/* * Copyright (C) 2014 The Android Open Source Project * Copyright (c) 1994, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import dalvik.annotation.optimization.CriticalNative; import java.math.BigDecimal; import java.util.Random; import jdk.internal.math.FloatConsts; import jdk.internal.math.DoubleConsts; import jdk.internal.vm.annotation.IntrinsicCandidate; // Android-note: Document that the results from Math are based on libm's behavior. // For performance, Android implements many of the methods in this class in terms of the underlying // OS's libm functions. libm has well-defined behavior for special cases. Where known these are // marked with the tag above and the documentation has been modified as needed. // Android-changed: Fixed method links in the last paragraph. /** * The class {@code Math} contains methods for performing basic * numeric operations such as the elementary exponential, logarithm, * square root, and trigonometric functions. * *

Unlike some of the numeric methods of class * {@link java.lang.StrictMath StrictMath}, all implementations of the equivalent * functions of class {@code Math} are not defined to return the * bit-for-bit same results. This relaxation permits * better-performing implementations where strict reproducibility is * not required. * *

By default many of the {@code Math} methods simply call * the equivalent method in {@code StrictMath} for their * implementation. Code generators are encouraged to use * platform-specific native libraries or microprocessor instructions, * where available, to provide higher-performance implementations of * {@code Math} methods. Such higher-performance * implementations still must conform to the specification for * {@code Math}. * *

The quality of implementation specifications concern two * properties, accuracy of the returned result and monotonicity of the * method. Accuracy of the floating-point {@code Math} methods is * measured in terms of ulps, units in the last place. For a * given floating-point format, an {@linkplain #ulp(double) ulp} of a * specific real number value is the distance between the two * floating-point values bracketing that numerical value. When * discussing the accuracy of a method as a whole rather than at a * specific argument, the number of ulps cited is for the worst-case * error at any argument. If a method always has an error less than * 0.5 ulps, the method always returns the floating-point number * nearest the exact result; such a method is correctly * rounded. A correctly rounded method is generally the best a * floating-point approximation can be; however, it is impractical for * many floating-point methods to be correctly rounded. Instead, for * the {@code Math} class, a larger error bound of 1 or 2 ulps is * allowed for certain methods. Informally, with a 1 ulp error bound, * when the exact result is a representable number, the exact result * should be returned as the computed result; otherwise, either of the * two floating-point values which bracket the exact result may be * returned. For exact results large in magnitude, one of the * endpoints of the bracket may be infinite. Besides accuracy at * individual arguments, maintaining proper relations between the * method at different arguments is also important. Therefore, most * methods with more than 0.5 ulp errors are required to be * semi-monotonic: whenever the mathematical function is * non-decreasing, so is the floating-point approximation, likewise, * whenever the mathematical function is non-increasing, so is the * floating-point approximation. Not all approximations that have 1 * ulp accuracy will automatically meet the monotonicity requirements. * *

* The platform uses signed two's complement integer arithmetic with * int and long primitive types. The developer should choose * the primitive type to ensure that arithmetic operations consistently * produce correct results, which in some cases means the operations * will not overflow the range of values of the computation. * The best practice is to choose the primitive type and algorithm to avoid * overflow. In cases where the size is {@code int} or {@code long} and * overflow errors need to be detected, the methods whose names end with * {@code Exact} throw an {@code ArithmeticException} when the results overflow. * *

IEEE 754 Recommended * Operations

* * The 2019 revision of the IEEE 754 floating-point standard includes * a section of recommended operations and the semantics of those * operations if they are included in a programming environment. The * recommended operations present in this class include {@link #sin(double) * sin}, {@link #cos(double) cos}, {@link #tan(double) tan}, {@link #asin(double) asin}, {@link * #acos(double) acos}, {@link #atan(double) atan}, {@link #exp(double) exp}, {@link #expm1(double) * expm1}, {@link #log(double) log}, {@link #log10(double) log10}, {@link #log1p(double) log1p}, * {@link #sinh(double) sinh}, {@link #cosh(double) cosh}, {@link #tanh(double) tanh}, {@link * #hypot(double, double) hypot}, and {@link #pow(double, double) pow}. (The {@link #sqrt(double) sqrt} * operation is a required part of IEEE 754 from a different section * of the standard.) The special case behavior of the recommended * operations generally follows the guidance of the IEEE 754 * standard. However, the {@code pow} method defines different * behavior for some arguments, as noted in its {@linkplain #pow(double, double) * specification}. The IEEE 754 standard defines its operations to be * correctly rounded, which is a more stringent quality of * implementation condition than required for most of the methods in * question that are also included in this class. * * @see * IEEE Standard for Floating-Point Arithmetic * * @author Joseph D. Darcy * @since 1.0 */ public final class Math { // Android-changed: Numerous methods in this class are re-implemented in native for performance. // Those methods are also annotated @CriticalNative. /** * Don't let anyone instantiate this class. */ private Math() {} /** * The {@code double} value that is closer than any other to * e, the base of the natural logarithms. */ public static final double E = 2.718281828459045; /** * The {@code double} value that is closer than any other to * pi (π), the ratio of the circumference of a circle to * its diameter. */ public static final double PI = 3.141592653589793; /** * The {@code double} value that is closer than any other to * tau (τ), the ratio of the circumference of a circle * to its radius. * * @apiNote * The value of pi is one half that of tau; in other * words, tau is double pi . * * @since 19 */ public static final double TAU = 2.0 * PI; /** * Constant by which to multiply an angular value in degrees to obtain an * angular value in radians. */ private static final double DEGREES_TO_RADIANS = 0.017453292519943295; /** * Constant by which to multiply an angular value in radians to obtain an * angular value in degrees. */ private static final double RADIANS_TO_DEGREES = 57.29577951308232; /** * Returns the trigonometric sine of an angle. Special cases: * * *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a an angle, in radians. * @return the sine of the argument. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double sin(double a) { return StrictMath.sin(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double sin(double a); /** * Returns the trigonometric cosine of an angle. Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a an angle, in radians. * @return the cosine of the argument. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double cos(double a) { return StrictMath.cos(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double cos(double a); /** * Returns the trigonometric tangent of an angle. Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a an angle, in radians. * @return the tangent of the argument. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double tan(double a) { return StrictMath.tan(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double tan(double a); /** * Returns the arc sine of a value; the returned angle is in the * range -pi/2 through pi/2. Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a the value whose arc sine is to be returned. * @return the arc sine of the argument. */ // BEGIN Android-changed: Reimplement in native /* public static double asin(double a) { return StrictMath.asin(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double asin(double a); /** * Returns the arc cosine of a value; the returned angle is in the * range 0.0 through pi. Special case: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a the value whose arc cosine is to be returned. * @return the arc cosine of the argument. */ // BEGIN Android-changed: Reimplement in native /* public static double acos(double a) { return StrictMath.acos(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double acos(double a); /** * Returns the arc tangent of a value; the returned angle is in the * range -pi/2 through pi/2. Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a the value whose arc tangent is to be returned. * @return the arc tangent of the argument. */ // BEGIN Android-changed: Reimplement in native /* public static double atan(double a) { return StrictMath.atan(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double atan(double a); /** * Converts an angle measured in degrees to an approximately * equivalent angle measured in radians. The conversion from * degrees to radians is generally inexact. * * @param angdeg an angle, in degrees * @return the measurement of the angle {@code angdeg} * in radians. * @since 1.2 */ public static double toRadians(double angdeg) { return angdeg * DEGREES_TO_RADIANS; } /** * Converts an angle measured in radians to an approximately * equivalent angle measured in degrees. The conversion from * radians to degrees is generally inexact; users should * not expect {@code cos(toRadians(90.0))} to exactly * equal {@code 0.0}. * * @param angrad an angle, in radians * @return the measurement of the angle {@code angrad} * in degrees. * @since 1.2 */ public static double toDegrees(double angrad) { return angrad * RADIANS_TO_DEGREES; } /** * Returns Euler's number e raised to the power of a * {@code double} value. Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a the exponent to raise e to. * @return the value e{@code a}, * where e is the base of the natural logarithms. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double exp(double a) { return StrictMath.exp(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double exp(double a); /** * Returns the natural logarithm (base e) of a {@code double} * value. Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a a value * @return the value ln {@code a}, the natural logarithm of * {@code a}. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double log(double a) { return StrictMath.log(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double log(double a); /** * Returns the base 10 logarithm of a {@code double} value. * Special cases: * *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a a value * @return the base 10 logarithm of {@code a}. * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double log10(double a) { return StrictMath.log10(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double log10(double a); /** * Returns the correctly rounded positive square root of a * {@code double} value. * Special cases: *

* Otherwise, the result is the {@code double} value closest to * the true mathematical square root of the argument value. * * @apiNote * This method corresponds to the squareRoot operation defined in * IEEE 754. * * @param a a value. * @return the positive square root of {@code a}. * If the argument is NaN or less than zero, the result is NaN. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double sqrt(double a) { return StrictMath.sqrt(a); // default impl. delegates to StrictMath // Note that hardware sqrt instructions // frequently can be directly used by JITs // and should be much faster than doing // Math.sqrt in software. } */ // END Android-changed: Reimplement in native @CriticalNative public static native double sqrt(double a); /** * Returns the cube root of a {@code double} value. For * positive finite {@code x}, {@code cbrt(-x) == * -cbrt(x)}; that is, the cube root of a negative value is * the negative of the cube root of that value's magnitude. * * Special cases: * * * *

