/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import java.util.function.IntFunction; import java.util.function.Predicate; import java.util.stream.Stream; import java.util.stream.StreamSupport; /** * The root interface in the collection hierarchy. A collection * represents a group of objects, known as its elements. Some * collections allow duplicate elements and others do not. Some are ordered * and others unordered. The JDK does not provide any direct * implementations of this interface: it provides implementations of more * specific subinterfaces like {@code Set} and {@code List}. This interface * is typically used to pass collections around and manipulate them where * maximum generality is desired. * *
Bags or multisets (unordered collections that may contain * duplicate elements) should implement this interface directly. * *
All general-purpose {@code Collection} implementation classes (which * typically implement {@code Collection} indirectly through one of its * subinterfaces) should provide two "standard" constructors: a void (no * arguments) constructor, which creates an empty collection, and a * constructor with a single argument of type {@code Collection}, which * creates a new collection with the same elements as its argument. In * effect, the latter constructor allows the user to copy any collection, * producing an equivalent collection of the desired implementation type. * There is no way to enforce this convention (as interfaces cannot contain * constructors) but all of the general-purpose {@code Collection} * implementations in the Java platform libraries comply. * *
Certain methods are specified to be * optional. If a collection implementation doesn't implement a * particular operation, it should define the corresponding method to throw * {@code UnsupportedOperationException}. Such methods are marked "optional * operation" in method specifications of the collections interfaces. * *
Some collection implementations * have restrictions on the elements that they may contain. * For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements. Attempting to * add an ineligible element throws an unchecked exception, typically * {@code NullPointerException} or {@code ClassCastException}. Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter. More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the collection may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *
It is up to each collection to determine its own synchronization * policy. In the absence of a stronger guarantee by the * implementation, undefined behavior may result from the invocation * of any method on a collection that is being mutated by another * thread; this includes direct invocations, passing the collection to * a method that might perform invocations, and using an existing * iterator to examine the collection. * *
Many methods in Collections Framework interfaces are defined in * terms of the {@link Object#equals(Object) equals} method. For example, * the specification for the {@link #contains(Object) contains(Object o)} * method says: "returns {@code true} if and only if this collection * contains at least one element {@code e} such that * {@code (o==null ? e==null : o.equals(e))}." This specification should * not be construed to imply that invoking {@code Collection.contains} * with a non-null argument {@code o} will cause {@code o.equals(e)} to be * invoked for any element {@code e}. Implementations are free to implement * optimizations whereby the {@code equals} invocation is avoided, for * example, by first comparing the hash codes of the two elements. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * *
Some collection operations which perform recursive traversal of the * collection may fail with an exception for self-referential instances where * the collection directly or indirectly contains itself. This includes the * {@code clone()}, {@code equals()}, {@code hashCode()} and {@code toString()} * methods. Implementations may optionally handle the self-referential scenario, * however most current implementations do not do so. * *
Most collections manage storage for elements they contain. By contrast, view * collections themselves do not store elements, but instead they rely on a * backing collection to store the actual elements. Operations that are not handled * by the view collection itself are delegated to the backing collection. Examples of * view collections include the wrapper collections returned by methods such as * {@link Collections#checkedCollection Collections.checkedCollection}, * {@link Collections#synchronizedCollection Collections.synchronizedCollection}, and * {@link Collections#unmodifiableCollection Collections.unmodifiableCollection}. * Other examples of view collections include collections that provide a * different representation of the same elements, for example, as * provided by {@link List#subList List.subList}, * {@link NavigableSet#subSet NavigableSet.subSet}, or * {@link Map#entrySet Map.entrySet}. * Any changes made to the backing collection are visible in the view collection. * Correspondingly, any changes made to the view collection — if changes * are permitted — are written through to the backing collection. * Although they technically aren't collections, instances of * {@link Iterator} and {@link ListIterator} can also allow modifications * to be written through to the backing collection, and in some cases, * modifications to the backing collection will be visible to the Iterator * during iteration. * *
