flag means location-sensitive redaction requests keeping location info. * * Some objects like {@link NetworkCapabilities} may contain location-sensitive information. * Prior to Android 12, this information is always returned to apps holding the appropriate * permission, possibly noting that the app has used location. *

In Android 12 and above, by default the sent objects do not contain any location * information, even if the app holds the necessary permissions, and the system does not * take note of location usage by the app. Apps can request that location information is * included, in which case the system will check location permission and the location * toggle state, and take note of location usage by the app if any such information is * returned. * * Use this flag to include any location sensitive data in {@link NetworkCapabilities} sent * via {@link #onCapabilitiesChanged(Network, NetworkCapabilities)}. *

* These include: *

  • Some transport info instances (retrieved via * {@link NetworkCapabilities#getTransportInfo()}) like {@link android.net.wifi.WifiInfo} * contain location sensitive information. *
  • OwnerUid (retrieved via {@link NetworkCapabilities#getOwnerUid()} is location * sensitive for wifi suggestor apps (i.e using * {@link android.net.wifi.WifiNetworkSuggestion WifiNetworkSuggestion}).
  • *

    *

    * Note: *

  • Retrieving this location sensitive information (subject to app's location * permissions) will be noted by system.
  • *
  • Without this flag any {@link NetworkCapabilities} provided via the callback does * not include location sensitive information. */ // Note: Some existing fields which are location sensitive may still be included without // this flag if the app targets SDK < S (to maintain backwards compatibility). public static final int FLAG_INCLUDE_LOCATION_INFO = 1 << 0; /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(flag = true, prefix = "FLAG_", value = { FLAG_NONE, FLAG_INCLUDE_LOCATION_INFO }) public @interface Flag { } /** * All the valid flags for error checking. */ private static final int VALID_FLAGS = FLAG_INCLUDE_LOCATION_INFO; public NetworkCallback() { this(FLAG_NONE); } public NetworkCallback(@Flag int flags) { if ((flags & VALID_FLAGS) != flags) { throw new IllegalArgumentException("Invalid flags"); } mFlags = flags; } /** * Called when the framework connects to a new network to evaluate whether it satisfies this * request. If evaluation succeeds, this callback may be followed by an {@link #onAvailable} * callback. There is no guarantee that this new network will satisfy any requests, or that * the network will stay connected for longer than the time necessary to evaluate it. *

    * Most applications should not act on this callback, and should instead use * {@link #onAvailable}. This callback is intended for use by applications that can assist * the framework in properly evaluating the network — for example, an application that * can automatically log in to a captive portal without user intervention. * * @param network The {@link Network} of the network that is being evaluated. * * @hide */ public void onPreCheck(@NonNull Network network) {} /** * Called when the framework connects and has declared a new network ready for use. * This callback may be called more than once if the {@link Network} that is * satisfying the request changes. * * @param network The {@link Network} of the satisfying network. * @param networkCapabilities The {@link NetworkCapabilities} of the satisfying network. * @param linkProperties The {@link LinkProperties} of the satisfying network. * @param localInfo The {@link LocalNetworkInfo} of the satisfying network, or null * if this network is not a local network. * @param blocked Whether access to the {@link Network} is blocked due to system policy. * @hide */ public final void onAvailable(@NonNull Network network, @NonNull NetworkCapabilities networkCapabilities, @NonNull LinkProperties linkProperties, @Nullable LocalNetworkInfo localInfo, @BlockedReason int blocked) { // Internally only this method is called when a new network is available, and // it calls the callback in the same way and order that older versions used // to call so as not to change the behavior. onAvailable(network, networkCapabilities, linkProperties, blocked != 0); if (null != localInfo) onLocalNetworkInfoChanged(network, localInfo); onBlockedStatusChanged(network, blocked); } /** * Legacy variant of onAvailable that takes a boolean blocked reason. * * This method has never been public API, but it's not final, so there may be apps that * implemented it and rely on it being called. Do our best not to break them. * Note: such apps will also get a second call to onBlockedStatusChanged immediately after * this method is called. There does not seem to be a way to avoid this. * TODO: add a compat check to move apps off this method, and eventually stop calling it. * * @hide */ public void onAvailable(@NonNull Network network, @NonNull NetworkCapabilities networkCapabilities, @NonNull LinkProperties linkProperties, boolean blocked) { onAvailable(network); if (!networkCapabilities.hasCapability( NetworkCapabilities.NET_CAPABILITY_NOT_SUSPENDED)) { onNetworkSuspended(network); } onCapabilitiesChanged(network, networkCapabilities); onLinkPropertiesChanged(network, linkProperties); // No call to onBlockedStatusChanged here. That is done by the caller. } /** * Called when the framework connects and has declared a new network ready for use. * *

    For callbacks registered with {@link #registerNetworkCallback}, multiple networks may * be available at the same time, and onAvailable will be called for each of these as they * appear. * *

    For callbacks registered with {@link #requestNetwork} and * {@link #registerDefaultNetworkCallback}, this means the network passed as an argument * is the new best network for this request and is now tracked by this callback ; this * callback will no longer receive method calls about other networks that may have been * passed to this method previously. The previously-best network may have disconnected, or * it may still be around and the newly-best network may simply be better. * *

    Starting with {@link android.os.Build.VERSION_CODES#O}, this will always immediately * be followed by a call to {@link #onCapabilitiesChanged(Network, NetworkCapabilities)} * then by a call to {@link #onLinkPropertiesChanged(Network, LinkProperties)}, and a call * to {@link #onBlockedStatusChanged(Network, boolean)}. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions (there is no guarantee the objects * returned by these methods will be current). Instead, wait for a call to * {@link #onCapabilitiesChanged(Network, NetworkCapabilities)} and * {@link #onLinkPropertiesChanged(Network, LinkProperties)} whose arguments are guaranteed * to be well-ordered with respect to other callbacks. * * @param network The {@link Network} of the satisfying network. */ public void onAvailable(@NonNull Network network) {} /** * Called when the network is about to be lost, typically because there are no outstanding * requests left for it. This may be paired with a {@link NetworkCallback#onAvailable} call * with the new replacement network for graceful handover. This method is not guaranteed * to be called before {@link NetworkCallback#onLost} is called, for example in case a * network is suddenly disconnected. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions ; calling these methods while in a * callback may return an outdated or even a null object. * * @param network The {@link Network} that is about to be lost. * @param maxMsToLive The time in milliseconds the system intends to keep the network * connected for graceful handover; note that the network may still * suffer a hard loss at any time. */ public void onLosing(@NonNull Network network, int maxMsToLive) {} /** * Called when a network disconnects or otherwise no longer satisfies this request or * callback. * *

    If the callback was registered with requestNetwork() or * registerDefaultNetworkCallback(), it will only be invoked against the last network * returned by onAvailable() when that network is lost and no other network satisfies * the criteria of the request. * *

    If the callback was registered with registerNetworkCallback() it will be called for * each network which no longer satisfies the criteria of the callback. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions ; calling these methods while in a * callback may return an outdated or even a null object. * * @param network The {@link Network} lost. */ public void onLost(@NonNull Network network) {} /** * Called if no network is found within the timeout time specified in * {@link #requestNetwork(NetworkRequest, NetworkCallback, int)} call or if the * requested network request cannot be fulfilled (whether or not a timeout was * specified). When this callback is invoked the associated * {@link NetworkRequest} will have already been removed and released, as if * {@link #unregisterNetworkCallback(NetworkCallback)} had been called. */ public void onUnavailable() {} /** * Called when the network corresponding to this request changes capabilities but still * satisfies the requested criteria. * *

    Starting with {@link android.os.Build.VERSION_CODES#O} this method is guaranteed * to be called immediately after {@link #onAvailable}. * *

    Do NOT call {@link #getLinkProperties(Network)} or other synchronous * ConnectivityManager methods in this callback as this is prone to race conditions : * calling these methods while in a callback may return an outdated or even a null object. * * @param network The {@link Network} whose capabilities have changed. * @param networkCapabilities The new {@link NetworkCapabilities} for this * network. */ public void onCapabilitiesChanged(@NonNull Network network, @NonNull NetworkCapabilities networkCapabilities) {} /** * Called when the network corresponding to this request changes {@link LinkProperties}. * *

    Starting with {@link android.os.Build.VERSION_CODES#O} this method is guaranteed * to be called immediately after {@link #onAvailable}. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or other synchronous * ConnectivityManager methods in this callback as this is prone to race conditions : * calling these methods while in a callback may return an outdated or even a null object. * * @param network The {@link Network} whose link properties have changed. * @param linkProperties The new {@link LinkProperties} for this network. */ public void onLinkPropertiesChanged(@NonNull Network network, @NonNull LinkProperties linkProperties) {} /** * Called when there is a change in the {@link LocalNetworkInfo} for this network. * * This is only called for local networks, that is those with the * NET_CAPABILITY_LOCAL_NETWORK network capability. * * @param network the {@link Network} whose local network info has changed. * @param localNetworkInfo the new {@link LocalNetworkInfo} for this network. * @hide */ public void onLocalNetworkInfoChanged(@NonNull Network network, @NonNull LocalNetworkInfo localNetworkInfo) {} /** * Called when the network the framework connected to for this request suspends data * transmission temporarily. * *

    This generally means that while the TCP connections are still live temporarily * network data fails to transfer. To give a specific example, this is used on cellular * networks to mask temporary outages when driving through a tunnel, etc. In general this * means read operations on sockets on this network will block once the buffers are * drained, and write operations will block once the buffers are full. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions (there is no guarantee the objects * returned by these methods will be current). * * @hide */ public void onNetworkSuspended(@NonNull Network network) {} /** * Called when the network the framework connected to for this request * returns from a {@link NetworkInfo.State#SUSPENDED} state. This should always be * preceded by a matching {@link NetworkCallback#onNetworkSuspended} call. *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions : calling these methods while in a * callback may return an outdated or even a null object. * * @hide */ public void onNetworkResumed(@NonNull Network network) {} /** * Called when access to the specified network is blocked or unblocked. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions : calling these methods while in a * callback may return an outdated or even a null object. * * @param network The {@link Network} whose blocked status has changed. * @param blocked The blocked status of this {@link Network}. */ public void onBlockedStatusChanged(@NonNull Network network, boolean blocked) {} /** * Called when access to the specified network is blocked or unblocked, or the reason for * access being blocked changes. * * If a NetworkCallback object implements this method, * {@link #onBlockedStatusChanged(Network, boolean)} will not be called. * *