The computed result must be within 1 ulp of the exact result. * * @param a a value. * @return the cube root of {@code a}. * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double cbrt(double a) { return StrictMath.cbrt(a); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double cbrt(double a); /** * Computes the remainder operation on two arguments as prescribed * by the IEEE 754 standard. * The remainder value is mathematically equal to * f1 - f2 × n, * where n is the mathematical integer closest to the exact * mathematical value of the quotient {@code f1/f2}, and if two * mathematical integers are equally close to {@code f1/f2}, * then n is the integer that is even. If the remainder is * zero, its sign is the same as the sign of the first argument. * Special cases: *

* * @param f1 the dividend. * @param f2 the divisor. * @return the remainder when {@code f1} is divided by * {@code f2}. */ // BEGIN Android-changed: Reimplement in native /* public static double IEEEremainder(double f1, double f2) { return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double IEEEremainder(double f1, double f2); /** * Returns the smallest (closest to negative infinity) * {@code double} value that is greater than or equal to the * argument and is equal to a mathematical integer. Special cases: * Note * that the value of {@code Math.ceil(x)} is exactly the * value of {@code -Math.floor(-x)}. * * @apiNote * This method corresponds to the roundToIntegralTowardPositive * operation defined in IEEE 754. * * @param a a value. * @return the smallest (closest to negative infinity) * floating-point value that is greater than or equal to * the argument and is equal to a mathematical integer. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double ceil(double a) { return StrictMath.ceil(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double ceil(double a); /** * Returns the largest (closest to positive infinity) * {@code double} value that is less than or equal to the * argument and is equal to a mathematical integer. Special cases: * * * @apiNote * This method corresponds to the roundToIntegralTowardNegative * operation defined in IEEE 754. * * @param a a value. * @return the largest (closest to positive infinity) * floating-point value that less than or equal to the argument * and is equal to a mathematical integer. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double floor(double a) { return StrictMath.floor(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double floor(double a); /** * Returns the {@code double} value that is closest in value * to the argument and is equal to a mathematical integer. If two * {@code double} values that are mathematical integers are * equally close, the result is the integer value that is * even. Special cases: * * * @apiNote * This method corresponds to the roundToIntegralTiesToEven * operation defined in IEEE 754. * * @param a a {@code double} value. * @return the closest floating-point value to {@code a} that is * equal to a mathematical integer. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double rint(double a) { return StrictMath.rint(a); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double rint(double a); /** * Returns the angle theta from the conversion of rectangular * coordinates ({@code x}, {@code y}) to polar * coordinates (r, theta). * This method computes the phase theta by computing an arc tangent * of {@code y/x} in the range of -pi to pi. Special * cases: * * *

The computed result must be within 2 ulps of the exact result. * Results must be semi-monotonic. * * @apiNote * For y with a positive sign and finite nonzero * x, the exact mathematical value of {@code atan2} is * equal to: *

* * @param y the ordinate coordinate * @param x the abscissa coordinate * @return the theta component of the point * (rtheta) * in polar coordinates that corresponds to the point * (xy) in Cartesian coordinates. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double atan2(double y, double x) { return StrictMath.atan2(y, x); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double atan2(double y, double x); // Android-changed: Document that the results from Math are based on libm's behavior. // The cases known to differ with libm's pow(): // If the first argument is 1.0 then result is always 1.0 (not NaN). // If the first argument is -1.0 and the second argument is infinite, the result is 1.0 (not // NaN). /** * Returns the value of the first argument raised to the power of the * second argument. Special cases: * * * *

(In the foregoing descriptions, a floating-point value is * considered to be an integer if and only if it is finite and a * fixed point of the method {@link #ceil ceil} or, * equivalently, a fixed point of the method {@link #floor * floor}. A value is a fixed point of a one-argument * method if and only if the result of applying the method to the * value is equal to the value.) * *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @apiNote * The special cases definitions of this method differ from the * special case definitions of the IEEE 754 recommended {@code * pow} operation for ±{@code 1.0} raised to an infinite * power. This method treats such cases as indeterminate and * specifies a NaN is returned. The IEEE 754 specification treats * the infinite power as a large integer (large-magnitude * floating-point numbers are numerically integers, specifically * even integers) and therefore specifies {@code 1.0} be returned. * * @param a the base. * @param b the exponent. * @return the value {@code a}{@code b}. */ // BEGIN Android-changed: Reimplement in native /* @IntrinsicCandidate public static double pow(double a, double b) { return StrictMath.pow(a, b); // default impl. delegates to StrictMath } */ // END Android-changed: Reimplement in native @CriticalNative public static native double pow(double a, double b); /** * Returns the closest {@code int} to the argument, with ties * rounding to positive infinity. * *

* Special cases: *

* * @param a a floating-point value to be rounded to an integer. * @return the value of the argument rounded to the nearest * {@code int} value. * @see java.lang.Integer#MAX_VALUE * @see java.lang.Integer#MIN_VALUE */ @IntrinsicCandidate public static int round(float a) { int intBits = Float.floatToRawIntBits(a); int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK) >> (FloatConsts.SIGNIFICAND_WIDTH - 1); int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2 + FloatConsts.EXP_BIAS) - biasedExp; if ((shift & -32) == 0) { // shift >= 0 && shift < 32 // a is a finite number such that pow(2,-32) <= ulp(a) < 1 int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK) | (FloatConsts.SIGNIF_BIT_MASK + 1)); if (intBits < 0) { r = -r; } // In the comments below each Java expression evaluates to the value // the corresponding mathematical expression: // (r) evaluates to a / ulp(a) // (r >> shift) evaluates to floor(a * 2) // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) return ((r >> shift) + 1) >> 1; } else { // a is either // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer // - an infinity or NaN return (int) a; } } /** * Returns the closest {@code long} to the argument, with ties * rounding to positive infinity. * *

Special cases: *

* * @param a a floating-point value to be rounded to a * {@code long}. * @return the value of the argument rounded to the nearest * {@code long} value. * @see java.lang.Long#MAX_VALUE * @see java.lang.Long#MIN_VALUE */ @IntrinsicCandidate public static long round(double a) { long longBits = Double.doubleToRawLongBits(a); long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK) >> (DoubleConsts.SIGNIFICAND_WIDTH - 1); long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2 + DoubleConsts.EXP_BIAS) - biasedExp; if ((shift & -64) == 0) { // shift >= 0 && shift < 64 // a is a finite number such that pow(2,-64) <= ulp(a) < 1 long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK) | (DoubleConsts.SIGNIF_BIT_MASK + 1)); if (longBits < 0) { r = -r; } // In the comments below each Java expression evaluates to the value // the corresponding mathematical expression: // (r) evaluates to a / ulp(a) // (r >> shift) evaluates to floor(a * 2) // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) return ((r >> shift) + 1) >> 1; } else { // a is either // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer // - an infinity or NaN return (long) a; } } private static final class RandomNumberGeneratorHolder { static final Random randomNumberGenerator = new Random(); } /** * Returns a {@code double} value with a positive sign, greater * than or equal to {@code 0.0} and less than {@code 1.0}. * Returned values are chosen pseudorandomly with (approximately) * uniform distribution from that range. * *

When this method is first called, it creates a single new * pseudorandom-number generator, exactly as if by the expression * *

{@code new java.util.Random()}
* * This new pseudorandom-number generator is used thereafter for * all calls to this method and is used nowhere else. * *

This method is properly synchronized to allow correct use by * more than one thread. However, if many threads need to generate * pseudorandom numbers at a great rate, it may reduce contention * for each thread to have its own pseudorandom-number generator. * * @apiNote * As the largest {@code double} value less than {@code 1.0} * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements * *

{@code
     * double f = Math.random()/Math.nextDown(1.0);
     * double x = x1*(1.0 - f) + x2*f;
     * }
* * @return a pseudorandom {@code double} greater than or equal * to {@code 0.0} and less than {@code 1.0}. * @see #nextDown(double) * @see Random#nextDouble() */ public static double random() { return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble(); } // Android-added: setRandomSeedInternal(long), called after zygote forks. // This allows different processes to have different random seeds. /** * Set the seed for the pseudo random generator used by {@link #random()} * and {@link #randomIntInternal()}. * * @hide for internal use only. */ public static void setRandomSeedInternal(long seed) { RandomNumberGeneratorHolder.randomNumberGenerator.setSeed(seed); } // Android-added: randomIntInternal() method: like random() but for int. /** * @hide for internal use only. */ public static int randomIntInternal() { return RandomNumberGeneratorHolder.randomNumberGenerator.nextInt(); } // Android-added: randomLongInternal() method: like random() but for long. /** * @hide for internal use only. */ public static long randomLongInternal() { return RandomNumberGeneratorHolder.randomNumberGenerator.nextLong(); } /** * Returns the sum of its arguments, * throwing an exception if the result overflows an {@code int}. * * @param x the first value * @param y the second value * @return the result * @throws ArithmeticException if the result overflows an int * @since 1.8 */ @IntrinsicCandidate public static int addExact(int x, int y) { int r = x + y; // HD 2-12 Overflow iff both arguments have the opposite sign of the result if (((x ^ r) & (y ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; } /** * Returns the sum of its arguments, * throwing an exception if the result overflows a {@code long}. * * @param x the first value * @param y the second value * @return the result * @throws ArithmeticException if the result overflows a long * @since 1.8 */ @IntrinsicCandidate public static long addExact(long x, long y) { long r = x + y; // HD 2-12 Overflow iff both arguments have the opposite sign of the result if (((x ^ r) & (y ^ r)) < 0) { throw new ArithmeticException("long overflow"); } return r; } /** * Returns the difference of the arguments, * throwing an exception if the result overflows an {@code int}. * * @param x the first value * @param y the second value to subtract from the first * @return the result * @throws ArithmeticException if the result overflows an int * @since 1.8 */ @IntrinsicCandidate public static int subtractExact(int x, int y) { int r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different from the sign of x if (((x ^ y) & (x ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; } /** * Returns the difference of the arguments, * throwing an exception if the result overflows a {@code long}. * * @param x the first value * @param y the second value to subtract from the first * @return the result * @throws ArithmeticException if the result overflows a long * @since 1.8 */ @IntrinsicCandidate public static long subtractExact(long x, long y) { long r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different from the sign of x if (((x ^ y) & (x ^ r)) < 0) { throw new ArithmeticException("long overflow"); } return r; } /** * Returns the product of the arguments, * throwing an exception if the result overflows an {@code int}. * * @param x the first value * @param y the second value * @return the result * @throws ArithmeticException if the result overflows an int * @since 1.8 */ @IntrinsicCandidate public static int multiplyExact(int x, int y) { long r = (long)x * (long)y; if ((int)r != r) { throw new ArithmeticException("integer overflow"); } return (int)r; } /** * Returns the product of the arguments, throwing an exception if the result * overflows a {@code long}. * * @param x the first value * @param y the second value * @return the result * @throws ArithmeticException if the result overflows a long * @since 9 */ public static long multiplyExact(long x, int y) { return multiplyExact(x, (long)y); } /** * Returns the product of the arguments, * throwing an exception if the result overflows a {@code long}. * * @param x the first value * @param y the second value * @return the result * @throws ArithmeticException if the result overflows a long * @since 1.8 */ @IntrinsicCandidate public static long multiplyExact(long x, long y) { long r = x * y; long ax = Math.abs(x); long ay = Math.abs(y); if (((ax | ay) >>> 31 != 0)) { // Some bits greater than 2^31 that might cause overflow // Check the result using the divide operator // and check for the special case of Long.MIN_VALUE * -1 if (((y != 0) && (r / y != x)) || (x == Long.MIN_VALUE && y == -1)) { throw new ArithmeticException("long overflow"); } } return r; } /** * Returns the quotient of the arguments, throwing an exception if the * result overflows an {@code int}. Such overflow occurs in this method if * {@code x} is {@link Integer#MIN_VALUE} and {@code y} is {@code -1}. * In contrast, if {@code Integer.MIN_VALUE / -1} were evaluated directly, * the result would be {@code Integer.MIN_VALUE} and no exception would be * thrown. *

* If {@code y} is zero, an {@code ArithmeticException} is thrown * (JLS {@jls 15.17.2}). *

* The built-in remainder operator "{@code %}" is a suitable counterpart * both for this method and for the built-in division operator "{@code /}". * * @param x the dividend * @param y the divisor * @return the quotient {@code x / y} * @throws ArithmeticException if {@code y} is zero or the quotient * overflows an int * @jls 15.17.2 Division Operator / * @since 18 */ public static int divideExact(int x, int y) { int q = x / y; if ((x & y & q) >= 0) { return q; } throw new ArithmeticException("integer overflow"); } /** * Returns the quotient of the arguments, throwing an exception if the * result overflows a {@code long}. Such overflow occurs in this method if * {@code x} is {@link Long#MIN_VALUE} and {@code y} is {@code -1}. * In contrast, if {@code Long.MIN_VALUE / -1} were evaluated directly, * the result would be {@code Long.MIN_VALUE} and no exception would be * thrown. *

* If {@code y} is zero, an {@code ArithmeticException} is thrown * (JLS {@jls 15.17.2}). *

* The built-in remainder operator "{@code %}" is a suitable counterpart * both for this method and for the built-in division operator "{@code /}". * * @param x the dividend * @param y the divisor * @return the quotient {@code x / y} * @throws ArithmeticException if {@code y} is zero or the quotient * overflows a long * @jls 15.17.2 Division Operator / * @since 18 */ public static long divideExact(long x, long y) { long q = x / y; if ((x & y & q) >= 0) { return q; } throw new ArithmeticException("long overflow"); } /** * Returns the largest (closest to positive infinity) * {@code int} value that is less than or equal to the algebraic quotient. * This method is identical to {@link #floorDiv(int,int)} except that it * throws an {@code ArithmeticException} when the dividend is * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is * {@code -1} instead of ignoring the integer overflow and returning * {@code Integer.MIN_VALUE}. *

* The floor modulus method {@link #floorMod(int,int)} is a suitable * counterpart both for this method and for the {@link #floorDiv(int,int)} * method. *

* For examples, see {@link #floorDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the largest (closest to positive infinity) * {@code int} value that is less than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero, or the * dividend {@code x} is {@code Integer.MIN_VALUE} and the divisor {@code y} * is {@code -1}. * @see #floorDiv(int, int) * @since 18 */ public static int floorDivExact(int x, int y) { final int q = x / y; if ((x & y & q) >= 0) { // if the signs are different and modulo not zero, round down if ((x ^ y) < 0 && (q * y != x)) { return q - 1; } return q; } throw new ArithmeticException("integer overflow"); } /** * Returns the largest (closest to positive infinity) * {@code long} value that is less than or equal to the algebraic quotient. * This method is identical to {@link #floorDiv(long,long)} except that it * throws an {@code ArithmeticException} when the dividend is * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is * {@code -1} instead of ignoring the integer overflow and returning * {@code Long.MIN_VALUE}. *

* The floor modulus method {@link #floorMod(long,long)} is a suitable * counterpart both for this method and for the {@link #floorDiv(long,long)} * method. *

* For examples, see {@link #floorDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the largest (closest to positive infinity) * {@code long} value that is less than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero, or the * dividend {@code x} is {@code Long.MIN_VALUE} and the divisor {@code y} * is {@code -1}. * @see #floorDiv(long,long) * @since 18 */ public static long floorDivExact(long x, long y) { final long q = x / y; if ((x & y & q) >= 0) { // if the signs are different and modulo not zero, round down if ((x ^ y) < 0 && (q * y != x)) { return q - 1; } return q; } throw new ArithmeticException("long overflow"); } /** * Returns the smallest (closest to negative infinity) * {@code int} value that is greater than or equal to the algebraic quotient. * This method is identical to {@link #ceilDiv(int,int)} except that it * throws an {@code ArithmeticException} when the dividend is * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is * {@code -1} instead of ignoring the integer overflow and returning * {@code Integer.MIN_VALUE}. *

* The ceil modulus method {@link #ceilMod(int,int)} is a suitable * counterpart both for this method and for the {@link #ceilDiv(int,int)} * method. *

* For examples, see {@link #ceilDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the smallest (closest to negative infinity) * {@code int} value that is greater than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero, or the * dividend {@code x} is {@code Integer.MIN_VALUE} and the divisor {@code y} * is {@code -1}. * @see #ceilDiv(int, int) * @since 18 */ public static int ceilDivExact(int x, int y) { final int q = x / y; if ((x & y & q) >= 0) { // if the signs are the same and modulo not zero, round up if ((x ^ y) >= 0 && (q * y != x)) { return q + 1; } return q; } throw new ArithmeticException("integer overflow"); } /** * Returns the smallest (closest to negative infinity) * {@code long} value that is greater than or equal to the algebraic quotient. * This method is identical to {@link #ceilDiv(long,long)} except that it * throws an {@code ArithmeticException} when the dividend is * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is * {@code -1} instead of ignoring the integer overflow and returning * {@code Long.MIN_VALUE}. *

* The ceil modulus method {@link #ceilMod(long,long)} is a suitable * counterpart both for this method and for the {@link #ceilDiv(long,long)} * method. *