Certain methods of this interface are considered "destructive" and are called * "mutator" methods in that they modify the group of objects contained within * the collection on which they operate. They can be specified to throw * {@code UnsupportedOperationException} if this collection implementation * does not support the operation. Such methods should (but are not required * to) throw an {@code UnsupportedOperationException} if the invocation would * have no effect on the collection. For example, consider a collection that * does not support the {@link #add add} operation. What will happen if the * {@link #addAll addAll} method is invoked on this collection, with an empty * collection as the argument? The addition of zero elements has no effect, * so it is permissible for this collection simply to do nothing and not to throw * an exception. However, it is recommended that such cases throw an exception * unconditionally, as throwing only in certain cases can lead to * programming errors. * *
An unmodifiable collection is a collection, all of whose * mutator methods (as defined above) are specified to throw * {@code UnsupportedOperationException}. Such a collection thus cannot be * modified by calling any methods on it. For a collection to be properly * unmodifiable, any view collections derived from it must also be unmodifiable. * For example, if a List is unmodifiable, the List returned by * {@link List#subList List.subList} is also unmodifiable. * *
An unmodifiable collection is not necessarily immutable. If the * contained elements are mutable, the entire collection is clearly * mutable, even though it might be unmodifiable. For example, consider * two unmodifiable lists containing mutable elements. The result of calling * {@code list1.equals(list2)} might differ from one call to the next if * the elements had been mutated, even though both lists are unmodifiable. * However, if an unmodifiable collection contains all immutable elements, * it can be considered effectively immutable. * *
An unmodifiable view collection is a collection that is unmodifiable * and that is also a view onto a backing collection. Its mutator methods throw * {@code UnsupportedOperationException}, as described above, while * reading and querying methods are delegated to the backing collection. * The effect is to provide read-only access to the backing collection. * This is useful for a component to provide users with read access to * an internal collection, while preventing them from modifying such * collections unexpectedly. Examples of unmodifiable view collections * are those returned by the * {@link Collections#unmodifiableCollection Collections.unmodifiableCollection}, * {@link Collections#unmodifiableList Collections.unmodifiableList}, and * related methods. * *
Note that changes to the backing collection might still be possible, * and if they occur, they are visible through the unmodifiable view. Thus, * an unmodifiable view collection is not necessarily immutable. However, * if the backing collection of an unmodifiable view is effectively immutable, * or if the only reference to the backing collection is through an * unmodifiable view, the view can be considered effectively immutable. * *
Serializability of collections is optional. As such, none of the collections * interfaces are declared to implement the {@link java.io.Serializable} interface. * However, serializability is regarded as being generally useful, so most collection * implementations are serializable. * *
The collection implementations that are public classes (such as {@code ArrayList} * or {@code HashMap}) are declared to implement the {@code Serializable} interface if they * are in fact serializable. Some collections implementations are not public classes, * such as the unmodifiable collections. In such cases, the * serializability of such collections is described in the specification of the method * that creates them, or in some other suitable place. In cases where the serializability * of a collection is not specified, there is no guarantee about the serializability of such * collections. In particular, many view collections are not serializable. * *
A collection implementation that implements the {@code Serializable} interface cannot
* be guaranteed to be serializable. The reason is that in general, collections
* contain elements of other types, and it is not possible to determine statically
* whether instances of some element type are actually serializable. For example, consider
* a serializable {@code Collection An additional case occurs with instances of {@link SortedSet} and {@link SortedMap}.
* These collections can be created with a {@link Comparator} that imposes an ordering on
* the set elements or map keys. Such a collection is serializable only if the provided
* {@code Comparator} is also serializable.
*
* This interface is a member of the
*
* Java Collections Framework.
*
* @implSpec
* The default method implementations (inherited or otherwise) do not apply any
* synchronization protocol. If a {@code Collection} implementation has a
* specific synchronization protocol, then it must override default
* implementations to apply that protocol.
*
* @param The returned array will be "safe" in that no references to it are
* maintained by this collection. (In other words, this method must
* allocate a new array even if this collection is backed by an array).
* The caller is thus free to modify the returned array.
