/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.io.Serializable; import java.lang.invoke.MethodHandles; import java.lang.invoke.VarHandle; import java.lang.reflect.Constructor; import java.util.Collection; import java.util.List; import java.util.RandomAccess; import java.util.concurrent.locks.LockSupport; // BEGIN android-note // removed java 9 code // END android-note /** * Abstract base class for tasks that run within a {@link ForkJoinPool}. * A {@code ForkJoinTask} is a thread-like entity that is much * lighter weight than a normal thread. Huge numbers of tasks and * subtasks may be hosted by a small number of actual threads in a * ForkJoinPool, at the price of some usage limitations. * *
A "main" {@code ForkJoinTask} begins execution when it is * explicitly submitted to a {@link ForkJoinPool}, or, if not already * engaged in a ForkJoin computation, commenced in the {@link * ForkJoinPool#commonPool()} via {@link #fork}, {@link #invoke}, or * related methods. Once started, it will usually in turn start other * subtasks. As indicated by the name of this class, many programs * using {@code ForkJoinTask} employ only methods {@link #fork} and * {@link #join}, or derivatives such as {@link * #invokeAll(ForkJoinTask...) invokeAll}. However, this class also * provides a number of other methods that can come into play in * advanced usages, as well as extension mechanics that allow support * of new forms of fork/join processing. * *
A {@code ForkJoinTask} is a lightweight form of {@link Future}. * The efficiency of {@code ForkJoinTask}s stems from a set of * restrictions (that are only partially statically enforceable) * reflecting their main use as computational tasks calculating pure * functions or operating on purely isolated objects. The primary * coordination mechanisms are {@link #fork}, that arranges * asynchronous execution, and {@link #join}, that doesn't proceed * until the task's result has been computed. Computations should * ideally avoid {@code synchronized} methods or blocks, and should * minimize other blocking synchronization apart from joining other * tasks or using synchronizers such as Phasers that are advertised to * cooperate with fork/join scheduling. Subdividable tasks should also * not perform blocking I/O, and should ideally access variables that * are completely independent of those accessed by other running * tasks. These guidelines are loosely enforced by not permitting * checked exceptions such as {@code IOExceptions} to be * thrown. However, computations may still encounter unchecked * exceptions, that are rethrown to callers attempting to join * them. These exceptions may additionally include {@link * RejectedExecutionException} stemming from internal resource * exhaustion, such as failure to allocate internal task * queues. Rethrown exceptions behave in the same way as regular * exceptions, but, when possible, contain stack traces (as displayed * for example using {@code ex.printStackTrace()}) of both the thread * that initiated the computation as well as the thread actually * encountering the exception; minimally only the latter. * *
It is possible to define and use ForkJoinTasks that may block, * but doing so requires three further considerations: (1) Completion * of few if any other tasks should be dependent on a task * that blocks on external synchronization or I/O. Event-style async * tasks that are never joined (for example, those subclassing {@link * CountedCompleter}) often fall into this category. (2) To minimize * resource impact, tasks should be small; ideally performing only the * (possibly) blocking action. (3) Unless the {@link * ForkJoinPool.ManagedBlocker} API is used, or the number of possibly * blocked tasks is known to be less than the pool's {@link * ForkJoinPool#getParallelism} level, the pool cannot guarantee that * enough threads will be available to ensure progress or good * performance. * *
The primary method for awaiting completion and extracting * results of a task is {@link #join}, but there are several variants: * The {@link Future#get} methods support interruptible and/or timed * waits for completion and report results using {@code Future} * conventions. Method {@link #invoke} is semantically * equivalent to {@code fork(); join()} but always attempts to begin * execution in the current thread. The "quiet" forms of * these methods do not extract results or report exceptions. These * may be useful when a set of tasks are being executed, and you need * to delay processing of results or exceptions until all complete. * Method {@code invokeAll} (available in multiple versions) * performs the most common form of parallel invocation: forking a set * of tasks and joining them all. * *
In the most typical usages, a fork-join pair act like a call * (fork) and return (join) from a parallel recursive function. As is * the case with other forms of recursive calls, returns (joins) * should be performed innermost-first. For example, {@code a.fork(); * b.fork(); b.join(); a.join();} is likely to be substantially more * efficient than joining {@code a} before {@code b}. * *
The execution status of tasks may be queried at several levels * of detail: {@link #isDone} is true if a task completed in any way * (including the case where a task was cancelled without executing); * {@link #isCompletedNormally} is true if a task completed without * cancellation or encountering an exception; {@link #isCancelled} is * true if the task was cancelled (in which case {@link #getException} * returns a {@link CancellationException}); and * {@link #isCompletedAbnormally} is true if a task was either * cancelled or encountered an exception, in which case {@link * #getException} will return either the encountered exception or * {@link CancellationException}. * *
The ForkJoinTask class is not usually directly subclassed. * Instead, you subclass one of the abstract classes that support a * particular style of fork/join processing, typically {@link * RecursiveAction} for most computations that do not return results, * {@link RecursiveTask} for those that do, and {@link * CountedCompleter} for those in which completed actions trigger * other actions. Normally, a concrete ForkJoinTask subclass declares * fields comprising its parameters, established in a constructor, and * then defines a {@code compute} method that somehow uses the control * methods supplied by this base class. * *