* For examples, see {@link #ceilDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the smallest (closest to negative infinity) * {@code long} value that is greater than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero, or the * dividend {@code x} is {@code Long.MIN_VALUE} and the divisor {@code y} * is {@code -1}. * @see #ceilDiv(long,long) * @since 18 */ public static long ceilDivExact(long x, long y) { final long q = x / y; if ((x & y & q) >= 0) { // if the signs are the same and modulo not zero, round up if ((x ^ y) >= 0 && (q * y != x)) { return q + 1; } return q; } throw new ArithmeticException("long overflow"); } /** * Returns the argument incremented by one, throwing an exception if the * result overflows an {@code int}. * The overflow only occurs for {@linkplain Integer#MAX_VALUE the maximum value}. * * @param a the value to increment * @return the result * @throws ArithmeticException if the result overflows an int * @since 1.8 */ @IntrinsicCandidate public static int incrementExact(int a) { if (a == Integer.MAX_VALUE) { throw new ArithmeticException("integer overflow"); } return a + 1; } /** * Returns the argument incremented by one, throwing an exception if the * result overflows a {@code long}. * The overflow only occurs for {@linkplain Long#MAX_VALUE the maximum value}. * * @param a the value to increment * @return the result * @throws ArithmeticException if the result overflows a long * @since 1.8 */ @IntrinsicCandidate public static long incrementExact(long a) { if (a == Long.MAX_VALUE) { throw new ArithmeticException("long overflow"); } return a + 1L; } /** * Returns the argument decremented by one, throwing an exception if the * result overflows an {@code int}. * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}. * * @param a the value to decrement * @return the result * @throws ArithmeticException if the result overflows an int * @since 1.8 */ @IntrinsicCandidate public static int decrementExact(int a) { if (a == Integer.MIN_VALUE) { throw new ArithmeticException("integer overflow"); } return a - 1; } /** * Returns the argument decremented by one, throwing an exception if the * result overflows a {@code long}. * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}. * * @param a the value to decrement * @return the result * @throws ArithmeticException if the result overflows a long * @since 1.8 */ @IntrinsicCandidate public static long decrementExact(long a) { if (a == Long.MIN_VALUE) { throw new ArithmeticException("long overflow"); } return a - 1L; } /** * Returns the negation of the argument, throwing an exception if the * result overflows an {@code int}. * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}. * * @param a the value to negate * @return the result * @throws ArithmeticException if the result overflows an int * @since 1.8 */ @IntrinsicCandidate public static int negateExact(int a) { if (a == Integer.MIN_VALUE) { throw new ArithmeticException("integer overflow"); } return -a; } /** * Returns the negation of the argument, throwing an exception if the * result overflows a {@code long}. * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}. * * @param a the value to negate * @return the result * @throws ArithmeticException if the result overflows a long * @since 1.8 */ @IntrinsicCandidate public static long negateExact(long a) { if (a == Long.MIN_VALUE) { throw new ArithmeticException("long overflow"); } return -a; } /** * Returns the value of the {@code long} argument, * throwing an exception if the value overflows an {@code int}. * * @param value the long value * @return the argument as an int * @throws ArithmeticException if the {@code argument} overflows an int * @since 1.8 */ public static int toIntExact(long value) { if ((int)value != value) { throw new ArithmeticException("integer overflow"); } return (int)value; } /** * Returns the exact mathematical product of the arguments. * * @param x the first value * @param y the second value * @return the result * @since 9 */ public static long multiplyFull(int x, int y) { return (long)x * (long)y; } /** * Returns as a {@code long} the most significant 64 bits of the 128-bit * product of two 64-bit factors. * * @param x the first value * @param y the second value * @return the result * @see #unsignedMultiplyHigh * @since 9 */ @IntrinsicCandidate public static long multiplyHigh(long x, long y) { // Use technique from section 8-2 of Henry S. Warren, Jr., // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174. long x1 = x >> 32; long x2 = x & 0xFFFFFFFFL; long y1 = y >> 32; long y2 = y & 0xFFFFFFFFL; long z2 = x2 * y2; long t = x1 * y2 + (z2 >>> 32); long z1 = t & 0xFFFFFFFFL; long z0 = t >> 32; z1 += x2 * y1; return x1 * y1 + z0 + (z1 >> 32); } /** * Returns as a {@code long} the most significant 64 bits of the unsigned * 128-bit product of two unsigned 64-bit factors. * * @param x the first value * @param y the second value * @return the result * @see #multiplyHigh * @since 18 */ @IntrinsicCandidate public static long unsignedMultiplyHigh(long x, long y) { // Compute via multiplyHigh() to leverage the intrinsic long result = Math.multiplyHigh(x, y); result += (y & (x >> 63)); // equivalent to `if (x < 0) result += y;` result += (x & (y >> 63)); // equivalent to `if (y < 0) result += x;` return result; } /** * Returns the largest (closest to positive infinity) * {@code int} value that is less than or equal to the algebraic quotient. * There is one special case: if the dividend is * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1}, * then integer overflow occurs and * the result is equal to {@code Integer.MIN_VALUE}. *

* Normal integer division operates under the round to zero rounding mode * (truncation). This operation instead acts under the round toward * negative infinity (floor) rounding mode. * The floor rounding mode gives different results from truncation * when the exact quotient is not an integer and is negative. *

* * @param x the dividend * @param y the divisor * @return the largest (closest to positive infinity) * {@code int} value that is less than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero * @see #floorMod(int, int) * @see #floor(double) * @since 1.8 */ public static int floorDiv(int x, int y) { final int q = x / y; // if the signs are different and modulo not zero, round down if ((x ^ y) < 0 && (q * y != x)) { return q - 1; } return q; } /** * Returns the largest (closest to positive infinity) * {@code long} value that is less than or equal to the algebraic quotient. * There is one special case: if the dividend is * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, * then integer overflow occurs and * the result is equal to {@code Long.MIN_VALUE}. *

* Normal integer division operates under the round to zero rounding mode * (truncation). This operation instead acts under the round toward * negative infinity (floor) rounding mode. * The floor rounding mode gives different results from truncation * when the exact result is not an integer and is negative. *

* For examples, see {@link #floorDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the largest (closest to positive infinity) * {@code long} value that is less than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero * @see #floorMod(long, int) * @see #floor(double) * @since 9 */ public static long floorDiv(long x, int y) { return floorDiv(x, (long)y); } /** * Returns the largest (closest to positive infinity) * {@code long} value that is less than or equal to the algebraic quotient. * There is one special case: if the dividend is * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, * then integer overflow occurs and * the result is equal to {@code Long.MIN_VALUE}. *

* Normal integer division operates under the round to zero rounding mode * (truncation). This operation instead acts under the round toward * negative infinity (floor) rounding mode. * The floor rounding mode gives different results from truncation * when the exact result is not an integer and is negative. *

* For examples, see {@link #floorDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the largest (closest to positive infinity) * {@code long} value that is less than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero * @see #floorMod(long, long) * @see #floor(double) * @since 1.8 */ public static long floorDiv(long x, long y) { final long q = x / y; // if the signs are different and modulo not zero, round down if ((x ^ y) < 0 && (q * y != x)) { return q - 1; } return q; } /** * Returns the floor modulus of the {@code int} arguments. *

* The floor modulus is {@code r = x - (floorDiv(x, y) * y)}, * has the same sign as the divisor {@code y} or is zero, and * is in the range of {@code -abs(y) < r < +abs(y)}. * *

* The relationship between {@code floorDiv} and {@code floorMod} is such that: *

*

* The difference in values between {@code floorMod} and the {@code %} operator * is due to the difference between {@code floorDiv} and the {@code /} * operator, as detailed in {@linkplain #floorDiv(int, int)}. *

* Examples: *

* * @param x the dividend * @param y the divisor * @return the floor modulus {@code x - (floorDiv(x, y) * y)} * @throws ArithmeticException if the divisor {@code y} is zero * @see #floorDiv(int, int) * @since 1.8 */ public static int floorMod(int x, int y) { final int r = x % y; // if the signs are different and modulo not zero, adjust result if ((x ^ y) < 0 && r != 0) { return r + y; } return r; } /** * Returns the floor modulus of the {@code long} and {@code int} arguments. *

* The floor modulus is {@code r = x - (floorDiv(x, y) * y)}, * has the same sign as the divisor {@code y} or is zero, and * is in the range of {@code -abs(y) < r < +abs(y)}. * *

* The relationship between {@code floorDiv} and {@code floorMod} is such that: *

*

* For examples, see {@link #floorMod(int, int)}. * * @param x the dividend * @param y the divisor * @return the floor modulus {@code x - (floorDiv(x, y) * y)} * @throws ArithmeticException if the divisor {@code y} is zero * @see #floorDiv(long, int) * @since 9 */ public static int floorMod(long x, int y) { // Result cannot overflow the range of int. return (int)floorMod(x, (long)y); } /** * Returns the floor modulus of the {@code long} arguments. *

* The floor modulus is {@code r = x - (floorDiv(x, y) * y)}, * has the same sign as the divisor {@code y} or is zero, and * is in the range of {@code -abs(y) < r < +abs(y)}. * *

* The relationship between {@code floorDiv} and {@code floorMod} is such that: *

*

* For examples, see {@link #floorMod(int, int)}. * * @param x the dividend * @param y the divisor * @return the floor modulus {@code x - (floorDiv(x, y) * y)} * @throws ArithmeticException if the divisor {@code y} is zero * @see #floorDiv(long, long) * @since 1.8 */ public static long floorMod(long x, long y) { final long r = x % y; // if the signs are different and modulo not zero, adjust result if ((x ^ y) < 0 && r != 0) { return r + y; } return r; } /** * Returns the smallest (closest to negative infinity) * {@code int} value that is greater than or equal to the algebraic quotient. * There is one special case: if the dividend is * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1}, * then integer overflow occurs and * the result is equal to {@code Integer.MIN_VALUE}. *

* Normal integer division operates under the round to zero rounding mode * (truncation). This operation instead acts under the round toward * positive infinity (ceiling) rounding mode. * The ceiling rounding mode gives different results from truncation * when the exact quotient is not an integer and is positive. *

* * @param x the dividend * @param y the divisor * @return the smallest (closest to negative infinity) * {@code int} value that is greater than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero * @see #ceilMod(int, int) * @see #ceil(double) * @since 18 */ public static int ceilDiv(int x, int y) { final int q = x / y; // if the signs are the same and modulo not zero, round up if ((x ^ y) >= 0 && (q * y != x)) { return q + 1; } return q; } /** * Returns the smallest (closest to negative infinity) * {@code long} value that is greater than or equal to the algebraic quotient. * There is one special case: if the dividend is * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, * then integer overflow occurs and * the result is equal to {@code Long.MIN_VALUE}. *

* Normal integer division operates under the round to zero rounding mode * (truncation). This operation instead acts under the round toward * positive infinity (ceiling) rounding mode. * The ceiling rounding mode gives different results from truncation * when the exact result is not an integer and is positive. *

* For examples, see {@link #ceilDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the smallest (closest to negative infinity) * {@code long} value that is greater than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero * @see #ceilMod(int, int) * @see #ceil(double) * @since 18 */ public static long ceilDiv(long x, int y) { return ceilDiv(x, (long)y); } /** * Returns the smallest (closest to negative infinity) * {@code long} value that is greater than or equal to the algebraic quotient. * There is one special case: if the dividend is * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, * then integer overflow occurs and * the result is equal to {@code Long.MIN_VALUE}. *

* Normal integer division operates under the round to zero rounding mode * (truncation). This operation instead acts under the round toward * positive infinity (ceiling) rounding mode. * The ceiling rounding mode gives different results from truncation * when the exact result is not an integer and is positive. *