*
* @apiNote
* This method acts as a bridge between array-based and collection-based APIs.
* It returns an array whose runtime type is {@code Object[]}.
* Use {@link #toArray(Object[]) toArray(T[])} to reuse an existing
* array, or use {@link #toArray(IntFunction)} to control the runtime type
* of the array.
*
* @return an array, whose {@linkplain Class#getComponentType runtime component
* type} is {@code Object}, containing all of the elements in this collection
*/
Object[] toArray();
/**
* Returns an array containing all of the elements in this collection;
* the runtime type of the returned array is that of the specified array.
* If the collection fits in the specified array, it is returned therein.
* Otherwise, a new array is allocated with the runtime type of the
* specified array and the size of this collection.
*
* If this collection fits in the specified array with room to spare
* (i.e., the array has more elements than this collection), the element
* in the array immediately following the end of the collection is set to
* {@code null}. (This is useful in determining the length of this
* collection only if the caller knows that this collection does
* not contain any {@code null} elements.)
*
* If this collection makes any guarantees as to what order its elements
* are returned by its iterator, this method must return the elements in
* the same order.
*
* @apiNote
* This method acts as a bridge between array-based and collection-based APIs.
* It allows an existing array to be reused under certain circumstances.
* Use {@link #toArray()} to create an array whose runtime type is {@code Object[]},
* or use {@link #toArray(IntFunction)} to control the runtime type of
* the array.
*
* Suppose {@code x} is a collection known to contain only strings.
* The following code can be used to dump the collection into a previously
* allocated {@code String} array:
*
* The return value is reassigned to the variable {@code y}, because a
* new array will be allocated and returned if the collection {@code x} has
* too many elements to fit into the existing array {@code y}.
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param If this collection makes any guarantees as to what order its elements
* are returned by its iterator, this method must return the elements in
* the same order.
*
* @apiNote
* This method acts as a bridge between array-based and collection-based APIs.
* It allows creation of an array of a particular runtime type. Use
* {@link #toArray()} to create an array whose runtime type is {@code Object[]},
* or use {@link #toArray(Object[]) toArray(T[])} to reuse an existing array.
*
* Suppose {@code x} is a collection known to contain only strings.
* The following code can be used to dump the collection into a newly
* allocated array of {@code String}:
*
*
*
* Collections that support this operation may place limitations on what
* elements may be added to this collection. In particular, some
* collections will refuse to add {@code null} elements, and others will
* impose restrictions on the type of elements that may be added.
* Collection classes should clearly specify in their documentation any
* restrictions on what elements may be added.
*
* If a collection refuses to add a particular element for any reason
* other than that it already contains the element, it must throw
* an exception (rather than returning {@code false}). This preserves
* the invariant that a collection always contains the specified element
* after this call returns.
*
* @param e element whose presence in this collection is to be ensured
* @return {@code true} if this collection changed as a result of the
* call
* @throws UnsupportedOperationException if the {@code add} operation
* is not supported by this collection
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this collection
* @throws NullPointerException if the specified element is null and this
* collection does not permit null elements
* @throws IllegalArgumentException if some property of the element
* prevents it from being added to this collection
* @throws IllegalStateException if the element cannot be added at this
* time due to insertion restrictions
*/
boolean add(E e);
/**
* Removes a single instance of the specified element from this
* collection, if it is present (optional operation). More formally,
* removes an element {@code e} such that
* {@code Objects.equals(o, e)}, if
* this collection contains one or more such elements. Returns
* {@code true} if this collection contained the specified element (or
* equivalently, if this collection changed as a result of the call).
*
* @param o element to be removed from this collection, if present
* @return {@code true} if an element was removed as a result of this call
* @throws ClassCastException if the type of the specified element
* is incompatible with this collection
* (optional)
* @throws NullPointerException if the specified element is null and this
* collection does not permit null elements
* (optional)
* @throws UnsupportedOperationException if the remove operation
* is not supported by this collection
*/
boolean remove(Object o);
// Bulk Operations
/**
* Returns {@code true} if this collection contains all of the elements
* in the specified collection.