    Do NOT call {@link #getNetworkCapabilities(Network)} or * {@link #getLinkProperties(Network)} or other synchronous ConnectivityManager methods in * this callback as this is prone to race conditions : calling these methods while in a * callback may return an outdated or even a null object. * * @param network The {@link Network} whose blocked status has changed. * @param blocked The blocked status of this {@link Network}. * @hide */ @SystemApi(client = MODULE_LIBRARIES) public void onBlockedStatusChanged(@NonNull Network network, @BlockedReason int blocked) { onBlockedStatusChanged(network, blocked != 0); } private NetworkRequest networkRequest; private final int mFlags; } /** * Constant error codes used by ConnectivityService to communicate about failures and errors * across a Binder boundary. * @hide */ public interface Errors { int TOO_MANY_REQUESTS = 1; } /** @hide */ public static class TooManyRequestsException extends RuntimeException {} private static RuntimeException convertServiceException(ServiceSpecificException e) { switch (e.errorCode) { case Errors.TOO_MANY_REQUESTS: return new TooManyRequestsException(); default: Log.w(TAG, "Unknown service error code " + e.errorCode); return new RuntimeException(e); } } /** @hide */ public static final int CALLBACK_PRECHECK = 1; /** @hide */ public static final int CALLBACK_AVAILABLE = 2; /** @hide arg1 = TTL */ public static final int CALLBACK_LOSING = 3; /** @hide */ public static final int CALLBACK_LOST = 4; /** @hide */ public static final int CALLBACK_UNAVAIL = 5; /** @hide */ public static final int CALLBACK_CAP_CHANGED = 6; /** @hide */ public static final int CALLBACK_IP_CHANGED = 7; /** @hide obj = NetworkCapabilities, arg1 = seq number */ private static final int EXPIRE_LEGACY_REQUEST = 8; /** @hide */ public static final int CALLBACK_SUSPENDED = 9; /** @hide */ public static final int CALLBACK_RESUMED = 10; /** @hide */ public static final int CALLBACK_BLK_CHANGED = 11; /** @hide */ public static final int CALLBACK_LOCAL_NETWORK_INFO_CHANGED = 12; /** @hide */ public static String getCallbackName(int whichCallback) { switch (whichCallback) { case CALLBACK_PRECHECK: return "CALLBACK_PRECHECK"; case CALLBACK_AVAILABLE: return "CALLBACK_AVAILABLE"; case CALLBACK_LOSING: return "CALLBACK_LOSING"; case CALLBACK_LOST: return "CALLBACK_LOST"; case CALLBACK_UNAVAIL: return "CALLBACK_UNAVAIL"; case CALLBACK_CAP_CHANGED: return "CALLBACK_CAP_CHANGED"; case CALLBACK_IP_CHANGED: return "CALLBACK_IP_CHANGED"; case EXPIRE_LEGACY_REQUEST: return "EXPIRE_LEGACY_REQUEST"; case CALLBACK_SUSPENDED: return "CALLBACK_SUSPENDED"; case CALLBACK_RESUMED: return "CALLBACK_RESUMED"; case CALLBACK_BLK_CHANGED: return "CALLBACK_BLK_CHANGED"; case CALLBACK_LOCAL_NETWORK_INFO_CHANGED: return "CALLBACK_LOCAL_NETWORK_INFO_CHANGED"; default: return Integer.toString(whichCallback); } } private static class CallbackHandler extends Handler { private static final String TAG = "ConnectivityManager.CallbackHandler"; private static final boolean DBG = false; CallbackHandler(Looper looper) { super(looper); } CallbackHandler(Handler handler) { this(Objects.requireNonNull(handler, "Handler cannot be null.").getLooper()); } @Override public void handleMessage(Message message) { if (message.what == EXPIRE_LEGACY_REQUEST) { // the sInstance can't be null because to send this message a ConnectivityManager // instance must have been created prior to creating the thread on which this // Handler is running. sInstance.expireRequest((NetworkCapabilities) message.obj, message.arg1); return; } final NetworkRequest request = getObject(message, NetworkRequest.class); final Network network = getObject(message, Network.class); final NetworkCallback callback; synchronized (sCallbacks) { callback = sCallbacks.get(request); if (callback == null) { Log.w(TAG, "callback not found for " + getCallbackName(message.what) + " message"); return; } if (message.what == CALLBACK_UNAVAIL) { sCallbacks.remove(request); callback.networkRequest = ALREADY_UNREGISTERED; } } if (DBG) { Log.d(TAG, getCallbackName(message.what) + " for network " + network); } switch (message.what) { case CALLBACK_PRECHECK: { callback.onPreCheck(network); break; } case CALLBACK_AVAILABLE: { NetworkCapabilities cap = getObject(message, NetworkCapabilities.class); LinkProperties lp = getObject(message, LinkProperties.class); LocalNetworkInfo lni = getObject(message, LocalNetworkInfo.class); callback.onAvailable(network, cap, lp, lni, message.arg1); break; } case CALLBACK_LOSING: { callback.onLosing(network, message.arg1); break; } case CALLBACK_LOST: { callback.onLost(network); break; } case CALLBACK_UNAVAIL: { callback.onUnavailable(); break; } case CALLBACK_CAP_CHANGED: { NetworkCapabilities cap = getObject(message, NetworkCapabilities.class); callback.onCapabilitiesChanged(network, cap); break; } case CALLBACK_IP_CHANGED: { LinkProperties lp = getObject(message, LinkProperties.class); callback.onLinkPropertiesChanged(network, lp); break; } case CALLBACK_LOCAL_NETWORK_INFO_CHANGED: { final LocalNetworkInfo info = getObject(message, LocalNetworkInfo.class); callback.onLocalNetworkInfoChanged(network, info); break; } case CALLBACK_SUSPENDED: { callback.onNetworkSuspended(network); break; } case CALLBACK_RESUMED: { callback.onNetworkResumed(network); break; } case CALLBACK_BLK_CHANGED: { callback.onBlockedStatusChanged(network, message.arg1); } } } private T getObject(Message msg, Class c) { return (T) msg.getData().getParcelable(c.getSimpleName()); } } private CallbackHandler getDefaultHandler() { synchronized (sCallbacks) { if (sCallbackHandler == null) { sCallbackHandler = new CallbackHandler(ConnectivityThread.getInstanceLooper()); } return sCallbackHandler; } } private static final HashMap sCallbacks = new HashMap<>(); private static CallbackHandler sCallbackHandler; private NetworkRequest sendRequestForNetwork(int asUid, NetworkCapabilities need, NetworkCallback callback, int timeoutMs, NetworkRequest.Type reqType, int legacyType, CallbackHandler handler) { printStackTrace(); checkCallbackNotNull(callback); if (reqType != TRACK_DEFAULT && reqType != TRACK_SYSTEM_DEFAULT && need == null) { throw new IllegalArgumentException("null NetworkCapabilities"); } final NetworkRequest request; final String callingPackageName = mContext.getOpPackageName(); try { synchronized(sCallbacks) { if (callback.networkRequest != null && callback.networkRequest != ALREADY_UNREGISTERED) { // TODO: throw exception instead and enforce 1:1 mapping of callbacks // and requests (http://b/20701525). Log.e(TAG, "NetworkCallback was already registered"); } Messenger messenger = new Messenger(handler); Binder binder = new Binder(); final int callbackFlags = callback.mFlags; if (reqType == LISTEN) { request = mService.listenForNetwork( need, messenger, binder, callbackFlags, callingPackageName, getAttributionTag()); } else { request = mService.requestNetwork( asUid, need, reqType.ordinal(), messenger, timeoutMs, binder, legacyType, callbackFlags, callingPackageName, getAttributionTag()); } if (request != null) { sCallbacks.put(request, callback); } callback.networkRequest = request; } } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } catch (ServiceSpecificException e) { throw convertServiceException(e); } return request; } private NetworkRequest sendRequestForNetwork(NetworkCapabilities need, NetworkCallback callback, int timeoutMs, NetworkRequest.Type reqType, int legacyType, CallbackHandler handler) { return sendRequestForNetwork(Process.INVALID_UID, need, callback, timeoutMs, reqType, legacyType, handler); } /** * Helper function to request a network with a particular legacy type. * * This API is only for use in internal system code that requests networks with legacy type and * relies on CONNECTIVITY_ACTION broadcasts instead of NetworkCallbacks. New caller should use * {@link #requestNetwork(NetworkRequest, NetworkCallback, Handler)} instead. * * @param request {@link NetworkRequest} describing this request. * @param timeoutMs The time in milliseconds to attempt looking for a suitable network * before {@link NetworkCallback#onUnavailable()} is called. The timeout must * be a positive value (i.e. >0). * @param legacyType to specify the network type(#TYPE_*). * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @param networkCallback The {@link NetworkCallback} to be utilized for this request. Note * the callback must not be shared - it uniquely specifies this request. * * @hide */ @SystemApi @RequiresPermission(NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK) public void requestNetwork(@NonNull NetworkRequest request, int timeoutMs, int legacyType, @NonNull Handler handler, @NonNull NetworkCallback networkCallback) { if (legacyType == TYPE_NONE) { throw new IllegalArgumentException("TYPE_NONE is meaningless legacy type"); } CallbackHandler cbHandler = new CallbackHandler(handler); NetworkCapabilities nc = request.networkCapabilities; sendRequestForNetwork(nc, networkCallback, timeoutMs, REQUEST, legacyType, cbHandler); } /** * Request a network to satisfy a set of {@link NetworkCapabilities}. * *