* For examples, see {@link #ceilDiv(int, int)}. * * @param x the dividend * @param y the divisor * @return the smallest (closest to negative infinity) * {@code long} value that is greater than or equal to the algebraic quotient. * @throws ArithmeticException if the divisor {@code y} is zero * @see #ceilMod(int, int) * @see #ceil(double) * @since 18 */ public static long ceilDiv(long x, long y) { final long q = x / y; // if the signs are the same and modulo not zero, round up if ((x ^ y) >= 0 && (q * y != x)) { return q + 1; } return q; } /** * Returns the ceiling modulus of the {@code int} arguments. *

* The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)}, * has the opposite sign as the divisor {@code y} or is zero, and * is in the range of {@code -abs(y) < r < +abs(y)}. * *

* The relationship between {@code ceilDiv} and {@code ceilMod} is such that: *

*

* The difference in values between {@code ceilMod} and the {@code %} operator * is due to the difference between {@code ceilDiv} and the {@code /} * operator, as detailed in {@linkplain #ceilDiv(int, int)}. *

* Examples: *

* * @param x the dividend * @param y the divisor * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)} * @throws ArithmeticException if the divisor {@code y} is zero * @see #ceilDiv(int, int) * @since 18 */ public static int ceilMod(int x, int y) { final int r = x % y; // if the signs are the same and modulo not zero, adjust result if ((x ^ y) >= 0 && r != 0) { return r - y; } return r; } /** * Returns the ceiling modulus of the {@code long} and {@code int} arguments. *

* The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)}, * has the opposite sign as the divisor {@code y} or is zero, and * is in the range of {@code -abs(y) < r < +abs(y)}. * *

* The relationship between {@code ceilDiv} and {@code ceilMod} is such that: *

*

* For examples, see {@link #ceilMod(int, int)}. * * @param x the dividend * @param y the divisor * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)} * @throws ArithmeticException if the divisor {@code y} is zero * @see #ceilDiv(long, int) * @since 18 */ public static int ceilMod(long x, int y) { // Result cannot overflow the range of int. return (int)ceilMod(x, (long)y); } /** * Returns the ceiling modulus of the {@code long} arguments. *

* The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)}, * has the opposite sign as the divisor {@code y} or is zero, and * is in the range of {@code -abs(y) < r < +abs(y)}. * *

* The relationship between {@code ceilDiv} and {@code ceilMod} is such that: *

*

* For examples, see {@link #ceilMod(int, int)}. * * @param x the dividend * @param y the divisor * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)} * @throws ArithmeticException if the divisor {@code y} is zero * @see #ceilDiv(long, long) * @since 18 */ public static long ceilMod(long x, long y) { final long r = x % y; // if the signs are the same and modulo not zero, adjust result if ((x ^ y) >= 0 && r != 0) { return r - y; } return r; } /** * Returns the absolute value of an {@code int} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * *

Note that if the argument is equal to the value of {@link * Integer#MIN_VALUE}, the most negative representable {@code int} * value, the result is that same value, which is negative. In * contrast, the {@link Math#absExact(int)} method throws an * {@code ArithmeticException} for this value. * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. * @see Math#absExact(int) */ @IntrinsicCandidate public static int abs(int a) { return (a < 0) ? -a : a; } /** * Returns the mathematical absolute value of an {@code int} value * if it is exactly representable as an {@code int}, throwing * {@code ArithmeticException} if the result overflows the * positive {@code int} range. * *

Since the range of two's complement integers is asymmetric * with one additional negative value (JLS {@jls 4.2.1}), the * mathematical absolute value of {@link Integer#MIN_VALUE} * overflows the positive {@code int} range, so an exception is * thrown for that argument. * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument, unless overflow occurs * @throws ArithmeticException if the argument is {@link Integer#MIN_VALUE} * @see Math#abs(int) * @since 15 */ public static int absExact(int a) { if (a == Integer.MIN_VALUE) throw new ArithmeticException( "Overflow to represent absolute value of Integer.MIN_VALUE"); else return abs(a); } /** * Returns the absolute value of a {@code long} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * *

Note that if the argument is equal to the value of {@link * Long#MIN_VALUE}, the most negative representable {@code long} * value, the result is that same value, which is negative. In * contrast, the {@link Math#absExact(long)} method throws an * {@code ArithmeticException} for this value. * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. * @see Math#absExact(long) */ @IntrinsicCandidate public static long abs(long a) { return (a < 0) ? -a : a; } /** * Returns the mathematical absolute value of an {@code long} value * if it is exactly representable as an {@code long}, throwing * {@code ArithmeticException} if the result overflows the * positive {@code long} range. * *

Since the range of two's complement integers is asymmetric * with one additional negative value (JLS {@jls 4.2.1}), the * mathematical absolute value of {@link Long#MIN_VALUE} overflows * the positive {@code long} range, so an exception is thrown for * that argument. * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument, unless overflow occurs * @throws ArithmeticException if the argument is {@link Long#MIN_VALUE} * @see Math#abs(long) * @since 15 */ public static long absExact(long a) { if (a == Long.MIN_VALUE) throw new ArithmeticException( "Overflow to represent absolute value of Long.MIN_VALUE"); else return abs(a); } /** * Returns the absolute value of a {@code float} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * Special cases: *

* * @apiNote As implied by the above, one valid implementation of * this method is given by the expression below which computes a * {@code float} with the same exponent and significand as the * argument but with a guaranteed zero sign bit indicating a * positive value:
* {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))} * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. */ @IntrinsicCandidate public static float abs(float a) { // Convert to bit field form, zero the sign bit, and convert back return Float.intBitsToFloat(Float.floatToRawIntBits(a) & FloatConsts.MAG_BIT_MASK); } /** * Returns the absolute value of a {@code double} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * Special cases: * * * @apiNote As implied by the above, one valid implementation of * this method is given by the expression below which computes a * {@code double} with the same exponent and significand as the * argument but with a guaranteed zero sign bit indicating a * positive value:
* {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)} * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. */ @IntrinsicCandidate public static double abs(double a) { // Convert to bit field form, zero the sign bit, and convert back return Double.longBitsToDouble(Double.doubleToRawLongBits(a) & DoubleConsts.MAG_BIT_MASK); } /** * Returns the greater of two {@code int} values. That is, the * result is the argument closer to the value of * {@link Integer#MAX_VALUE}. If the arguments have the same value, * the result is that same value. * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ @IntrinsicCandidate public static int max(int a, int b) { return (a >= b) ? a : b; } /** * Returns the greater of two {@code long} values. That is, the * result is the argument closer to the value of * {@link Long#MAX_VALUE}. If the arguments have the same value, * the result is that same value. * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ public static long max(long a, long b) { return (a >= b) ? a : b; } // Use raw bit-wise conversions on guaranteed non-NaN arguments. private static final long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); private static final long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); /** * Returns the greater of two {@code float} values. That is, * the result is the argument closer to positive infinity. If the * arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If one * argument is positive zero and the other negative zero, the * result is positive zero. * * @apiNote * This method corresponds to the maximum operation defined in * IEEE 754. * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ @IntrinsicCandidate public static float max(float a, float b) { if (a != a) return a; // a is NaN if ((a == 0.0f) && (b == 0.0f) && (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { // Raw conversion ok since NaN can't map to -0.0. return b; } return (a >= b) ? a : b; } /** * Returns the greater of two {@code double} values. That * is, the result is the argument closer to positive infinity. If * the arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If one * argument is positive zero and the other negative zero, the * result is positive zero. * * @apiNote * This method corresponds to the maximum operation defined in * IEEE 754. * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ @IntrinsicCandidate public static double max(double a, double b) { if (a != a) return a; // a is NaN if ((a == 0.0d) && (b == 0.0d) && (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { // Raw conversion ok since NaN can't map to -0.0. return b; } return (a >= b) ? a : b; } /** * Returns the smaller of two {@code int} values. That is, * the result the argument closer to the value of * {@link Integer#MIN_VALUE}. If the arguments have the same * value, the result is that same value. * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ @IntrinsicCandidate public static int min(int a, int b) { return (a <= b) ? a : b; } /** * Returns the smaller of two {@code long} values. That is, * the result is the argument closer to the value of * {@link Long#MIN_VALUE}. If the arguments have the same * value, the result is that same value. * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ public static long min(long a, long b) { return (a <= b) ? a : b; } /** * Returns the smaller of two {@code float} values. That is, * the result is the value closer to negative infinity. If the * arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If * one argument is positive zero and the other is negative zero, * the result is negative zero. * * @apiNote * This method corresponds to the minimum operation defined in * IEEE 754. * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ @IntrinsicCandidate public static float min(float a, float b) { if (a != a) return a; // a is NaN if ((a == 0.0f) && (b == 0.0f) && (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { // Raw conversion ok since NaN can't map to -0.0. return b; } return (a <= b) ? a : b; } /** * Returns the smaller of two {@code double} values. That * is, the result is the value closer to negative infinity. If the * arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If one * argument is positive zero and the other is negative zero, the * result is negative zero. * * @apiNote * This method corresponds to the minimum operation defined in * IEEE 754. * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ @IntrinsicCandidate public static double min(double a, double b) { if (a != a) return a; // a is NaN if ((a == 0.0d) && (b == 0.0d) && (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { // Raw conversion ok since NaN can't map to -0.0. return b; } return (a <= b) ? a : b; } /** * Clamps the value to fit between min and max. If the value is less * than {@code min}, then {@code min} is returned. If the value is greater * than {@code max}, then {@code max} is returned. Otherwise, the original * value is returned. *