*
* @param c collection to be checked for containment in this collection
* @return {@code true} if this collection contains all of the elements
* in the specified collection
* @throws ClassCastException if the types of one or more elements
* in the specified collection are incompatible with this
* collection
* (optional)
* @throws NullPointerException if the specified collection contains one
* or more null elements and this collection does not permit null
* elements
* (optional),
* or if the specified collection is null.
* @see #contains(Object)
*/
boolean containsAll(Collection> c);
/**
* Adds all of the elements in the specified collection to this collection
* (optional operation). The behavior of this operation is undefined if
* the specified collection is modified while the operation is in progress.
* (This implies that the behavior of this call is undefined if the
* specified collection is this collection, and this collection is
* nonempty.)
*
* @param c collection containing elements to be added to this collection
* @return {@code true} if this collection changed as a result of the call
* @throws UnsupportedOperationException if the {@code addAll} operation
* is not supported by this collection
* @throws ClassCastException if the class of an element of the specified
* collection prevents it from being added to this collection
* @throws NullPointerException if the specified collection contains a
* null element and this collection does not permit null elements,
* or if the specified collection is null
* @throws IllegalArgumentException if some property of an element of the
* specified collection prevents it from being added to this
* collection
* @throws IllegalStateException if not all the elements can be added at
* this time due to insertion restrictions
* @see #add(Object)
*/
boolean addAll(Collection extends E> c);
/**
* Removes all of this collection's elements that are also contained in the
* specified collection (optional operation). After this call returns,
* this collection will contain no elements in common with the specified
* collection.
*
* @param c collection containing elements to be removed from this collection
* @return {@code true} if this collection changed as a result of the
* call
* @throws UnsupportedOperationException if the {@code removeAll} method
* is not supported by this collection
* @throws ClassCastException if the types of one or more elements
* in this collection are incompatible with the specified
* collection
* (optional)
* @throws NullPointerException if this collection contains one or more
* null elements and the specified collection does not support
* null elements
* (optional),
* or if the specified collection is null
* @see #remove(Object)
* @see #contains(Object)
*/
boolean removeAll(Collection> c);
/**
* Removes all of the elements of this collection that satisfy the given
* predicate. Errors or runtime exceptions thrown during iteration or by
* the predicate are relayed to the caller.
*
* @implSpec
* The default implementation traverses all elements of the collection using
* its {@link #iterator}. Each matching element is removed using
* {@link Iterator#remove()}. If the collection's iterator does not
* support removal then an {@code UnsupportedOperationException} will be
* thrown on the first matching element.
*
* @param filter a predicate which returns {@code true} for elements to be
* removed
* @return {@code true} if any elements were removed
* @throws NullPointerException if the specified filter is null
* @throws UnsupportedOperationException if elements cannot be removed
* from this collection. Implementations may throw this exception if a
* matching element cannot be removed or if, in general, removal is not
* supported.
* @since 1.8
*/
default boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter);
boolean removed = false;
final Iterator
*
* While the {@code Collection} interface adds no stipulations to the
* general contract for the {@code Object.equals}, programmers who
* implement the {@code Collection} interface "directly" (in other words,
* create a class that is a {@code Collection} but is not a {@code Set}
* or a {@code List}) must exercise care if they choose to override the
* {@code Object.equals}. It is not necessary to do so, and the simplest
* course of action is to rely on {@code Object}'s implementation, but
* the implementor may wish to implement a "value comparison" in place of
* the default "reference comparison." (The {@code List} and
* {@code Set} interfaces mandate such value comparisons.)
*
* The general contract for the {@code Object.equals} method states that
* equals must be symmetric (in other words, {@code a.equals(b)} if and
* only if {@code b.equals(a)}). The contracts for {@code List.equals}
* and {@code Set.equals} state that lists are only equal to other lists,
* and sets to other sets. Thus, a custom {@code equals} method for a
* collection class that implements neither the {@code List} nor
* {@code Set} interface must return {@code false} when this collection
* is compared to any list or set. (By the same logic, it is not possible
* to write a class that correctly implements both the {@code Set} and
* {@code List} interfaces.)