    This method will attempt to find the best network that matches the passed * {@link NetworkRequest}, and to bring up one that does if none currently satisfies the * criteria. The platform will evaluate which network is the best at its own discretion. * Throughput, latency, cost per byte, policy, user preference and other considerations * may be factored in the decision of what is considered the best network. * *

    As long as this request is outstanding, the platform will try to maintain the best network * matching this request, while always attempting to match the request to a better network if * possible. If a better match is found, the platform will switch this request to the now-best * network and inform the app of the newly best network by invoking * {@link NetworkCallback#onAvailable(Network)} on the provided callback. Note that the platform * will not try to maintain any other network than the best one currently matching the request: * a network not matching any network request may be disconnected at any time. * *

    For example, an application could use this method to obtain a connected cellular network * even if the device currently has a data connection over Ethernet. This may cause the cellular * radio to consume additional power. Or, an application could inform the system that it wants * a network supporting sending MMSes and have the system let it know about the currently best * MMS-supporting network through the provided {@link NetworkCallback}. * *

    The status of the request can be followed by listening to the various callbacks described * in {@link NetworkCallback}. The {@link Network} object passed to the callback methods can be * used to direct traffic to the network (although accessing some networks may be subject to * holding specific permissions). Callers will learn about the specific characteristics of the * network through * {@link NetworkCallback#onCapabilitiesChanged(Network, NetworkCapabilities)} and * {@link NetworkCallback#onLinkPropertiesChanged(Network, LinkProperties)}. The methods of the * provided {@link NetworkCallback} will only be invoked due to changes in the best network * matching the request at any given time; therefore when a better network matching the request * becomes available, the {@link NetworkCallback#onAvailable(Network)} method is called * with the new network after which no further updates are given about the previously-best * network, unless it becomes the best again at some later time. All callbacks are invoked * in order on the same thread, which by default is a thread created by the framework running * in the app. * See {@link #requestNetwork(NetworkRequest, NetworkCallback, Handler)} to change where the * callbacks are invoked. * *

    This{@link NetworkRequest} will live until released via * {@link #unregisterNetworkCallback(NetworkCallback)} or the calling application exits, at * which point the system may let go of the network at any time. * *

    A version of this method which takes a timeout is * {@link #requestNetwork(NetworkRequest, NetworkCallback, int)}, that an app can use to only * wait for a limited amount of time for the network to become unavailable. * *

    It is presently unsupported to request a network with mutable * {@link NetworkCapabilities} such as * {@link NetworkCapabilities#NET_CAPABILITY_VALIDATED} or * {@link NetworkCapabilities#NET_CAPABILITY_CAPTIVE_PORTAL} * as these {@code NetworkCapabilities} represent states that a particular * network may never attain, and whether a network will attain these states * is unknown prior to bringing up the network so the framework does not * know how to go about satisfying a request with these capabilities. * *

    This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

    * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #registerNetworkCallback} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} to be utilized for this request. Note * the callback must not be shared - it uniquely specifies this request. * The callback is invoked on the default internal Handler. * @throws IllegalArgumentException if {@code request} contains invalid network capabilities. * @throws SecurityException if missing the appropriate permissions. * @throws RuntimeException if the app already has too many callbacks registered. */ public void requestNetwork(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback) { requestNetwork(request, networkCallback, getDefaultHandler()); } /** * Request a network to satisfy a set of {@link NetworkCapabilities}. * * This method behaves identically to {@link #requestNetwork(NetworkRequest, NetworkCallback)} * but runs all the callbacks on the passed Handler. * *

    This method has the same permission requirements as * {@link #requestNetwork(NetworkRequest, NetworkCallback)}, is subject to the same limitations, * and throws the same exceptions in the same conditions. * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} to be utilized for this request. Note * the callback must not be shared - it uniquely specifies this request. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. */ public void requestNetwork(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback, @NonNull Handler handler) { CallbackHandler cbHandler = new CallbackHandler(handler); NetworkCapabilities nc = request.networkCapabilities; sendRequestForNetwork(nc, networkCallback, 0, REQUEST, TYPE_NONE, cbHandler); } /** * Request a network to satisfy a set of {@link NetworkCapabilities}, limited * by a timeout. * * This function behaves identically to the non-timed-out version * {@link #requestNetwork(NetworkRequest, NetworkCallback)}, but if a suitable network * is not found within the given time (in milliseconds) the * {@link NetworkCallback#onUnavailable()} callback is called. The request can still be * released normally by calling {@link #unregisterNetworkCallback(NetworkCallback)} but does * not have to be released if timed-out (it is automatically released). Unregistering a * request that timed out is not an error. * *

    Do not use this method to poll for the existence of specific networks (e.g. with a small * timeout) - {@link #registerNetworkCallback(NetworkRequest, NetworkCallback)} is provided * for that purpose. Calling this method will attempt to bring up the requested network. * *

    This method has the same permission requirements as * {@link #requestNetwork(NetworkRequest, NetworkCallback)}, is subject to the same limitations, * and throws the same exceptions in the same conditions. * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} to be utilized for this request. Note * the callback must not be shared - it uniquely specifies this request. * @param timeoutMs The time in milliseconds to attempt looking for a suitable network * before {@link NetworkCallback#onUnavailable()} is called. The timeout must * be a positive value (i.e. >0). */ public void requestNetwork(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback, int timeoutMs) { checkTimeout(timeoutMs); NetworkCapabilities nc = request.networkCapabilities; sendRequestForNetwork(nc, networkCallback, timeoutMs, REQUEST, TYPE_NONE, getDefaultHandler()); } /** * Request a network to satisfy a set of {@link NetworkCapabilities}, limited * by a timeout. * * This method behaves identically to * {@link #requestNetwork(NetworkRequest, NetworkCallback, int)} but runs all the callbacks * on the passed Handler. * *

    This method has the same permission requirements as * {@link #requestNetwork(NetworkRequest, NetworkCallback)}, is subject to the same limitations, * and throws the same exceptions in the same conditions. * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} to be utilized for this request. Note * the callback must not be shared - it uniquely specifies this request. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @param timeoutMs The time in milliseconds to attempt looking for a suitable network * before {@link NetworkCallback#onUnavailable} is called. */ public void requestNetwork(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback, @NonNull Handler handler, int timeoutMs) { checkTimeout(timeoutMs); CallbackHandler cbHandler = new CallbackHandler(handler); NetworkCapabilities nc = request.networkCapabilities; sendRequestForNetwork(nc, networkCallback, timeoutMs, REQUEST, TYPE_NONE, cbHandler); } /** * The lookup key for a {@link Network} object included with the intent after * successfully finding a network for the applications request. Retrieve it with * {@link android.content.Intent#getParcelableExtra(String)}. *

    * Note that if you intend to invoke {@link Network#openConnection(java.net.URL)} * then you must get a ConnectivityManager instance before doing so. */ public static final String EXTRA_NETWORK = "android.net.extra.NETWORK"; /** * The lookup key for a {@link NetworkRequest} object included with the intent after * successfully finding a network for the applications request. Retrieve it with * {@link android.content.Intent#getParcelableExtra(String)}. */ public static final String EXTRA_NETWORK_REQUEST = "android.net.extra.NETWORK_REQUEST"; /** * Request a network to satisfy a set of {@link NetworkCapabilities}. * * This function behaves identically to the version that takes a NetworkCallback, but instead * of {@link NetworkCallback} a {@link PendingIntent} is used. This means * the request may outlive the calling application and get called back when a suitable * network is found. *

    * The operation is an Intent broadcast that goes to a broadcast receiver that * you registered with {@link Context#registerReceiver} or through the * <receiver> tag in an AndroidManifest.xml file *

    * The operation Intent is delivered with two extras, a {@link Network} typed * extra called {@link #EXTRA_NETWORK} and a {@link NetworkRequest} * typed extra called {@link #EXTRA_NETWORK_REQUEST} containing * the original requests parameters. It is important to create a new, * {@link NetworkCallback} based request before completing the processing of the * Intent to reserve the network or it will be released shortly after the Intent * is processed. *

    * If there is already a request for this Intent registered (with the equality of * two Intents defined by {@link Intent#filterEquals}), then it will be removed and * replaced by this one, effectively releasing the previous {@link NetworkRequest}. *

    * The request may be released normally by calling * {@link #releaseNetworkRequest(android.app.PendingIntent)}. *

    It is presently unsupported to request a network with either * {@link NetworkCapabilities#NET_CAPABILITY_VALIDATED} or * {@link NetworkCapabilities#NET_CAPABILITY_CAPTIVE_PORTAL} * as these {@code NetworkCapabilities} represent states that a particular * network may never attain, and whether a network will attain these states * is unknown prior to bringing up the network so the framework does not * know how to go about satisfying a request with these capabilities. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #registerNetworkCallback} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with {@link #unregisterNetworkCallback(PendingIntent)} * or {@link #releaseNetworkRequest(PendingIntent)}. * *

    This method requires the caller to hold either the * {@link android.Manifest.permission#CHANGE_NETWORK_STATE} permission * or the ability to modify system settings as determined by * {@link android.provider.Settings.System#canWrite}.