* While the original value of type long may not fit into the int type, * the bounds have the int type, so the result always fits the int type. * This allows to use method to safely cast long value to int with * saturation. * * @param value value to clamp * @param min minimal allowed value * @param max maximal allowed value * @return a clamped value that fits into {@code min..max} interval * @throws IllegalArgumentException if {@code min > max} * * @since 21 */ public static int clamp(long value, int min, int max) { if (min > max) { throw new IllegalArgumentException(min + " > " + max); } return (int) Math.min(max, Math.max(value, min)); } /** * Clamps the value to fit between min and max. If the value is less * than {@code min}, then {@code min} is returned. If the value is greater * than {@code max}, then {@code max} is returned. Otherwise, the original * value is returned. * * @param value value to clamp * @param min minimal allowed value * @param max maximal allowed value * @return a clamped value that fits into {@code min..max} interval * @throws IllegalArgumentException if {@code min > max} * * @since 21 */ public static long clamp(long value, long min, long max) { if (min > max) { throw new IllegalArgumentException(min + " > " + max); } return Math.min(max, Math.max(value, min)); } /** * Clamps the value to fit between min and max. If the value is less * than {@code min}, then {@code min} is returned. If the value is greater * than {@code max}, then {@code max} is returned. Otherwise, the original * value is returned. If value is NaN, the result is also NaN. *

* Unlike the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. * E.g., {@code clamp(-0.0, 0.0, 1.0)} returns 0.0. * * @param value value to clamp * @param min minimal allowed value * @param max maximal allowed value * @return a clamped value that fits into {@code min..max} interval * @throws IllegalArgumentException if either of {@code min} and {@code max} * arguments is NaN, or {@code min > max}, or {@code min} is +0.0, and * {@code max} is -0.0. * * @since 21 */ public static double clamp(double value, double min, double max) { // This unusual condition allows keeping only one branch // on common path when min < max and neither of them is NaN. // If min == max, we should additionally check for +0.0/-0.0 case, // so we're still visiting the if statement. if (!(min < max)) { // min greater than, equal to, or unordered with respect to max; NaN values are unordered if (Double.isNaN(min)) { throw new IllegalArgumentException("min is NaN"); } if (Double.isNaN(max)) { throw new IllegalArgumentException("max is NaN"); } if (Double.compare(min, max) > 0) { throw new IllegalArgumentException(min + " > " + max); } // Fall-through if min and max are exactly equal (or min = -0.0 and max = +0.0) // and none of them is NaN } return Math.min(max, Math.max(value, min)); } /** * Clamps the value to fit between min and max. If the value is less * than {@code min}, then {@code min} is returned. If the value is greater * than {@code max}, then {@code max} is returned. Otherwise, the original * value is returned. If value is NaN, the result is also NaN. *

* Unlike the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. * E.g., {@code clamp(-0.0f, 0.0f, 1.0f)} returns 0.0f. * * @param value value to clamp * @param min minimal allowed value * @param max maximal allowed value * @return a clamped value that fits into {@code min..max} interval * @throws IllegalArgumentException if either of {@code min} and {@code max} * arguments is NaN, or {@code min > max}, or {@code min} is +0.0f, and * {@code max} is -0.0f. * * @since 21 */ public static float clamp(float value, float min, float max) { // This unusual condition allows keeping only one branch // on common path when min < max and neither of them is NaN. // If min == max, we should additionally check for +0.0/-0.0 case, // so we're still visiting the if statement. if (!(min < max)) { // min greater than, equal to, or unordered with respect to max; NaN values are unordered if (Float.isNaN(min)) { throw new IllegalArgumentException("min is NaN"); } if (Float.isNaN(max)) { throw new IllegalArgumentException("max is NaN"); } if (Float.compare(min, max) > 0) { throw new IllegalArgumentException(min + " > " + max); } // Fall-through if min and max are exactly equal (or min = -0.0 and max = +0.0) // and none of them is NaN } return Math.min(max, Math.max(value, min)); } /** * Returns the fused multiply add of the three arguments; that is, * returns the exact product of the first two arguments summed * with the third argument and then rounded once to the nearest * {@code double}. * * The rounding is done using the {@linkplain * java.math.RoundingMode#HALF_EVEN round to nearest even * rounding mode}. * * In contrast, if {@code a * b + c} is evaluated as a regular * floating-point expression, two rounding errors are involved, * the first for the multiply operation, the second for the * addition operation. * *

Special cases: *

* *

Note that {@code fma(a, 1.0, c)} returns the same * result as ({@code a + c}). However, * {@code fma(a, b, +0.0)} does not always return the * same result as ({@code a * b}) since * {@code fma(-0.0, +0.0, +0.0)} is {@code +0.0} while * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fma(a, b, -0.0)} is * equivalent to ({@code a * b}) however. * * @apiNote This method corresponds to the fusedMultiplyAdd * operation defined in IEEE 754. * * @param a a value * @param b a value * @param c a value * * @return (a × b + c) * computed, as if with unlimited range and precision, and rounded * once to the nearest {@code double} value * * @since 9 */ @IntrinsicCandidate public static double fma(double a, double b, double c) { /* * Infinity and NaN arithmetic is not quite the same with two * roundings as opposed to just one so the simple expression * "a * b + c" cannot always be used to compute the correct * result. With two roundings, the product can overflow and * if the addend is infinite, a spurious NaN can be produced * if the infinity from the overflow and the infinite addend * have opposite signs. */ // First, screen for and handle non-finite input values whose // arithmetic is not supported by BigDecimal. if (Double.isNaN(a) || Double.isNaN(b) || Double.isNaN(c)) { return Double.NaN; } else { // All inputs non-NaN boolean infiniteA = Double.isInfinite(a); boolean infiniteB = Double.isInfinite(b); boolean infiniteC = Double.isInfinite(c); double result; if (infiniteA || infiniteB || infiniteC) { if (infiniteA && b == 0.0 || infiniteB && a == 0.0 ) { return Double.NaN; } // Store product in a double field to cause an // overflow even if non-strictfp evaluation is being // used. double product = a * b; if (Double.isInfinite(product) && !infiniteA && !infiniteB) { // Intermediate overflow; might cause a // spurious NaN if added to infinite c. assert Double.isInfinite(c); return c; } else { result = product + c; assert !Double.isFinite(result); return result; } } else { // All inputs finite BigDecimal product = (new BigDecimal(a)).multiply(new BigDecimal(b)); if (c == 0.0) { // Positive or negative zero // If the product is an exact zero, use a // floating-point expression to compute the sign // of the zero final result. The product is an // exact zero if and only if at least one of a and // b is zero. if (a == 0.0 || b == 0.0) { return a * b + c; } else { // The sign of a zero addend doesn't matter if // the product is nonzero. The sign of a zero // addend is not factored in the result if the // exact product is nonzero but underflows to // zero; see IEEE-754 2008 section 6.3 "The // sign bit". return product.doubleValue(); } } else { return product.add(new BigDecimal(c)).doubleValue(); } } } } /** * Returns the fused multiply add of the three arguments; that is, * returns the exact product of the first two arguments summed * with the third argument and then rounded once to the nearest * {@code float}. * * The rounding is done using the {@linkplain * java.math.RoundingMode#HALF_EVEN round to nearest even * rounding mode}. * * In contrast, if {@code a * b + c} is evaluated as a regular * floating-point expression, two rounding errors are involved, * the first for the multiply operation, the second for the * addition operation. * *

Special cases: *

* *

Note that {@code fma(a, 1.0f, c)} returns the same * result as ({@code a + c}). However, * {@code fma(a, b, +0.0f)} does not always return the * same result as ({@code a * b}) since * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is * equivalent to ({@code a * b}) however. * * @apiNote This method corresponds to the fusedMultiplyAdd * operation defined in IEEE 754. * * @param a a value * @param b a value * @param c a value * * @return (a × b + c) * computed, as if with unlimited range and precision, and rounded * once to the nearest {@code float} value * * @since 9 */ @IntrinsicCandidate public static float fma(float a, float b, float c) { if (Float.isFinite(a) && Float.isFinite(b) && Float.isFinite(c)) { if (a == 0.0 || b == 0.0) { return a * b + c; // Handled signed zero cases } else { return (new BigDecimal((double)a * (double)b) // Exact multiply .add(new BigDecimal((double)c))) // Exact sum .floatValue(); // One rounding // to a float value } } else { // At least one of a,b, and c is non-finite. The result // will be non-finite as well and will be the same // non-finite value under double as float arithmetic. return (float)fma((double)a, (double)b, (double)c); } } /** * Returns the size of an ulp of the argument. An ulp, unit in * the last place, of a {@code double} value is the positive * distance between this floating-point value and the {@code * double} value next larger in magnitude. Note that for non-NaN * x, ulp(-x) == ulp(x). * *

Special Cases: *

* * @param d the floating-point value whose ulp is to be returned * @return the size of an ulp of the argument * @author Joseph D. Darcy * @since 1.5 */ public static double ulp(double d) { int exp = getExponent(d); return switch(exp) { case Double.MAX_EXPONENT + 1 -> Math.abs(d); // NaN or infinity case Double.MIN_EXPONENT - 1 -> Double.MIN_VALUE; // zero or subnormal default -> { assert exp <= Double.MAX_EXPONENT && exp >= Double.MIN_EXPONENT; // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH - 1); if (exp >= Double.MIN_EXPONENT) { yield powerOfTwoD(exp); } else { // return a subnormal result; left shift integer // representation of Double.MIN_VALUE appropriate // number of positions yield Double.longBitsToDouble(1L << (exp - (Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH - 1)))); } } }; } /** * Returns the size of an ulp of the argument. An ulp, unit in * the last place, of a {@code float} value is the positive * distance between this floating-point value and the {@code * float} value next larger in magnitude. Note that for non-NaN * x, ulp(-x) == ulp(x). * *