*
* @param o object to be compared for equality with this collection
* @return {@code true} if the specified object is equal to this
* collection
*
* @see Object#equals(Object)
* @see Set#equals(Object)
* @see List#equals(Object)
*/
boolean equals(Object o);
/**
* Returns the hash code value for this collection. While the
* {@code Collection} interface adds no stipulations to the general
* contract for the {@code Object.hashCode} method, programmers should
* take note that any class that overrides the {@code Object.equals}
* method must also override the {@code Object.hashCode} method in order
* to satisfy the general contract for the {@code Object.hashCode} method.
* In particular, {@code c1.equals(c2)} implies that
* {@code c1.hashCode()==c2.hashCode()}.
*
* @return the hash code value for this collection
*
* @see Object#hashCode()
* @see Object#equals(Object)
*/
int hashCode();
/**
* Creates a {@link Spliterator} over the elements in this collection.
*
* Implementations should document characteristic values reported by the
* spliterator. Such characteristic values are not required to be reported
* if the spliterator reports {@link Spliterator#SIZED} and this collection
* contains no elements.
*
* The default implementation should be overridden by subclasses that
* can return a more efficient spliterator. In order to
* preserve expected laziness behavior for the {@link #stream()} and
* {@link #parallelStream()} methods, spliterators should either have the
* characteristic of {@code IMMUTABLE} or {@code CONCURRENT}, or be
* late-binding.
* If none of these is practical, the overriding class should describe the
* spliterator's documented policy of binding and structural interference,
* and should override the {@link #stream()} and {@link #parallelStream()}
* methods to create streams using a {@code Supplier} of the spliterator,
* as in:
* These requirements ensure that streams produced by the
* {@link #stream()} and {@link #parallelStream()} methods will reflect the
* contents of the collection as of initiation of the terminal stream
* operation.
*
* @implSpec
* The default implementation creates a
* late-binding spliterator
* from the collection's {@code Iterator}. The spliterator inherits the
* fail-fast properties of the collection's iterator.
*
* The created {@code Spliterator} reports {@link Spliterator#SIZED}.
*
* @implNote
* The created {@code Spliterator} additionally reports
* {@link Spliterator#SUBSIZED}.
*
* If a spliterator covers no elements then the reporting of additional
* characteristic values, beyond that of {@code SIZED} and {@code SUBSIZED},
* does not aid clients to control, specialize or simplify computation.
* However, this does enable shared use of an immutable and empty
* spliterator instance (see {@link Spliterators#emptySpliterator()}) for
* empty collections, and enables clients to determine if such a spliterator
* covers no elements.
*
* @return a {@code Spliterator} over the elements in this collection
* @since 1.8
*/
@Override
default Spliterator This method should be overridden when the {@link #spliterator()}
* method cannot return a spliterator that is {@code IMMUTABLE},
* {@code CONCURRENT}, or late-binding. (See {@link #spliterator()}
* for details.)
*
* @implSpec
* The default implementation creates a sequential {@code Stream} from the
* collection's {@code Spliterator}.
*
* @return a sequential {@code Stream} over the elements in this collection
* @since 1.8
*/
default Stream This method should be overridden when the {@link #spliterator()}
* method cannot return a spliterator that is {@code IMMUTABLE},
* {@code CONCURRENT}, or late-binding. (See {@link #spliterator()}
* for details.)
*
* @implSpec
* The default implementation creates a parallel {@code Stream} from the
* collection's {@code Spliterator}.
*
* @return a possibly parallel {@code Stream} over the elements in this
* collection
* @since 1.8
*/
default Stream
* String[] y = new String[SIZE];
* ...
* y = x.toArray(y);
*
*
* String[] y = x.toArray(String[]::new);
*
* @implSpec
* The default implementation calls the generator function with zero
* and then passes the resulting array to {@link #toArray(Object[]) toArray(T[])}.
*
* @param {@code
* Stream
*