    * * @param request {@link NetworkRequest} describing this request. * @param operation Action to perform when the network is available (corresponds * to the {@link NetworkCallback#onAvailable} call. Typically * comes from {@link PendingIntent#getBroadcast}. Cannot be null. * @throws IllegalArgumentException if {@code request} contains invalid network capabilities. * @throws SecurityException if missing the appropriate permissions. * @throws RuntimeException if the app already has too many callbacks registered. */ public void requestNetwork(@NonNull NetworkRequest request, @NonNull PendingIntent operation) { printStackTrace(); checkPendingIntentNotNull(operation); try { mService.pendingRequestForNetwork( request.networkCapabilities, operation, mContext.getOpPackageName(), getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } catch (ServiceSpecificException e) { throw convertServiceException(e); } } /** * Removes a request made via {@link #requestNetwork(NetworkRequest, android.app.PendingIntent)} *

    * This method has the same behavior as * {@link #unregisterNetworkCallback(android.app.PendingIntent)} with respect to * releasing network resources and disconnecting. * * @param operation A PendingIntent equal (as defined by {@link Intent#filterEquals}) to the * PendingIntent passed to * {@link #requestNetwork(NetworkRequest, android.app.PendingIntent)} with the * corresponding NetworkRequest you'd like to remove. Cannot be null. */ public void releaseNetworkRequest(@NonNull PendingIntent operation) { printStackTrace(); checkPendingIntentNotNull(operation); try { mService.releasePendingNetworkRequest(operation); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } private static void checkPendingIntentNotNull(PendingIntent intent) { Objects.requireNonNull(intent, "PendingIntent cannot be null."); } private static void checkCallbackNotNull(NetworkCallback callback) { Objects.requireNonNull(callback, "null NetworkCallback"); } private static void checkTimeout(int timeoutMs) { if (timeoutMs <= 0) { throw new IllegalArgumentException("timeoutMs must be strictly positive."); } } /** * Registers to receive notifications about all networks which satisfy the given * {@link NetworkRequest}. The callbacks will continue to be called until * either the application exits or {@link #unregisterNetworkCallback(NetworkCallback)} is * called. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} that the system will call as suitable * networks change state. * The callback is invoked on the default internal Handler. * @throws RuntimeException if the app already has too many callbacks registered. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public void registerNetworkCallback(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback) { registerNetworkCallback(request, networkCallback, getDefaultHandler()); } /** * Registers to receive notifications about all networks which satisfy the given * {@link NetworkRequest}. The callbacks will continue to be called until * either the application exits or {@link #unregisterNetworkCallback(NetworkCallback)} is * called. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} that the system will call as suitable * networks change state. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @throws RuntimeException if the app already has too many callbacks registered. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public void registerNetworkCallback(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback, @NonNull Handler handler) { CallbackHandler cbHandler = new CallbackHandler(handler); NetworkCapabilities nc = request.networkCapabilities; sendRequestForNetwork(nc, networkCallback, 0, LISTEN, TYPE_NONE, cbHandler); } /** * Registers a PendingIntent to be sent when a network is available which satisfies the given * {@link NetworkRequest}. * * This function behaves identically to the version that takes a NetworkCallback, but instead * of {@link NetworkCallback} a {@link PendingIntent} is used. This means * the request may outlive the calling application and get called back when a suitable * network is found. *

    * The operation is an Intent broadcast that goes to a broadcast receiver that * you registered with {@link Context#registerReceiver} or through the * <receiver> tag in an AndroidManifest.xml file *

    * The operation Intent is delivered with two extras, a {@link Network} typed * extra called {@link #EXTRA_NETWORK} and a {@link NetworkRequest} * typed extra called {@link #EXTRA_NETWORK_REQUEST} containing * the original requests parameters. *

    * If there is already a request for this Intent registered (with the equality of * two Intents defined by {@link Intent#filterEquals}), then it will be removed and * replaced by this one, effectively releasing the previous {@link NetworkRequest}. *

    * The request may be released normally by calling * {@link #unregisterNetworkCallback(android.app.PendingIntent)}. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with {@link #unregisterNetworkCallback(PendingIntent)} * or {@link #releaseNetworkRequest(PendingIntent)}. * * @param request {@link NetworkRequest} describing this request. * @param operation Action to perform when the network is available (corresponds * to the {@link NetworkCallback#onAvailable} call. Typically * comes from {@link PendingIntent#getBroadcast}. Cannot be null. * @throws RuntimeException if the app already has too many callbacks registered. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public void registerNetworkCallback(@NonNull NetworkRequest request, @NonNull PendingIntent operation) { printStackTrace(); checkPendingIntentNotNull(operation); try { mService.pendingListenForNetwork( request.networkCapabilities, operation, mContext.getOpPackageName(), getAttributionTag()); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } catch (ServiceSpecificException e) { throw convertServiceException(e); } } /** * Registers to receive notifications about changes in the application's default network. This * may be a physical network or a virtual network, such as a VPN that applies to the * application. The callbacks will continue to be called until either the application exits or * {@link #unregisterNetworkCallback(NetworkCallback)} is called. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param networkCallback The {@link NetworkCallback} that the system will call as the * application's default network changes. * The callback is invoked on the default internal Handler. * @throws RuntimeException if the app already has too many callbacks registered. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public void registerDefaultNetworkCallback(@NonNull NetworkCallback networkCallback) { registerDefaultNetworkCallback(networkCallback, getDefaultHandler()); } /** * Registers to receive notifications about changes in the application's default network. This * may be a physical network or a virtual network, such as a VPN that applies to the * application. The callbacks will continue to be called until either the application exits or * {@link #unregisterNetworkCallback(NetworkCallback)} is called. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param networkCallback The {@link NetworkCallback} that the system will call as the * application's default network changes. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @throws RuntimeException if the app already has too many callbacks registered. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public void registerDefaultNetworkCallback(@NonNull NetworkCallback networkCallback, @NonNull Handler handler) { registerDefaultNetworkCallbackForUid(Process.INVALID_UID, networkCallback, handler); } /** * Registers to receive notifications about changes in the default network for the specified * UID. This may be a physical network or a virtual network, such as a VPN that applies to the * UID. The callbacks will continue to be called until either the application exits or * {@link #unregisterNetworkCallback(NetworkCallback)} is called. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param uid the UID for which to track default network changes. * @param networkCallback The {@link NetworkCallback} that the system will call as the * UID's default network changes. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @throws RuntimeException if the app already has too many callbacks registered. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @SuppressLint({"ExecutorRegistration", "PairedRegistration"}) @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS}) public void registerDefaultNetworkCallbackForUid(int uid, @NonNull NetworkCallback networkCallback, @NonNull Handler handler) { CallbackHandler cbHandler = new CallbackHandler(handler); sendRequestForNetwork(uid, null /* need */, networkCallback, 0 /* timeoutMs */, TRACK_DEFAULT, TYPE_NONE, cbHandler); } /** * Registers to receive notifications about changes in the system default network. The callbacks * will continue to be called until either the application exits or * {@link #unregisterNetworkCallback(NetworkCallback)} is called. * * This method should not be used to determine networking state seen by applications, because in * many cases, most or even all application traffic may not use the default network directly, * and traffic from different applications may go on different networks by default. As an * example, if a VPN is connected, traffic from all applications might be sent through the VPN * and not onto the system default network. Applications or system components desiring to do * determine network state as seen by applications should use other methods such as * {@link #registerDefaultNetworkCallback(NetworkCallback, Handler)}. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param networkCallback The {@link NetworkCallback} that the system will call as the * system default network changes. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @throws RuntimeException if the app already has too many callbacks registered. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) @SuppressLint({"ExecutorRegistration", "PairedRegistration"}) @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_SETUP_WIZARD, android.Manifest.permission.CONNECTIVITY_USE_RESTRICTED_NETWORKS}) public void registerSystemDefaultNetworkCallback(@NonNull NetworkCallback networkCallback, @NonNull Handler handler) { CallbackHandler cbHandler = new CallbackHandler(handler); sendRequestForNetwork(null /* NetworkCapabilities need */, networkCallback, 0, TRACK_SYSTEM_DEFAULT, TYPE_NONE, cbHandler); } /** * Registers to receive notifications about the best matching network which satisfy the given * {@link NetworkRequest}. The callbacks will continue to be called until * either the application exits or {@link #unregisterNetworkCallback(NetworkCallback)} is * called. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * {@link #registerNetworkCallback} and its variants and {@link #requestNetwork} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} that the system will call as suitable * networks change state. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * @throws RuntimeException if the app already has too many callbacks registered. */ @SuppressLint("ExecutorRegistration") public void registerBestMatchingNetworkCallback(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback, @NonNull Handler handler) { final NetworkCapabilities nc = request.networkCapabilities; final CallbackHandler cbHandler = new CallbackHandler(handler); sendRequestForNetwork(nc, networkCallback, 0, LISTEN_FOR_BEST, TYPE_NONE, cbHandler); } /** * Requests bandwidth update for a given {@link Network} and returns whether the update request * is accepted by ConnectivityService. Once accepted, ConnectivityService will poll underlying * network connection for updated bandwidth information. The caller will be notified via * {@link ConnectivityManager.NetworkCallback} if there is an update. Notice that this * method assumes that the caller has previously called * {@link #registerNetworkCallback(NetworkRequest, NetworkCallback)} to listen for network * changes. * * @param network {@link Network} specifying which network you're interested. * @return {@code true} on success, {@code false} if the {@link Network} is no longer valid. */ public boolean requestBandwidthUpdate(@NonNull Network network) { try { return mService.requestBandwidthUpdate(network); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Unregisters a {@code NetworkCallback} and possibly releases networks originating from * {@link #requestNetwork(NetworkRequest, NetworkCallback)} and * {@link #registerNetworkCallback(NetworkRequest, NetworkCallback)} calls. * If the given {@code NetworkCallback} had previously been used with {@code #requestNetwork}, * any networks that the device brought up only to satisfy that request will be disconnected. * * Notifications that would have triggered that {@code NetworkCallback} will immediately stop * triggering it as soon as this call returns. * * @param networkCallback The {@link NetworkCallback} used when making the request. */ public void unregisterNetworkCallback(@NonNull NetworkCallback networkCallback) { printStackTrace(); checkCallbackNotNull(networkCallback); final List reqs = new ArrayList<>(); // Find all requests associated to this callback and stop callback triggers immediately. // Callback is reusable immediately. http://b/20701525, http://b/35921499. synchronized (sCallbacks) { if (networkCallback.networkRequest == null) { throw new IllegalArgumentException("NetworkCallback was not registered"); } if (networkCallback.networkRequest == ALREADY_UNREGISTERED) { Log.d(TAG, "NetworkCallback was already unregistered"); return; } for (Map.Entry e : sCallbacks.entrySet()) { if (e.getValue() == networkCallback) { reqs.add(e.getKey()); } } // TODO: throw exception if callback was registered more than once (http://b/20701525). for (NetworkRequest r : reqs) { try { mService.releaseNetworkRequest(r); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } // Only remove mapping if rpc was successful. sCallbacks.remove(r); } networkCallback.networkRequest = ALREADY_UNREGISTERED; } } /** * Unregisters a callback previously registered via * {@link #registerNetworkCallback(NetworkRequest, android.app.PendingIntent)}. * * @param operation A PendingIntent equal (as defined by {@link Intent#filterEquals}) to the * PendingIntent passed to * {@link #registerNetworkCallback(NetworkRequest, android.app.PendingIntent)}. * Cannot be null. */ public void unregisterNetworkCallback(@NonNull PendingIntent operation) { releaseNetworkRequest(operation); } /** * Informs the system whether it should switch to {@code network} regardless of whether it is * validated or not. If {@code accept} is true, and the network was explicitly selected by the * user (e.g., by selecting a Wi-Fi network in the Settings app), then the network will become * the system default network regardless of any other network that's currently connected. If * {@code always} is true, then the choice is remembered, so that the next time the user * connects to this network, the system will switch to it. * * @param network The network to accept. * @param accept Whether to accept the network even if unvalidated. * @param always Whether to remember this choice in the future. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_SETUP_WIZARD, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK}) public void setAcceptUnvalidated(@NonNull Network network, boolean accept, boolean always) { try { mService.setAcceptUnvalidated(network, accept, always); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Informs the system whether it should consider the network as validated even if it only has * partial connectivity. If {@code accept} is true, then the network will be considered as * validated even if connectivity is only partial. If {@code always} is true, then the choice * is remembered, so that the next time the user connects to this network, the system will * switch to it. * * @param network The network to accept. * @param accept Whether to consider the network as validated even if it has partial * connectivity. * @param always Whether to remember this choice in the future. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_SETUP_WIZARD, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK}) public void setAcceptPartialConnectivity(@NonNull Network network, boolean accept, boolean always) { try { mService.setAcceptPartialConnectivity(network, accept, always); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Informs the system to penalize {@code network}'s score when it becomes unvalidated. This is * only meaningful if the system is configured not to penalize such networks, e.g., if the * {@code config_networkAvoidBadWifi} configuration variable is set to 0 and the {@code * NETWORK_AVOID_BAD_WIFI setting is unset}. * * @param network The network to accept. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_SETUP_WIZARD, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK}) public void setAvoidUnvalidated(@NonNull Network network) { try { mService.setAvoidUnvalidated(network); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Temporarily allow bad Wi-Fi to override {@code config_networkAvoidBadWifi} configuration. * * @param timeMs The expired current time. The value should be set within a limited time from * now. * * @hide */ public void setTestAllowBadWifiUntil(long timeMs) { try { mService.setTestAllowBadWifiUntil(timeMs); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Requests that the system open the captive portal app on the specified network. * *