Special Cases: *

* * @param f the floating-point value whose ulp is to be returned * @return the size of an ulp of the argument * @author Joseph D. Darcy * @since 1.5 */ public static float ulp(float f) { int exp = getExponent(f); return switch(exp) { case Float.MAX_EXPONENT + 1 -> Math.abs(f); // NaN or infinity case Float.MIN_EXPONENT - 1 -> Float.MIN_VALUE; // zero or subnormal default -> { assert exp <= Float.MAX_EXPONENT && exp >= Float.MIN_EXPONENT; // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) exp = exp - (FloatConsts.SIGNIFICAND_WIDTH - 1); if (exp >= Float.MIN_EXPONENT) { yield powerOfTwoF(exp); } else { // return a subnormal result; left shift integer // representation of FloatConsts.MIN_VALUE appropriate // number of positions yield Float.intBitsToFloat(1 << (exp - (Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH - 1)))); } } }; } /** * Returns the signum function of the argument; zero if the argument * is zero, 1.0 if the argument is greater than zero, -1.0 if the * argument is less than zero. * *

Special Cases: *

* * @param d the floating-point value whose signum is to be returned * @return the signum function of the argument * @author Joseph D. Darcy * @since 1.5 */ @IntrinsicCandidate public static double signum(double d) { // Android-changed: Optimize the compiled code by inlining 1.0d value. http://b/316160813 // return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d); if (d == 0.0 || Double.isNaN(d)) { return d; } else { return Double.longBitsToDouble((Double.doubleToRawLongBits(d) & DoubleConsts.SIGN_BIT_MASK) | 0x3FF0000000000000L); // 1.0d } } /** * Returns the signum function of the argument; zero if the argument * is zero, 1.0f if the argument is greater than zero, -1.0f if the * argument is less than zero. * *

Special Cases: *

* * @param f the floating-point value whose signum is to be returned * @return the signum function of the argument * @author Joseph D. Darcy * @since 1.5 */ @IntrinsicCandidate public static float signum(float f) { // Android-changed: Optimize the compiled code by inlining 1.0f value. http://b/316160813 // return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f); if (f == 0.0f || Float.isNaN(f)) { return f; } else { return Float.intBitsToFloat((Float.floatToRawIntBits(f) & FloatConsts.SIGN_BIT_MASK) | 0x3F800000); // 1.0f } } /** * Returns the hyperbolic sine of a {@code double} value. * The hyperbolic sine of x is defined to be * (ex - e-x)/2 * where e is {@linkplain Math#E Euler's number}. * *

Special cases: *

* *

The computed result must be within 2.5 ulps of the exact result. * * @param x The number whose hyperbolic sine is to be returned. * @return The hyperbolic sine of {@code x}. * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double sinh(double x) { return StrictMath.sinh(x); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double sinh(double x); /** * Returns the hyperbolic cosine of a {@code double} value. * The hyperbolic cosine of x is defined to be * (ex + e-x)/2 * where e is {@linkplain Math#E Euler's number}. * *

Special cases: *

* *

The computed result must be within 2.5 ulps of the exact result. * * @param x The number whose hyperbolic cosine is to be returned. * @return The hyperbolic cosine of {@code x}. * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double cosh(double x) { return StrictMath.cosh(x); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double cosh(double x); /** * Returns the hyperbolic tangent of a {@code double} value. * The hyperbolic tangent of x is defined to be * (ex - e-x)/(ex + e-x), * in other words, {@linkplain Math#sinh * sinh(x)}/{@linkplain Math#cosh cosh(x)}. Note * that the absolute value of the exact tanh is always less than * 1. * *

Special cases: *

* *

The computed result must be within 2.5 ulps of the exact result. * The result of {@code tanh} for any finite input must have * an absolute value less than or equal to 1. Note that once the * exact result of tanh is within 1/2 of an ulp of the limit value * of ±1, correctly signed ±{@code 1.0} should * be returned. * * @param x The number whose hyperbolic tangent is to be returned. * @return The hyperbolic tangent of {@code x}. * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double tanh(double x) { return StrictMath.tanh(x); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double tanh(double x); /** * Returns sqrt(x2 +y2) * without intermediate overflow or underflow. * *

Special cases: *

* *

The computed result must be within 1 ulp of the exact * result. If one parameter is held constant, the results must be * semi-monotonic in the other parameter. * * @param x a value * @param y a value * @return sqrt(x2 +y2) * without intermediate overflow or underflow * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double hypot(double x, double y) { return StrictMath.hypot(x, y); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double hypot(double x, double y); /** * Returns ex -1. Note that for values of * x near 0, the exact sum of * {@code expm1(x)} + 1 is much closer to the true * result of ex than {@code exp(x)}. * *

Special cases: *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. The result of * {@code expm1} for any finite input must be greater than or * equal to {@code -1.0}. Note that once the exact result of * e{@code x} - 1 is within 1/2 * ulp of the limit value -1, {@code -1.0} should be * returned. * * @param x the exponent to raise e to in the computation of * e{@code x} -1. * @return the value e{@code x} - 1. * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double expm1(double x) { return StrictMath.expm1(x); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double expm1(double x); /** * Returns the natural logarithm of the sum of the argument and 1. * Note that for small values {@code x}, the result of * {@code log1p(x)} is much closer to the true result of ln(1 * + {@code x}) than the floating-point evaluation of * {@code log(1.0+x)}. * *

Special cases: * *

* *

The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param x a value * @return the value ln({@code x} + 1), the natural * log of {@code x} + 1 * @since 1.5 */ // BEGIN Android-changed: Reimplement in native /* public static double log1p(double x) { return StrictMath.log1p(x); } */ // END Android-changed: Reimplement in native @CriticalNative public static native double log1p(double x); /** * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * StrictMath#copySign(double, double) StrictMath.copySign} * method, this method does not require NaN {@code sign} * arguments to be treated as positive values; implementations are * permitted to treat some NaN arguments as positive and other NaN * arguments as negative to allow greater performance. * * @apiNote * This method corresponds to the copySign operation defined in * IEEE 754. * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result * @return a value with the magnitude of {@code magnitude} * and the sign of {@code sign}. * @since 1.6 */ @IntrinsicCandidate public static double copySign(double magnitude, double sign) { return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) & (DoubleConsts.SIGN_BIT_MASK)) | (Double.doubleToRawLongBits(magnitude) & (DoubleConsts.EXP_BIT_MASK | DoubleConsts.SIGNIF_BIT_MASK))); } /** * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * StrictMath#copySign(float, float) StrictMath.copySign} * method, this method does not require NaN {@code sign} * arguments to be treated as positive values; implementations are * permitted to treat some NaN arguments as positive and other NaN * arguments as negative to allow greater performance. * * @apiNote * This method corresponds to the copySign operation defined in * IEEE 754. * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result * @return a value with the magnitude of {@code magnitude} * and the sign of {@code sign}. * @since 1.6 */ @IntrinsicCandidate public static float copySign(float magnitude, float sign) { return Float.intBitsToFloat((Float.floatToRawIntBits(sign) & (FloatConsts.SIGN_BIT_MASK)) | (Float.floatToRawIntBits(magnitude) & (FloatConsts.EXP_BIT_MASK | FloatConsts.SIGNIF_BIT_MASK))); } /** * Returns the unbiased exponent used in the representation of a * {@code float}. Special cases: * *

* @apiNote * This method is analogous to the logB operation defined in IEEE * 754, but returns a different value on subnormal arguments. * * @param f a {@code float} value * @return the unbiased exponent of the argument * @since 1.6 */ public static int getExponent(float f) { /* * Bitwise convert f to integer, mask out exponent bits, shift * to the right and then subtract out float's bias adjust to * get true exponent value */ return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >> (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS; } /** * Returns the unbiased exponent used in the representation of a * {@code double}. Special cases: * * * @apiNote * This method is analogous to the logB operation defined in IEEE * 754, but returns a different value on subnormal arguments. * * @param d a {@code double} value * @return the unbiased exponent of the argument * @since 1.6 */ public static int getExponent(double d) { /* * Bitwise convert d to long, mask out exponent bits, shift * to the right and then subtract out double's bias adjust to * get true exponent value. */ return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >> (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS); } /** * Returns the floating-point number adjacent to the first * argument in the direction of the second argument. If both * arguments compare as equal the second argument is returned. * *

* Special cases: *

* * @param start starting floating-point value * @param direction value indicating which of * {@code start}'s neighbors or {@code start} should * be returned * @return The floating-point number adjacent to {@code start} in the * direction of {@code direction}. * @since 1.6 */ public static double nextAfter(double start, double direction) { /* * The cases: * * nextAfter(+infinity, 0) == MAX_VALUE * nextAfter(+infinity, +infinity) == +infinity * nextAfter(-infinity, 0) == -MAX_VALUE * nextAfter(-infinity, -infinity) == -infinity * * are naturally handled without any additional testing */ /* * IEEE 754 floating-point numbers are lexicographically * ordered if treated as signed-magnitude integers. * Since Java's integers are two's complement, * incrementing the two's complement representation of a * logically negative floating-point value *decrements* * the signed-magnitude representation. Therefore, when * the integer representation of a floating-point value * is negative, the adjustment to the representation is in * the opposite direction from what would initially be expected. */ // Branch to descending case first as it is more costly than ascending // case due to start != 0.0d conditional. if (start > direction) { // descending if (start != 0.0d) { final long transducer = Double.doubleToRawLongBits(start); return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L)); } else { // start == 0.0d && direction < 0.0d return -Double.MIN_VALUE; } } else if (start < direction) { // ascending // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) // then bitwise convert start to integer. final long transducer = Double.doubleToRawLongBits(start + 0.0d); return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L)); } else if (start == direction) { return direction; } else { // isNaN(start) || isNaN(direction) return start + direction; } } /** * Returns the floating-point number adjacent to the first * argument in the direction of the second argument. If both * arguments compare as equal a value equivalent to the second argument * is returned. * *

