/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.net.sntp; import android.text.TextUtils; import com.android.internal.annotations.VisibleForTesting; import java.time.Instant; import java.util.Objects; import java.util.Random; /** * The 64-bit type ("timestamp") that NTP uses to represent a point in time. It only holds the * lowest 32-bits of the number of seconds since 1900-01-01 00:00:00. Consequently, to turn an * instance into an unambiguous point in time the era number must be known. Era zero runs from * 1900-01-01 00:00:00 to a date in 2036. * * It stores sub-second values using a 32-bit fixed point type, so it can resolve values smaller * than a nanosecond, but is imprecise (i.e. it truncates). * * See also NTP docs. * * @hide */ public final class Timestamp64 { public static final Timestamp64 ZERO = fromComponents(0, 0); static final int SUB_MILLIS_BITS_TO_RANDOMIZE = 32 - 10; // Number of seconds between Jan 1, 1900 and Jan 1, 1970 // 70 years plus 17 leap days static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L; static final long MAX_SECONDS_IN_ERA = 0xFFFF_FFFFL; static final long SECONDS_IN_ERA = MAX_SECONDS_IN_ERA + 1; static final int NANOS_PER_SECOND = 1_000_000_000; /** Creates a {@link Timestamp64} from the seconds and fraction components. */ public static Timestamp64 fromComponents(long eraSeconds, int fractionBits) { return new Timestamp64(eraSeconds, fractionBits); } /** Creates a {@link Timestamp64} by decoding a string in the form "e4dc720c.4d4fc9eb". */ public static Timestamp64 fromString(String string) { final int requiredLength = 17; if (string.length() != requiredLength || string.charAt(8) != '.') { throw new IllegalArgumentException(string); } String eraSecondsString = string.substring(0, 8); String fractionString = string.substring(9); long eraSeconds = Long.parseLong(eraSecondsString, 16); // Use parseLong() because the type is unsigned. Integer.parseInt() will reject 0x70000000 // or above as being out of range. long fractionBitsAsLong = Long.parseLong(fractionString, 16); if (fractionBitsAsLong < 0 || fractionBitsAsLong > 0xFFFFFFFFL) { throw new IllegalArgumentException("Invalid fractionBits:" + fractionString); } return new Timestamp64(eraSeconds, (int) fractionBitsAsLong); } /** * Converts an {@link Instant} into a {@link Timestamp64}. This is lossy: Timestamp64 only * contains the number of seconds in a given era, but the era is not stored. Also, sub-second * values are not stored precisely. */ public static Timestamp64 fromInstant(Instant instant) { long ntpEraSeconds = instant.getEpochSecond() + OFFSET_1900_TO_1970; if (ntpEraSeconds < 0) { ntpEraSeconds = SECONDS_IN_ERA - (-ntpEraSeconds % SECONDS_IN_ERA); } ntpEraSeconds %= SECONDS_IN_ERA; long nanos = instant.getNano(); int fractionBits = nanosToFractionBits(nanos); return new Timestamp64(ntpEraSeconds, fractionBits); } private final long mEraSeconds; private final int mFractionBits; private Timestamp64(long eraSeconds, int fractionBits) { if (eraSeconds < 0 || eraSeconds > MAX_SECONDS_IN_ERA) { throw new IllegalArgumentException( "Invalid parameters. seconds=" + eraSeconds + ", fraction=" + fractionBits); } this.mEraSeconds = eraSeconds; this.mFractionBits = fractionBits; } /** Returns the number of seconds in the NTP era. */ public long getEraSeconds() { return mEraSeconds; } /** Returns the fraction of a second as 32-bit, unsigned fixed-point bits. */ public int getFractionBits() { return mFractionBits; } @Override public String toString() { return TextUtils.formatSimple("%08x.%08x", mEraSeconds, mFractionBits); } /** Returns the instant represented by this value in the specified NTP era. */ public Instant toInstant(int ntpEra) { long secondsSinceEpoch = mEraSeconds - OFFSET_1900_TO_1970; secondsSinceEpoch += ntpEra * SECONDS_IN_ERA; int nanos = fractionBitsToNanos(mFractionBits); return Instant.ofEpochSecond(secondsSinceEpoch, nanos); } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } Timestamp64 that = (Timestamp64) o; return mEraSeconds == that.mEraSeconds && mFractionBits == that.mFractionBits; } @Override public int hashCode() { return Objects.hash(mEraSeconds, mFractionBits); } static int fractionBitsToNanos(int fractionBits) { long fractionBitsLong = fractionBits & 0xFFFF_FFFFL; return (int) ((fractionBitsLong * NANOS_PER_SECOND) >>> 32); } static int nanosToFractionBits(long nanos) { if (nanos > NANOS_PER_SECOND) { throw new IllegalArgumentException(); } return (int) ((nanos << 32) / NANOS_PER_SECOND); } /** * Randomizes the fraction bits that represent sub-millisecond values. i.e. the randomization * won't change the number of milliseconds represented after truncation. This is used to * implement the part of the NTP spec that calls for clients with millisecond accuracy clocks * to send randomized LSB values rather than zeros. */ public Timestamp64 randomizeSubMillis(Random random) { int randomizedFractionBits = randomizeLowestBits(random, this.mFractionBits, SUB_MILLIS_BITS_TO_RANDOMIZE); return new Timestamp64(mEraSeconds, randomizedFractionBits); } /** * Randomizes the specified number of LSBs in {@code value} by using replacement bits from * {@code Random.getNextInt()}. */ @VisibleForTesting public static int randomizeLowestBits(Random random, int value, int bitsToRandomize) { if (bitsToRandomize < 1 || bitsToRandomize >= Integer.SIZE) { // There's no point in randomizing all bits or none of the bits. throw new IllegalArgumentException(Integer.toString(bitsToRandomize)); } int upperBitMask = 0xFFFF_FFFF << bitsToRandomize; int lowerBitMask = ~upperBitMask; int randomValue = random.nextInt(); return (value & upperBitMask) | (randomValue & lowerBitMask); } }