    This is to be used on networks where a captive portal was detected, as per * {@link NetworkCapabilities#NET_CAPABILITY_CAPTIVE_PORTAL}. * * @param network The network to log into. * * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void startCaptivePortalApp(@NonNull Network network) { try { mService.startCaptivePortalApp(network); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Requests that the system open the captive portal app with the specified extras. * *

    This endpoint is exclusively for use by the NetworkStack and is protected by the * corresponding permission. * @param network Network on which the captive portal was detected. * @param appExtras Extras to include in the app start intent. * @hide */ @SystemApi @RequiresPermission(NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK) public void startCaptivePortalApp(@NonNull Network network, @NonNull Bundle appExtras) { try { mService.startCaptivePortalAppInternal(network, appExtras); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Determine whether the device is configured to avoid bad Wi-Fi. * @hide */ @SystemApi @RequiresPermission(anyOf = { NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK, android.Manifest.permission.NETWORK_STACK}) public boolean shouldAvoidBadWifi() { try { return mService.shouldAvoidBadWifi(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * It is acceptable to briefly use multipath data to provide seamless connectivity for * time-sensitive user-facing operations when the system default network is temporarily * unresponsive. The amount of data should be limited (less than one megabyte for every call to * this method), and the operation should be infrequent to ensure that data usage is limited. * * An example of such an operation might be a time-sensitive foreground activity, such as a * voice command, that the user is performing while walking out of range of a Wi-Fi network. */ public static final int MULTIPATH_PREFERENCE_HANDOVER = 1 << 0; /** * It is acceptable to use small amounts of multipath data on an ongoing basis to provide * a backup channel for traffic that is primarily going over another network. * * An example might be maintaining backup connections to peers or servers for the purpose of * fast fallback if the default network is temporarily unresponsive or disconnects. The traffic * on backup paths should be negligible compared to the traffic on the main path. */ public static final int MULTIPATH_PREFERENCE_RELIABILITY = 1 << 1; /** * It is acceptable to use metered data to improve network latency and performance. */ public static final int MULTIPATH_PREFERENCE_PERFORMANCE = 1 << 2; /** * Return value to use for unmetered networks. On such networks we currently set all the flags * to true. * @hide */ public static final int MULTIPATH_PREFERENCE_UNMETERED = MULTIPATH_PREFERENCE_HANDOVER | MULTIPATH_PREFERENCE_RELIABILITY | MULTIPATH_PREFERENCE_PERFORMANCE; /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(flag = true, value = { MULTIPATH_PREFERENCE_HANDOVER, MULTIPATH_PREFERENCE_RELIABILITY, MULTIPATH_PREFERENCE_PERFORMANCE, }) public @interface MultipathPreference { } /** * Provides a hint to the calling application on whether it is desirable to use the * multinetwork APIs (e.g., {@link Network#openConnection}, {@link Network#bindSocket}, etc.) * for multipath data transfer on this network when it is not the system default network. * Applications desiring to use multipath network protocols should call this method before * each such operation. * * @param network The network on which the application desires to use multipath data. * If {@code null}, this method will return a preference that will generally * apply to metered networks. * @return a bitwise OR of zero or more of the {@code MULTIPATH_PREFERENCE_*} constants. */ @RequiresPermission(android.Manifest.permission.ACCESS_NETWORK_STATE) public @MultipathPreference int getMultipathPreference(@Nullable Network network) { try { return mService.getMultipathPreference(network); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Resets all connectivity manager settings back to factory defaults. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK}) public void factoryReset() { try { mService.factoryReset(); getTetheringManager().stopAllTethering(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Binds the current process to {@code network}. All Sockets created in the future * (and not explicitly bound via a bound SocketFactory from * {@link Network#getSocketFactory() Network.getSocketFactory()}) will be bound to * {@code network}. All host name resolutions will be limited to {@code network} as well. * Note that if {@code network} ever disconnects, all Sockets created in this way will cease to * work and all host name resolutions will fail. This is by design so an application doesn't * accidentally use Sockets it thinks are still bound to a particular {@link Network}. * To clear binding pass {@code null} for {@code network}. Using individually bound * Sockets created by Network.getSocketFactory().createSocket() and * performing network-specific host name resolutions via * {@link Network#getAllByName Network.getAllByName} is preferred to calling * {@code bindProcessToNetwork}. * * @param network The {@link Network} to bind the current process to, or {@code null} to clear * the current binding. * @return {@code true} on success, {@code false} if the {@link Network} is no longer valid. */ public boolean bindProcessToNetwork(@Nullable Network network) { // Forcing callers to call through non-static function ensures ConnectivityManager // instantiated. return setProcessDefaultNetwork(network); } /** * Binds the current process to {@code network}. All Sockets created in the future * (and not explicitly bound via a bound SocketFactory from * {@link Network#getSocketFactory() Network.getSocketFactory()}) will be bound to * {@code network}. All host name resolutions will be limited to {@code network} as well. * Note that if {@code network} ever disconnects, all Sockets created in this way will cease to * work and all host name resolutions will fail. This is by design so an application doesn't * accidentally use Sockets it thinks are still bound to a particular {@link Network}. * To clear binding pass {@code null} for {@code network}. Using individually bound * Sockets created by Network.getSocketFactory().createSocket() and * performing network-specific host name resolutions via * {@link Network#getAllByName Network.getAllByName} is preferred to calling * {@code setProcessDefaultNetwork}. * * @param network The {@link Network} to bind the current process to, or {@code null} to clear * the current binding. * @return {@code true} on success, {@code false} if the {@link Network} is no longer valid. * @deprecated This function can throw {@link IllegalStateException}. Use * {@link #bindProcessToNetwork} instead. {@code bindProcessToNetwork} * is a direct replacement. */ @Deprecated public static boolean setProcessDefaultNetwork(@Nullable Network network) { int netId = (network == null) ? NETID_UNSET : network.netId; boolean isSameNetId = (netId == NetworkUtils.getBoundNetworkForProcess()); if (netId != NETID_UNSET) { netId = network.getNetIdForResolv(); } if (!NetworkUtils.bindProcessToNetwork(netId)) { return false; } if (!isSameNetId) { // Set HTTP proxy system properties to match network. // TODO: Deprecate this static method and replace it with a non-static version. try { Proxy.setHttpProxyConfiguration(getInstance().getDefaultProxy()); } catch (SecurityException e) { // The process doesn't have ACCESS_NETWORK_STATE, so we can't fetch the proxy. Log.e(TAG, "Can't set proxy properties", e); } // Must flush DNS cache as new network may have different DNS resolutions. InetAddress.clearDnsCache(); // Must flush socket pool as idle sockets will be bound to previous network and may // cause subsequent fetches to be performed on old network. NetworkEventDispatcher.getInstance().dispatchNetworkConfigurationChange(); } return true; } /** * Returns the {@link Network} currently bound to this process via * {@link #bindProcessToNetwork}, or {@code null} if no {@link Network} is explicitly bound. * * @return {@code Network} to which this process is bound, or {@code null}. */ @Nullable public Network getBoundNetworkForProcess() { // Forcing callers to call through non-static function ensures ConnectivityManager has been // instantiated. return getProcessDefaultNetwork(); } /** * Returns the {@link Network} currently bound to this process via * {@link #bindProcessToNetwork}, or {@code null} if no {@link Network} is explicitly bound. * * @return {@code Network} to which this process is bound, or {@code null}. * @deprecated Using this function can lead to other functions throwing * {@link IllegalStateException}. Use {@link #getBoundNetworkForProcess} instead. * {@code getBoundNetworkForProcess} is a direct replacement. */ @Deprecated @Nullable public static Network getProcessDefaultNetwork() { int netId = NetworkUtils.getBoundNetworkForProcess(); if (netId == NETID_UNSET) return null; return new Network(netId); } private void unsupportedStartingFrom(int version) { if (Process.myUid() == Process.SYSTEM_UID) { // The getApplicationInfo() call we make below is not supported in system context. Let // the call through here, and rely on the fact that ConnectivityService will refuse to // allow the system to use these APIs anyway. return; } if (mContext.getApplicationInfo().targetSdkVersion >= version) { throw new UnsupportedOperationException( "This method is not supported in target SDK version " + version + " and above"); } } // Checks whether the calling app can use the legacy routing API (startUsingNetworkFeature, // stopUsingNetworkFeature, requestRouteToHost), and if not throw UnsupportedOperationException. // TODO: convert the existing system users (Tethering, GnssLocationProvider) to the new APIs and // remove these exemptions. Note that this check is not secure, and apps can still access these // functions by accessing ConnectivityService directly. However, it should be clear that doing // so is unsupported and may break in the future. http://b/22728205 private void checkLegacyRoutingApiAccess() { unsupportedStartingFrom(VERSION_CODES.M); } /** * Binds host resolutions performed by this process to {@code network}. * {@link #bindProcessToNetwork} takes precedence over this setting. * * @param network The {@link Network} to bind host resolutions from the current process to, or * {@code null} to clear the current binding. * @return {@code true} on success, {@code false} if the {@link Network} is no longer valid. * @hide * @deprecated This is strictly for legacy usage to support {@link #startUsingNetworkFeature}. */ @Deprecated @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) public static boolean setProcessDefaultNetworkForHostResolution(Network network) { return NetworkUtils.bindProcessToNetworkForHostResolution( (network == null) ? NETID_UNSET : network.getNetIdForResolv()); } /** * Device is not restricting metered network activity while application is running on * background. */ public static final int RESTRICT_BACKGROUND_STATUS_DISABLED = 1; /** * Device is restricting metered network activity while application is running on background, * but application is allowed to bypass it. *