* Special cases: *

* * @param start starting floating-point value * @param direction value indicating which of * {@code start}'s neighbors or {@code start} should * be returned * @return The floating-point number adjacent to {@code start} in the * direction of {@code direction}. * @since 1.6 */ public static float nextAfter(float start, double direction) { /* * The cases: * * nextAfter(+infinity, 0) == MAX_VALUE * nextAfter(+infinity, +infinity) == +infinity * nextAfter(-infinity, 0) == -MAX_VALUE * nextAfter(-infinity, -infinity) == -infinity * * are naturally handled without any additional testing */ /* * IEEE 754 floating-point numbers are lexicographically * ordered if treated as signed-magnitude integers. * Since Java's integers are two's complement, * incrementing the two's complement representation of a * logically negative floating-point value *decrements* * the signed-magnitude representation. Therefore, when * the integer representation of a floating-point value * is negative, the adjustment to the representation is in * the opposite direction from what would initially be expected. */ // Branch to descending case first as it is more costly than ascending // case due to start != 0.0f conditional. if (start > direction) { // descending if (start != 0.0f) { final int transducer = Float.floatToRawIntBits(start); return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1)); } else { // start == 0.0f && direction < 0.0f return -Float.MIN_VALUE; } } else if (start < direction) { // ascending // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) // then bitwise convert start to integer. final int transducer = Float.floatToRawIntBits(start + 0.0f); return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1)); } else if (start == direction) { return (float)direction; } else { // isNaN(start) || isNaN(direction) return start + (float)direction; } } /** * Returns the floating-point value adjacent to {@code d} in * the direction of positive infinity. This method is * semantically equivalent to {@code nextAfter(d, * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} * implementation may run faster than its equivalent * {@code nextAfter} call. * *

Special Cases: *

* * @apiNote This method corresponds to the nextUp * operation defined in IEEE 754. * * @param d starting floating-point value * @return The adjacent floating-point value closer to positive * infinity. * @since 1.6 */ public static double nextUp(double d) { // Use a single conditional and handle the likely cases first. if (d < Double.POSITIVE_INFINITY) { // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0). final long transducer = Double.doubleToRawLongBits(d + 0.0D); return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L)); } else { // d is NaN or +Infinity return d; } } /** * Returns the floating-point value adjacent to {@code f} in * the direction of positive infinity. This method is * semantically equivalent to {@code nextAfter(f, * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} * implementation may run faster than its equivalent * {@code nextAfter} call. * *

Special Cases: *

* * @apiNote This method corresponds to the nextUp * operation defined in IEEE 754. * * @param f starting floating-point value * @return The adjacent floating-point value closer to positive * infinity. * @since 1.6 */ public static float nextUp(float f) { // Use a single conditional and handle the likely cases first. if (f < Float.POSITIVE_INFINITY) { // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0). final int transducer = Float.floatToRawIntBits(f + 0.0F); return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1)); } else { // f is NaN or +Infinity return f; } } /** * Returns the floating-point value adjacent to {@code d} in * the direction of negative infinity. This method is * semantically equivalent to {@code nextAfter(d, * Double.NEGATIVE_INFINITY)}; however, a * {@code nextDown} implementation may run faster than its * equivalent {@code nextAfter} call. * *

Special Cases: *

* * @apiNote This method corresponds to the nextDown * operation defined in IEEE 754. * * @param d starting floating-point value * @return The adjacent floating-point value closer to negative * infinity. * @since 1.8 */ public static double nextDown(double d) { if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY) return d; else { if (d == 0.0) return -Double.MIN_VALUE; else return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + ((d > 0.0d)?-1L:+1L)); } } /** * Returns the floating-point value adjacent to {@code f} in * the direction of negative infinity. This method is * semantically equivalent to {@code nextAfter(f, * Float.NEGATIVE_INFINITY)}; however, a * {@code nextDown} implementation may run faster than its * equivalent {@code nextAfter} call. * *

Special Cases: *

* * @apiNote This method corresponds to the nextDown * operation defined in IEEE 754. * * @param f starting floating-point value * @return The adjacent floating-point value closer to negative * infinity. * @since 1.8 */ public static float nextDown(float f) { if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY) return f; else { if (f == 0.0f) return -Float.MIN_VALUE; else return Float.intBitsToFloat(Float.floatToRawIntBits(f) + ((f > 0.0f)?-1:+1)); } } /** * Returns {@code d} × 2{@code scaleFactor} * rounded as if performed by a single correctly rounded * floating-point multiply. If the exponent of the result is * between {@link Double#MIN_EXPONENT} and {@link * Double#MAX_EXPONENT}, the answer is calculated exactly. If the * exponent of the result would be larger than {@code * Double.MAX_EXPONENT}, an infinity is returned. Note that if * the result is subnormal, precision may be lost; that is, when * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n), * -n)} may not equal x. When the result is non-NaN, the * result has the same sign as {@code d}. * *

Special cases: *

* * @apiNote This method corresponds to the scaleB operation * defined in IEEE 754. * * @param d number to be scaled by a power of two. * @param scaleFactor power of 2 used to scale {@code d} * @return {@code d} × 2{@code scaleFactor} * @since 1.6 */ public static double scalb(double d, int scaleFactor) { /* * When scaling up, it does not matter what order the * multiply-store operations are done; the result will be * finite or overflow regardless of the operation ordering. * However, to get the correct result when scaling down, a * particular ordering must be used. * * When scaling down, the multiply-store operations are * sequenced so that it is not possible for two consecutive * multiply-stores to return subnormal results. If one * multiply-store result is subnormal, the next multiply will * round it away to zero. This is done by first multiplying * by 2 ^ (scaleFactor % n) and then multiplying several * times by 2^n as needed where n is the exponent of number * that is a convenient power of two. In this way, at most one * real rounding error occurs. */ // magnitude of a power of two so large that scaling a finite // nonzero value by it would be guaranteed to over or // underflow; due to rounding, scaling down takes an // additional power of two which is reflected here final int MAX_SCALE = Double.MAX_EXPONENT + -Double.MIN_EXPONENT + DoubleConsts.SIGNIFICAND_WIDTH + 1; int exp_adjust = 0; int scale_increment = 0; double exp_delta = Double.NaN; // Make sure scaling factor is in a reasonable range if(scaleFactor < 0) { scaleFactor = Math.max(scaleFactor, -MAX_SCALE); scale_increment = -512; exp_delta = twoToTheDoubleScaleDown; } else { scaleFactor = Math.min(scaleFactor, MAX_SCALE); scale_increment = 512; exp_delta = twoToTheDoubleScaleUp; } // Calculate (scaleFactor % +/-512), 512 = 2^9, using // technique from "Hacker's Delight" section 10-2. int t = (scaleFactor >> 9-1) >>> 32 - 9; exp_adjust = ((scaleFactor + t) & (512 -1)) - t; d *= powerOfTwoD(exp_adjust); scaleFactor -= exp_adjust; while(scaleFactor != 0) { d *= exp_delta; scaleFactor -= scale_increment; } return d; } /** * Returns {@code f} × 2{@code scaleFactor} * rounded as if performed by a single correctly rounded * floating-point multiply. If the exponent of the result is * between {@link Float#MIN_EXPONENT} and {@link * Float#MAX_EXPONENT}, the answer is calculated exactly. If the * exponent of the result would be larger than {@code * Float.MAX_EXPONENT}, an infinity is returned. Note that if the * result is subnormal, precision may be lost; that is, when * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n), * -n)} may not equal x. When the result is non-NaN, the * result has the same sign as {@code f}. * *

Special cases: *

* * @apiNote This method corresponds to the scaleB operation * defined in IEEE 754. * * @param f number to be scaled by a power of two. * @param scaleFactor power of 2 used to scale {@code f} * @return {@code f} × 2{@code scaleFactor} * @since 1.6 */ public static float scalb(float f, int scaleFactor) { // magnitude of a power of two so large that scaling a finite // nonzero value by it would be guaranteed to over or // underflow; due to rounding, scaling down takes an // additional power of two which is reflected here final int MAX_SCALE = Float.MAX_EXPONENT + -Float.MIN_EXPONENT + FloatConsts.SIGNIFICAND_WIDTH + 1; // Make sure scaling factor is in a reasonable range scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE); /* * Since + MAX_SCALE for float fits well within the double * exponent range and + float -> double conversion is exact * the multiplication below will be exact. Therefore, the * rounding that occurs when the double product is cast to * float will be the correctly rounded float result. */ return (float)((double)f*powerOfTwoD(scaleFactor)); } // Constants used in scalb static double twoToTheDoubleScaleUp = powerOfTwoD(512); static double twoToTheDoubleScaleDown = powerOfTwoD(-512); /** * Returns a floating-point power of two in the normal range. */ static double powerOfTwoD(int n) { assert(n >= Double.MIN_EXPONENT && n <= Double.MAX_EXPONENT); return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) << (DoubleConsts.SIGNIFICAND_WIDTH-1)) & DoubleConsts.EXP_BIT_MASK); } /** * Returns a floating-point power of two in the normal range. */ static float powerOfTwoF(int n) { assert(n >= Float.MIN_EXPONENT && n <= Float.MAX_EXPONENT); return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) << (FloatConsts.SIGNIFICAND_WIDTH-1)) & FloatConsts.EXP_BIT_MASK); } }