/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Josh Bloch of Google Inc. and released to the public domain, * as explained at http://creativecommons.org/publicdomain/zero/1.0/. */ package java.util; import java.io.Serializable; import java.util.function.Consumer; import java.util.function.Predicate; import jdk.internal.access.SharedSecrets; /** * Resizable-array implementation of the {@link Deque} interface. Array * deques have no capacity restrictions; they grow as necessary to support * usage. They are not thread-safe; in the absence of external * synchronization, they do not support concurrent access by multiple threads. * Null elements are prohibited. This class is likely to be faster than * {@link Stack} when used as a stack, and faster than {@link LinkedList} * when used as a queue. * *
Most {@code ArrayDeque} operations run in amortized constant time. * Exceptions include * {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, * {@link #removeLastOccurrence removeLastOccurrence}, * {@link #contains contains}, * {@link #iterator iterator.remove()}, * and the bulk operations, all of which run in linear time. * *
The iterators returned by this class's {@link #iterator() iterator} * method are fail-fast: If the deque is modified at any time after * the iterator is created, in any way except through the iterator's own * {@code remove} method, the iterator will generally throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *
Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *
This class and its iterator implement all of the optional methods of the * {@link Collection}, {@link SequencedCollection}, and {@link Iterator} interfaces. * *
This class is a member of the
*
* Java Collections Framework.
*
* @author Josh Bloch and Doug Lea
* @param This method is equivalent to {@link #add}.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addLast(E e) {
if (e == null)
throw new NullPointerException();
final Object[] es = elements;
es[tail] = e;
if (head == (tail = inc(tail, es.length)))
grow(1);
}
/**
* Adds all of the elements in the specified collection at the end
* of this deque, as if by calling {@link #addLast} on each one,
* in the order that they are returned by the collection's iterator.
*
* @param c the elements to be inserted into this deque
* @return {@code true} if this deque changed as a result of the call
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public boolean addAll(Collection extends E> c) {
final int s, needed;
if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
grow(needed);
copyElements(c);
return size() > s;
}
private void copyElements(Collection extends E> c) {
c.forEach(this::addLast);
}
/**
* Inserts the specified element at the front of this deque.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @throws NullPointerException if the specified element is null
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this deque.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Deque#offerLast})
* @throws NullPointerException if the specified element is null
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {
E e = pollFirst();
if (e == null)
throw new NoSuchElementException();
return e;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {
E e = pollLast();
if (e == null)
throw new NoSuchElementException();
return e;
}
public E pollFirst() {
final Object[] es;
final int h;
E e = elementAt(es = elements, h = head);
if (e != null) {
es[h] = null;
head = inc(h, es.length);
}
return e;
}
public E pollLast() {
final Object[] es;
final int t;
E e = elementAt(es = elements, t = dec(tail, es.length));
if (e != null)
es[tail = t] = null;
return e;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {
E e = elementAt(elements, head);
if (e == null)
throw new NoSuchElementException();
return e;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {
final Object[] es = elements;
E e = elementAt(es, dec(tail, es.length));
if (e == null)
throw new NoSuchElementException();
return e;
}
public E peekFirst() {
return elementAt(elements, head);
}
public E peekLast() {
final Object[] es;
return elementAt(es = elements, dec(tail, es.length));
}
/**
* Removes the first occurrence of the specified element in this
* deque (when traversing the deque from head to tail).
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
*/
public boolean removeFirstOccurrence(Object o) {
if (o != null) {
final Object[] es = elements;
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
; i = 0, to = end) {
for (; i < to; i++)
if (o.equals(es[i])) {
delete(i);
return true;
}
if (to == end) break;
}
}
return false;
}
/**
* Removes the last occurrence of the specified element in this
* deque (when traversing the deque from head to tail).
* If the deque does not contain the element, it is unchanged.
* More formally, removes the last element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
*/
public boolean removeLastOccurrence(Object o) {
if (o != null) {
final Object[] es = elements;
for (int i = tail, end = head, to = (i >= end) ? end : 0;
; i = es.length, to = end) {
for (i--; i > to - 1; i--)
if (o.equals(es[i])) {
delete(i);
return true;
}
if (to == end) break;
}
}
return false;
}
// *** Queue methods ***
/**
* Inserts the specified element at the end of this deque.
*
* This method is equivalent to {@link #addLast}.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
addLast(e);
return true;
}
/**
* Inserts the specified element at the end of this deque.
*
* This method is equivalent to {@link #offerLast}.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
return offerLast(e);
}
/**
* Retrieves and removes the head of the queue represented by this deque.
*
* This method differs from {@link #poll() poll()} only in that it
* throws an exception if this deque is empty.