    * In this state, application should take action to mitigate metered network access. * For example, a music streaming application should switch to a low-bandwidth bitrate. */ public static final int RESTRICT_BACKGROUND_STATUS_WHITELISTED = 2; /** * Device is restricting metered network activity while application is running on background. *

    * In this state, application should not try to use the network while running on background, * because it would be denied. */ public static final int RESTRICT_BACKGROUND_STATUS_ENABLED = 3; /** * A change in the background metered network activity restriction has occurred. *

    * Applications should call {@link #getRestrictBackgroundStatus()} to check if the restriction * applies to them. *

    * This is only sent to registered receivers, not manifest receivers. */ @SdkConstant(SdkConstantType.BROADCAST_INTENT_ACTION) public static final String ACTION_RESTRICT_BACKGROUND_CHANGED = "android.net.conn.RESTRICT_BACKGROUND_CHANGED"; /** @hide */ @Retention(RetentionPolicy.SOURCE) @IntDef(flag = false, value = { RESTRICT_BACKGROUND_STATUS_DISABLED, RESTRICT_BACKGROUND_STATUS_WHITELISTED, RESTRICT_BACKGROUND_STATUS_ENABLED, }) public @interface RestrictBackgroundStatus { } /** * Determines if the calling application is subject to metered network restrictions while * running on background. * * @return {@link #RESTRICT_BACKGROUND_STATUS_DISABLED}, * {@link #RESTRICT_BACKGROUND_STATUS_ENABLED}, * or {@link #RESTRICT_BACKGROUND_STATUS_WHITELISTED} */ public @RestrictBackgroundStatus int getRestrictBackgroundStatus() { try { return mService.getRestrictBackgroundStatusByCaller(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * The network watchlist is a list of domains and IP addresses that are associated with * potentially harmful apps. This method returns the SHA-256 of the watchlist config file * currently used by the system for validation purposes. * * @return Hash of network watchlist config file. Null if config does not exist. */ @Nullable public byte[] getNetworkWatchlistConfigHash() { try { return mService.getNetworkWatchlistConfigHash(); } catch (RemoteException e) { Log.e(TAG, "Unable to get watchlist config hash"); throw e.rethrowFromSystemServer(); } } /** * Returns the {@code uid} of the owner of a network connection. * * @param protocol The protocol of the connection. Only {@code IPPROTO_TCP} and {@code * IPPROTO_UDP} currently supported. * @param local The local {@link InetSocketAddress} of a connection. * @param remote The remote {@link InetSocketAddress} of a connection. * @return {@code uid} if the connection is found and the app has permission to observe it * (e.g., if it is associated with the calling VPN app's VpnService tunnel) or {@link * android.os.Process#INVALID_UID} if the connection is not found. * @throws SecurityException if the caller is not the active VpnService for the current * user. * @throws IllegalArgumentException if an unsupported protocol is requested. */ public int getConnectionOwnerUid( int protocol, @NonNull InetSocketAddress local, @NonNull InetSocketAddress remote) { ConnectionInfo connectionInfo = new ConnectionInfo(protocol, local, remote); try { return mService.getConnectionOwnerUid(connectionInfo); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } private void printStackTrace() { if (DEBUG) { final StackTraceElement[] callStack = Thread.currentThread().getStackTrace(); final StringBuffer sb = new StringBuffer(); for (int i = 3; i < callStack.length; i++) { final String stackTrace = callStack[i].toString(); if (stackTrace == null || stackTrace.contains("android.os")) { break; } sb.append(" [").append(stackTrace).append("]"); } Log.d(TAG, "StackLog:" + sb.toString()); } } /** @hide */ public TestNetworkManager startOrGetTestNetworkManager() { final IBinder tnBinder; try { tnBinder = mService.startOrGetTestNetworkService(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } return new TestNetworkManager(ITestNetworkManager.Stub.asInterface(tnBinder)); } /** @hide */ public ConnectivityDiagnosticsManager createDiagnosticsManager() { return new ConnectivityDiagnosticsManager(mContext, mService); } /** * Simulates a Data Stall for the specified Network. * *

    This method should only be used for tests. * *

    The caller must be the owner of the specified Network. This simulates a data stall to * have the system behave as if it had happened, but does not actually stall connectivity. * * @param detectionMethod The detection method used to identify the Data Stall. * See ConnectivityDiagnosticsManager.DataStallReport.DETECTION_METHOD_*. * @param timestampMillis The timestamp at which the stall 'occurred', in milliseconds, as per * SystemClock.elapsedRealtime. * @param network The Network for which a Data Stall is being simluated. * @param extras The PersistableBundle of extras included in the Data Stall notification. * @throws SecurityException if the caller is not the owner of the given network. * @hide */ @SystemApi(client = SystemApi.Client.MODULE_LIBRARIES) @RequiresPermission(anyOf = {android.Manifest.permission.MANAGE_TEST_NETWORKS, android.Manifest.permission.NETWORK_STACK}) public void simulateDataStall(@DetectionMethod int detectionMethod, long timestampMillis, @NonNull Network network, @NonNull PersistableBundle extras) { try { mService.simulateDataStall(detectionMethod, timestampMillis, network, extras); } catch (RemoteException e) { e.rethrowFromSystemServer(); } } @NonNull private final List mQosCallbackConnections = new ArrayList<>(); /** * Registers a {@link QosSocketInfo} with an associated {@link QosCallback}. The callback will * receive available QoS events related to the {@link Network} and local ip + port * specified within socketInfo. *

    * The same {@link QosCallback} must be unregistered before being registered a second time, * otherwise {@link QosCallbackRegistrationException} is thrown. *

    * This API does not, in itself, require any permission if called with a network that is not * restricted. However, the underlying implementation currently only supports the IMS network, * which is always restricted. That means non-preinstalled callers can't possibly find this API * useful, because they'd never be called back on networks that they would have access to. * * @throws SecurityException if {@link QosSocketInfo#getNetwork()} is restricted and the app is * missing CONNECTIVITY_USE_RESTRICTED_NETWORKS permission. * @throws QosCallback.QosCallbackRegistrationException if qosCallback is already registered. * @throws RuntimeException if the app already has too many callbacks registered. * * Exceptions after the time of registration is passed through * {@link QosCallback#onError(QosCallbackException)}. see: {@link QosCallbackException}. * * @param socketInfo the socket information used to match QoS events * @param executor The executor on which the callback will be invoked. The provided * {@link Executor} must run callback sequentially, otherwise the order of * callbacks cannot be guaranteed.onQosCallbackRegistered * @param callback receives qos events that satisfy socketInfo * * @hide */ @SystemApi public void registerQosCallback(@NonNull final QosSocketInfo socketInfo, @CallbackExecutor @NonNull final Executor executor, @NonNull final QosCallback callback) { Objects.requireNonNull(socketInfo, "socketInfo must be non-null"); Objects.requireNonNull(executor, "executor must be non-null"); Objects.requireNonNull(callback, "callback must be non-null"); try { synchronized (mQosCallbackConnections) { if (getQosCallbackConnection(callback) == null) { final QosCallbackConnection connection = new QosCallbackConnection(this, callback, executor); mQosCallbackConnections.add(connection); mService.registerQosSocketCallback(socketInfo, connection); } else { Log.e(TAG, "registerQosCallback: Callback already registered"); throw new QosCallbackRegistrationException(); } } } catch (final RemoteException e) { Log.e(TAG, "registerQosCallback: Error while registering ", e); // The same unregister method method is called for consistency even though nothing // will be sent to the ConnectivityService since the callback was never successfully // registered. unregisterQosCallback(callback); e.rethrowFromSystemServer(); } catch (final ServiceSpecificException e) { Log.e(TAG, "registerQosCallback: Error while registering ", e); unregisterQosCallback(callback); throw convertServiceException(e); } } /** * Unregisters the given {@link QosCallback}. The {@link QosCallback} will no longer receive * events once unregistered and can be registered a second time. *

    * If the {@link QosCallback} does not have an active registration, it is a no-op. * * @param callback the callback being unregistered * * @hide */ @SystemApi public void unregisterQosCallback(@NonNull final QosCallback callback) { Objects.requireNonNull(callback, "The callback must be non-null"); try { synchronized (mQosCallbackConnections) { final QosCallbackConnection connection = getQosCallbackConnection(callback); if (connection != null) { connection.stopReceivingMessages(); mService.unregisterQosCallback(connection); mQosCallbackConnections.remove(connection); } else { Log.d(TAG, "unregisterQosCallback: Callback not registered"); } } } catch (final RemoteException e) { Log.e(TAG, "unregisterQosCallback: Error while unregistering ", e); e.rethrowFromSystemServer(); } } /** * Gets the connection related to the callback. * * @param callback the callback to look up * @return the related connection */ @Nullable private QosCallbackConnection getQosCallbackConnection(final QosCallback callback) { for (final QosCallbackConnection connection : mQosCallbackConnections) { // Checking by reference here is intentional if (connection.getCallback() == callback) { return connection; } } return null; } /** * Request a network to satisfy a set of {@link NetworkCapabilities}, but * does not cause any networks to retain the NET_CAPABILITY_FOREGROUND capability. This can * be used to request that the system provide a network without causing the network to be * in the foreground. * *

    This method will attempt to find the best network that matches the passed * {@link NetworkRequest}, and to bring up one that does if none currently satisfies the * criteria. The platform will evaluate which network is the best at its own discretion. * Throughput, latency, cost per byte, policy, user preference and other considerations * may be factored in the decision of what is considered the best network. * *

    As long as this request is outstanding, the platform will try to maintain the best network * matching this request, while always attempting to match the request to a better network if * possible. If a better match is found, the platform will switch this request to the now-best * network and inform the app of the newly best network by invoking * {@link NetworkCallback#onAvailable(Network)} on the provided callback. Note that the platform * will not try to maintain any other network than the best one currently matching the request: * a network not matching any network request may be disconnected at any time. * *

    For example, an application could use this method to obtain a connected cellular network * even if the device currently has a data connection over Ethernet. This may cause the cellular * radio to consume additional power. Or, an application could inform the system that it wants * a network supporting sending MMSes and have the system let it know about the currently best * MMS-supporting network through the provided {@link NetworkCallback}. * *

    The status of the request can be followed by listening to the various callbacks described * in {@link NetworkCallback}. The {@link Network} object passed to the callback methods can be * used to direct traffic to the network (although accessing some networks may be subject to * holding specific permissions). Callers will learn about the specific characteristics of the * network through * {@link NetworkCallback#onCapabilitiesChanged(Network, NetworkCapabilities)} and * {@link NetworkCallback#onLinkPropertiesChanged(Network, LinkProperties)}. The methods of the * provided {@link NetworkCallback} will only be invoked due to changes in the best network * matching the request at any given time; therefore when a better network matching the request * becomes available, the {@link NetworkCallback#onAvailable(Network)} method is called * with the new network after which no further updates are given about the previously-best * network, unless it becomes the best again at some later time. All callbacks are invoked * in order on the same thread, which by default is a thread created by the framework running * in the app. * *

    This{@link NetworkRequest} will live until released via * {@link #unregisterNetworkCallback(NetworkCallback)} or the calling application exits, at * which point the system may let go of the network at any time. * *

    It is presently unsupported to request a network with mutable * {@link NetworkCapabilities} such as * {@link NetworkCapabilities#NET_CAPABILITY_VALIDATED} or * {@link NetworkCapabilities#NET_CAPABILITY_CAPTIVE_PORTAL} * as these {@code NetworkCapabilities} represent states that a particular * network may never attain, and whether a network will attain these states * is unknown prior to bringing up the network so the framework does not * know how to go about satisfying a request with these capabilities. * *

    To avoid performance issues due to apps leaking callbacks, the system will limit the * number of outstanding requests to 100 per app (identified by their UID), shared with * all variants of this method, of {@link #registerNetworkCallback} as well as * {@link ConnectivityDiagnosticsManager#registerConnectivityDiagnosticsCallback}. * Requesting a network with this method will count toward this limit. If this limit is * exceeded, an exception will be thrown. To avoid hitting this issue and to conserve resources, * make sure to unregister the callbacks with * {@link #unregisterNetworkCallback(NetworkCallback)}. * * @param request {@link NetworkRequest} describing this request. * @param networkCallback The {@link NetworkCallback} to be utilized for this request. Note * the callback must not be shared - it uniquely specifies this request. * @param handler {@link Handler} to specify the thread upon which the callback will be invoked. * If null, the callback is invoked on the default internal Handler. * @throws IllegalArgumentException if {@code request} contains invalid network capabilities. * @throws SecurityException if missing the appropriate permissions. * @throws RuntimeException if the app already has too many callbacks registered. * * @hide */ @SystemApi(client = MODULE_LIBRARIES) @SuppressLint("ExecutorRegistration") @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void requestBackgroundNetwork(@NonNull NetworkRequest request, @NonNull NetworkCallback networkCallback, @SuppressLint("ListenerLast") @NonNull Handler handler) { final NetworkCapabilities nc = request.networkCapabilities; sendRequestForNetwork(nc, networkCallback, 0, BACKGROUND_REQUEST, TYPE_NONE, new CallbackHandler(handler)); } /** * Used by automotive devices to set the network preferences used to direct traffic at an * application level as per the given OemNetworkPreferences. An example use-case would be an * automotive OEM wanting to provide connectivity for applications critical to the usage of a * vehicle via a particular network. * * Calling this will overwrite the existing preference. * * @param preference {@link OemNetworkPreferences} The application network preference to be set. * @param executor the executor on which listener will be invoked. * @param listener {@link OnSetOemNetworkPreferenceListener} optional listener used to * communicate completion of setOemNetworkPreference(). This will only be * called once upon successful completion of setOemNetworkPreference(). * @throws IllegalArgumentException if {@code preference} contains invalid preference values. * @throws SecurityException if missing the appropriate permissions. * @throws UnsupportedOperationException if called on a non-automotive device. * @hide */ @SystemApi @RequiresPermission(android.Manifest.permission.CONTROL_OEM_PAID_NETWORK_PREFERENCE) public void setOemNetworkPreference(@NonNull final OemNetworkPreferences preference, @Nullable @CallbackExecutor final Executor executor, @Nullable final Runnable listener) { Objects.requireNonNull(preference, "OemNetworkPreferences must be non-null"); if (null != listener) { Objects.requireNonNull(executor, "Executor must be non-null"); } final IOnCompleteListener listenerInternal = listener == null ? null : new IOnCompleteListener.Stub() { @Override public void onComplete() { executor.execute(listener::run); } }; try { mService.setOemNetworkPreference(preference, listenerInternal); } catch (RemoteException e) { Log.e(TAG, "setOemNetworkPreference() failed for preference: " + preference.toString()); throw e.rethrowFromSystemServer(); } } /** * Request that a user profile is put by default on a network matching a given preference. * * See the documentation for the individual preferences for a description of the supported * behaviors. * * @param profile the profile concerned. * @param preference the preference for this profile. * @param executor an executor to execute the listener on. Optional if listener is null. * @param listener an optional listener to listen for completion of the operation. * @throws IllegalArgumentException if {@code profile} is not a valid user profile. * @throws SecurityException if missing the appropriate permissions. * @deprecated Use {@link #setProfileNetworkPreferences(UserHandle, List, Executor, Runnable)} * instead as it provides a more flexible API with more options. * @hide */ // This function is for establishing per-profile default networking and can only be called by // the device policy manager, running as the system server. It would make no sense to call it // on a context for a user because it does not establish a setting on behalf of a user, rather // it establishes a setting for a user on behalf of the DPM. @SuppressLint({"UserHandle"}) @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(android.Manifest.permission.NETWORK_STACK) @Deprecated public void setProfileNetworkPreference(@NonNull final UserHandle profile, @ProfileNetworkPreferencePolicy final int preference, @Nullable @CallbackExecutor final Executor executor, @Nullable final Runnable listener) { ProfileNetworkPreference.Builder preferenceBuilder = new ProfileNetworkPreference.Builder(); preferenceBuilder.setPreference(preference); if (preference != PROFILE_NETWORK_PREFERENCE_DEFAULT) { preferenceBuilder.setPreferenceEnterpriseId(NET_ENTERPRISE_ID_1); } setProfileNetworkPreferences(profile, List.of(preferenceBuilder.build()), executor, listener); } /** * Set a list of default network selection policies for a user profile. * * Calling this API with a user handle defines the entire policy for that user handle. * It will overwrite any setting previously set for the same user profile, * and not affect previously set settings for other handles. * * Call this API with an empty list to remove settings for this user profile. * * See {@link ProfileNetworkPreference} for more details on each preference * parameter. * * @param profile the user profile for which the preference is being set. * @param profileNetworkPreferences the list of profile network preferences for the * provided profile. * @param executor an executor to execute the listener on. Optional if listener is null. * @param listener an optional listener to listen for completion of the operation. * @throws IllegalArgumentException if {@code profile} is not a valid user profile. * @throws SecurityException if missing the appropriate permissions. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(android.Manifest.permission.NETWORK_STACK) public void setProfileNetworkPreferences( @NonNull final UserHandle profile, @NonNull List profileNetworkPreferences, @Nullable @CallbackExecutor final Executor executor, @Nullable final Runnable listener) { if (null != listener) { Objects.requireNonNull(executor, "Pass a non-null executor, or a null listener"); } final IOnCompleteListener proxy; if (null == listener) { proxy = null; } else { proxy = new IOnCompleteListener.Stub() { @Override public void onComplete() { executor.execute(listener::run); } }; } try { mService.setProfileNetworkPreferences(profile, profileNetworkPreferences, proxy); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } // The first network ID of IPSec tunnel interface. private static final int TUN_INTF_NETID_START = 0xFC00; // 0xFC00 = 64512 // The network ID range of IPSec tunnel interface. private static final int TUN_INTF_NETID_RANGE = 0x0400; // 0x0400 = 1024 /** * Get the network ID range reserved for IPSec tunnel interfaces. * * @return A Range which indicates the network ID range of IPSec tunnel interface. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @NonNull public static Range getIpSecNetIdRange() { return new Range(TUN_INTF_NETID_START, TUN_INTF_NETID_START + TUN_INTF_NETID_RANGE - 1); } /** * Sets data saver switch. * *