*
* This method is equivalent to {@link #removeFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException {@inheritDoc}
*/
public E remove() {
return removeFirst();
}
/**
* Retrieves and removes the head of the queue represented by this deque
* (in other words, the first element of this deque), or returns
* {@code null} if this deque is empty.
*
* This method is equivalent to {@link #pollFirst}.
*
* @return the head of the queue represented by this deque, or
* {@code null} if this deque is empty
*/
public E poll() {
return pollFirst();
}
/**
* Retrieves, but does not remove, the head of the queue represented by
* this deque. This method differs from {@link #peek peek} only in
* that it throws an exception if this deque is empty.
*
* This method is equivalent to {@link #getFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException {@inheritDoc}
*/
public E element() {
return getFirst();
}
/**
* Retrieves, but does not remove, the head of the queue represented by
* this deque, or returns {@code null} if this deque is empty.
*
* This method is equivalent to {@link #peekFirst}.
*
* @return the head of the queue represented by this deque, or
* {@code null} if this deque is empty
*/
public E peek() {
return peekFirst();
}
// *** Stack methods ***
/**
* Pushes an element onto the stack represented by this deque. In other
* words, inserts the element at the front of this deque.
*
* This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @throws NullPointerException if the specified element is null
*/
public void push(E e) {
addFirst(e);
}
/**
* Pops an element from the stack represented by this deque. In other
* words, removes and returns the first element of this deque.
*
* This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this deque (which is the top
* of the stack represented by this deque)
* @throws NoSuchElementException {@inheritDoc}
*/
public E pop() {
return removeFirst();
}
/**
* Removes the element at the specified position in the elements array.
* This can result in forward or backwards motion of array elements.
* We optimize for least element motion.
*
* This method is called delete rather than remove to emphasize
* that its semantics differ from those of {@link List#remove(int)}.
*
* @return true if elements near tail moved backwards
*/
boolean delete(int i) {
final Object[] es = elements;
final int capacity = es.length;
final int h, t;
// number of elements before to-be-deleted elt
final int front = sub(i, h = head, capacity);
// number of elements after to-be-deleted elt
final int back = sub(t = tail, i, capacity) - 1;
if (front < back) {
// move front elements forwards
if (h <= i) {
System.arraycopy(es, h, es, h + 1, front);
} else { // Wrap around
System.arraycopy(es, 0, es, 1, i);
es[0] = es[capacity - 1];
System.arraycopy(es, h, es, h + 1, front - (i + 1));
}
es[h] = null;
head = inc(h, capacity);
return false;
} else {
// move back elements backwards
tail = dec(t, capacity);
if (i <= tail) {
System.arraycopy(es, i + 1, es, i, back);
} else { // Wrap around
System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
es[capacity - 1] = es[0];
System.arraycopy(es, 1, es, 0, t - 1);
}
es[tail] = null;
return true;
}
}
// *** Collection Methods ***
/**
* Returns the number of elements in this deque.
*
* @return the number of elements in this deque
*/
public int size() {
return sub(tail, head, elements.length);
}
/**
* Returns {@code true} if this deque contains no elements.
*
* @return {@code true} if this deque contains no elements
*/
public boolean isEmpty() {
return head == tail;
}
/**
* Returns an iterator over the elements in this deque. The elements
* will be ordered from first (head) to last (tail). This is the same
* order that elements would be dequeued (via successive calls to
* {@link #remove} or popped (via successive calls to {@link #pop}).
*
* @return an iterator over the elements in this deque
*/
public Iterator The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#NONNULL}. Overriding implementations should document
* the reporting of additional characteristic values.
*
* @return a {@code Spliterator} over the elements in this deque
* @since 1.8
*/
public Spliterator This method is equivalent to {@link #removeFirstOccurrence(Object)}.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if this deque contained the specified element
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
}
/**
* Removes all of the elements from this deque.
* The deque will be empty after this call returns.
*/
public void clear() {
circularClear(elements, head, tail);
head = tail = 0;
}
/**
* Nulls out slots starting at array index i, up to index end.
* Condition i == end means "empty" - nothing to do.
*/
private static void circularClear(Object[] es, int i, int end) {
// assert 0 <= i && i < es.length;
// assert 0 <= end && end < es.length;
for (int to = (i <= end) ? end : es.length;
; i = 0, to = end) {
for (; i < to; i++) es[i] = null;
if (to == end) break;
}
}
/**
* Returns an array containing all of the elements in this deque
* in proper sequence (from first to last element).
*
* The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
public Object[] toArray() {
return toArray(Object[].class);
}
private If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* {@code null}.
*
* Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of {@code String}:
*
* {@code String[] y = x.toArray(new String[0]);}
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public