    This API configures the bandwidth control, and filling data saver status in BpfMap, * which is intended for internal use by the network stack to optimize performance * when frequently checking data saver status for multiple uids without doing IPC. * It does not directly control the global data saver mode that users manage in settings. * To query the comprehensive data saver status for a specific UID, including allowlist * considerations, use {@link #getRestrictBackgroundStatus}. * * @param enable True if enable. * @throws IllegalStateException if failed. * @hide */ @FlaggedApi(Flags.SET_DATA_SAVER_VIA_CM) @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void setDataSaverEnabled(final boolean enable) { try { mService.setDataSaverEnabled(enable); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Adds the specified UID to the list of UIds that are allowed to use data on metered networks * even when background data is restricted. The deny list takes precedence over the allow list. * * @param uid uid of target app * @throws IllegalStateException if updating allow list failed. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void addUidToMeteredNetworkAllowList(final int uid) { try { mService.setUidFirewallRule(FIREWALL_CHAIN_METERED_ALLOW, uid, FIREWALL_RULE_ALLOW); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Removes the specified UID from the list of UIDs that are allowed to use background data on * metered networks when background data is restricted. The deny list takes precedence over * the allow list. * * @param uid uid of target app * @throws IllegalStateException if updating allow list failed. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void removeUidFromMeteredNetworkAllowList(final int uid) { try { mService.setUidFirewallRule(FIREWALL_CHAIN_METERED_ALLOW, uid, FIREWALL_RULE_DENY); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Adds the specified UID to the list of UIDs that are not allowed to use background data on * metered networks. Takes precedence over {@link #addUidToMeteredNetworkAllowList}. * * On V+, {@link #setUidFirewallRule} should be used with * {@link #FIREWALL_CHAIN_METERED_DENY_USER} or {@link #FIREWALL_CHAIN_METERED_DENY_ADMIN} * based on the reason so that users can receive {@link #BLOCKED_METERED_REASON_USER_RESTRICTED} * or {@link #BLOCKED_METERED_REASON_ADMIN_DISABLED}, respectively. * This API always uses {@link #FIREWALL_CHAIN_METERED_DENY_USER}. * * @param uid uid of target app * @throws IllegalStateException if updating deny list failed. * @hide */ // TODO(b/332649177): Deprecate this API after V @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void addUidToMeteredNetworkDenyList(final int uid) { try { mService.setUidFirewallRule(FIREWALL_CHAIN_METERED_DENY_USER, uid, FIREWALL_RULE_DENY); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Removes the specified UID from the list of UIDs that can use background data on metered * networks if background data is not restricted. The deny list takes precedence over the * allow list. * * On V+, {@link #setUidFirewallRule} should be used with * {@link #FIREWALL_CHAIN_METERED_DENY_USER} or {@link #FIREWALL_CHAIN_METERED_DENY_ADMIN} * based on the reason so that users can receive {@link #BLOCKED_METERED_REASON_USER_RESTRICTED} * or {@link #BLOCKED_METERED_REASON_ADMIN_DISABLED}, respectively. * This API always uses {@link #FIREWALL_CHAIN_METERED_DENY_USER}. * * @param uid uid of target app * @throws IllegalStateException if updating deny list failed. * @hide */ // TODO(b/332649177): Deprecate this API after V @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void removeUidFromMeteredNetworkDenyList(final int uid) { try { mService.setUidFirewallRule(FIREWALL_CHAIN_METERED_DENY_USER, uid, FIREWALL_RULE_ALLOW); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Sets a firewall rule for the specified UID on the specified chain. * * @param chain target chain. * @param uid uid to allow/deny. * @param rule firewall rule to allow/drop packets. * @throws IllegalStateException if updating firewall rule failed. * @throws IllegalArgumentException if {@code rule} is not a valid rule. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void setUidFirewallRule(@FirewallChain final int chain, final int uid, @FirewallRule final int rule) { try { mService.setUidFirewallRule(chain, uid, rule); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Get firewall rule of specified firewall chain on specified uid. * * @param chain target chain. * @param uid target uid * @return either FIREWALL_RULE_ALLOW or FIREWALL_RULE_DENY * @throws UnsupportedOperationException if called on pre-T devices. * @throws ServiceSpecificException in case of failure, with an error code indicating the * cause of the failure. * @hide */ @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public int getUidFirewallRule(@FirewallChain final int chain, final int uid) { try { return mService.getUidFirewallRule(chain, uid); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Enables or disables the specified firewall chain. * * Note that metered firewall chains can not be controlled by this API. * See {@link #FIREWALL_CHAIN_METERED_ALLOW}, {@link #FIREWALL_CHAIN_METERED_DENY_USER}, and * {@link #FIREWALL_CHAIN_METERED_DENY_ADMIN} for more detail. * * @param chain target chain. * @param enable whether the chain should be enabled. * @throws UnsupportedOperationException if called on pre-T devices. * @throws IllegalStateException if enabling or disabling the firewall chain failed. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void setFirewallChainEnabled(@FirewallChain final int chain, final boolean enable) { try { mService.setFirewallChainEnabled(chain, enable); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Get the specified firewall chain's status. * * @param chain target chain. * @return {@code true} if chain is enabled, {@code false} if chain is disabled. * @throws UnsupportedOperationException if called on pre-T devices. * @throws ServiceSpecificException in case of failure, with an error code indicating the * cause of the failure. * @hide */ @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public boolean getFirewallChainEnabled(@FirewallChain final int chain) { try { return mService.getFirewallChainEnabled(chain); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Replaces the contents of the specified UID-based firewall chain. * * @param chain target chain to replace. * @param uids The list of UIDs to be placed into chain. * @throws UnsupportedOperationException if called on pre-T devices. * @throws IllegalArgumentException if {@code chain} is not a valid chain. * @hide */ @SystemApi(client = MODULE_LIBRARIES) @RequiresPermission(anyOf = { android.Manifest.permission.NETWORK_SETTINGS, android.Manifest.permission.NETWORK_STACK, NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK }) public void replaceFirewallChain(@FirewallChain final int chain, @NonNull final int[] uids) { Objects.requireNonNull(uids); try { mService.replaceFirewallChain(chain, uids); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } /** * Return whether the network is blocked for the given uid and metered condition. * * Similar to {@link NetworkPolicyManager#isUidNetworkingBlocked}, but directly reads the BPF * maps and therefore considerably faster. For use by the NetworkStack process only. * * @param uid The target uid. * @param isNetworkMetered Whether the target network is metered. * * @return True if all networking with the given condition is blocked. Otherwise, false. * @throws IllegalStateException if the map cannot be opened. * @throws ServiceSpecificException if the read fails. * @hide */ // This isn't protected by a standard Android permission since it can't // afford to do IPC for performance reasons. Instead, the access control // is provided by linux file group permission AID_NET_BW_ACCT and the // selinux context fs_bpf_net*. // Only the system server process and the network stack have access. @FlaggedApi(Flags.SUPPORT_IS_UID_NETWORKING_BLOCKED) @SystemApi(client = MODULE_LIBRARIES) // Note b/326143935 kernel bug can trigger crash on some T device. @RequiresApi(VERSION_CODES.UPSIDE_DOWN_CAKE) @RequiresPermission(NetworkStack.PERMISSION_MAINLINE_NETWORK_STACK) public boolean isUidNetworkingBlocked(int uid, boolean isNetworkMetered) { if (!SdkLevel.isAtLeastU()) { throw new IllegalStateException( "isUidNetworkingBlocked is not supported on pre-U devices"); } final NetworkStackBpfNetMaps reader = NetworkStackBpfNetMaps.getInstance(); // Note that before V, the data saver status in bpf is written by ConnectivityService // when receiving {@link #ACTION_RESTRICT_BACKGROUND_CHANGED}. Thus, // the status is not synchronized. // On V+, the data saver status is set by platform code when enabling/disabling // data saver, which is synchronized. return reader.isUidNetworkingBlocked(uid, isNetworkMetered); } /** @hide */ public IBinder getCompanionDeviceManagerProxyService() { try { return mService.getCompanionDeviceManagerProxyService(); } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } private static final Object sRoutingCoordinatorManagerLock = new Object(); @GuardedBy("sRoutingCoordinatorManagerLock") private static RoutingCoordinatorManager sRoutingCoordinatorManager = null; /** @hide */ @RequiresApi(Build.VERSION_CODES.S) public RoutingCoordinatorManager getRoutingCoordinatorManager() { try { synchronized (sRoutingCoordinatorManagerLock) { if (null == sRoutingCoordinatorManager) { sRoutingCoordinatorManager = new RoutingCoordinatorManager(mContext, IRoutingCoordinator.Stub.asInterface( mService.getRoutingCoordinatorService())); } return sRoutingCoordinatorManager; } } catch (RemoteException e) { throw e.rethrowFromSystemServer(); } } }