Method {@link #join} and its variants are appropriate for use * only when completion dependencies are acyclic; that is, the * parallel computation can be described as a directed acyclic graph * (DAG). Otherwise, executions may encounter a form of deadlock as * tasks cyclically wait for each other. However, this framework * supports other methods and techniques (for example the use of * {@link Phaser}, {@link #helpQuiesce}, and {@link #complete}) that * may be of use in constructing custom subclasses for problems that * are not statically structured as DAGs. To support such usages, a * ForkJoinTask may be atomically tagged with a {@code short} * value using {@link #setForkJoinTaskTag} or {@link * #compareAndSetForkJoinTaskTag} and checked using {@link * #getForkJoinTaskTag}. The ForkJoinTask implementation does not use * these {@code protected} methods or tags for any purpose, but they * may be of use in the construction of specialized subclasses. For * example, parallel graph traversals can use the supplied methods to * avoid revisiting nodes/tasks that have already been processed. * (Method names for tagging are bulky in part to encourage definition * of methods that reflect their usage patterns.) * *
Most base support methods are {@code final}, to prevent * overriding of implementations that are intrinsically tied to the * underlying lightweight task scheduling framework. Developers * creating new basic styles of fork/join processing should minimally * implement {@code protected} methods {@link #exec}, {@link * #setRawResult}, and {@link #getRawResult}, while also introducing * an abstract computational method that can be implemented in its * subclasses, possibly relying on other {@code protected} methods * provided by this class. * *
ForkJoinTasks should perform relatively small amounts of * computation. Large tasks should be split into smaller subtasks, * usually via recursive decomposition. As a very rough rule of thumb, * a task should perform more than 100 and less than 10000 basic * computational steps, and should avoid indefinite looping. If tasks * are too big, then parallelism cannot improve throughput. If too * small, then memory and internal task maintenance overhead may * overwhelm processing. * *
This class provides {@code adapt} methods for {@link Runnable} * and {@link Callable}, that may be of use when mixing execution of * {@code ForkJoinTasks} with other kinds of tasks. When all tasks are * of this form, consider using a pool constructed in asyncMode. * *
ForkJoinTasks are {@code Serializable}, which enables them to be
* used in extensions such as remote execution frameworks. It is
* sensible to serialize tasks only before or after, but not during,
* execution. Serialization is not relied on during execution itself.
*
* @since 1.7
* @author Doug Lea
*/
public abstract class ForkJoinTask This method may be overridden in subclasses, but if so, must
* still ensure that these properties hold. In particular, the
* {@code cancel} method itself must not throw exceptions.
*
* This method is designed to be invoked by other
* tasks. To terminate the current task, you can just return or
* throw an unchecked exception from its computation method, or
* invoke {@link #completeExceptionally(Throwable)}.
*
* @param mayInterruptIfRunning this value has no effect in the
* default implementation because interrupts are not used to
* control cancellation.
*
* @return {@code true} if this task is now cancelled
*/
public boolean cancel(boolean mayInterruptIfRunning) {
return (trySetCancelled() & (ABNORMAL | THROWN)) == ABNORMAL;
}
public final boolean isDone() {
return status < 0;
}
public final boolean isCancelled() {
return (status & (ABNORMAL | THROWN)) == ABNORMAL;
}
/**
* Returns {@code true} if this task threw an exception or was cancelled.
*
* @return {@code true} if this task threw an exception or was cancelled
*/
public final boolean isCompletedAbnormally() {
return (status & ABNORMAL) != 0;
}
/**
* Returns {@code true} if this task completed without throwing an
* exception and was not cancelled.
*
* @return {@code true} if this task completed without throwing an
* exception and was not cancelled
*/
public final boolean isCompletedNormally() {
return (status & (DONE | ABNORMAL)) == DONE;
}
/**
* Returns the exception thrown by the base computation, or a
* {@code CancellationException} if cancelled, or {@code null} if
* none or if the method has not yet completed.
*
* @return the exception, or {@code null} if none
*/
public final Throwable getException() {
return getException(status);
}
/**
* Completes this task abnormally, and if not already aborted or
* cancelled, causes it to throw the given exception upon
* {@code join} and related operations. This method may be used
* to induce exceptions in asynchronous tasks, or to force
* completion of tasks that would not otherwise complete. Its use
* in other situations is discouraged. This method is
* overridable, but overridden versions must invoke {@code super}
* implementation to maintain guarantees.
*
* @param ex the exception to throw. If this exception is not a
* {@code RuntimeException} or {@code Error}, the actual exception
* thrown will be a {@code RuntimeException} with cause {@code ex}.
*/
public void completeExceptionally(Throwable ex) {
trySetException((ex instanceof RuntimeException) ||
(ex instanceof Error) ? ex :
new RuntimeException(ex));
}
/**
* Completes this task, and if not already aborted or cancelled,
* returning the given value as the result of subsequent
* invocations of {@code join} and related operations. This method
* may be used to provide results for asynchronous tasks, or to
* provide alternative handling for tasks that would not otherwise
* complete normally. Its use in other situations is
* discouraged. This method is overridable, but overridden
* versions must invoke {@code super} implementation to maintain
* guarantees.
*
* @param value the result value for this task
*/
public void complete(V value) {
try {
setRawResult(value);
} catch (Throwable rex) {
trySetException(rex);
return;
}
setDone();
}
/**
* Completes this task normally without setting a value. The most
* recent value established by {@link #setRawResult} (or {@code
* null} by default) will be returned as the result of subsequent
* invocations of {@code join} and related operations.
*
* @since 1.8
*/
public final void quietlyComplete() {
setDone();
}
/**
* Waits if necessary for the computation to complete, and then
* retrieves its result.
*
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread is not a
* member of a ForkJoinPool and was interrupted while waiting
*/
public final V get() throws InterruptedException, ExecutionException {
int s = awaitDone(null, false, true, false, 0L);
if ((s & ABNORMAL) != 0)
reportExecutionException(s);
return getRawResult();
}
/**
* Waits if necessary for at most the given time for the computation
* to complete, and then retrieves its result, if available.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread is not a
* member of a ForkJoinPool and was interrupted while waiting
* @throws TimeoutException if the wait timed out
*/
public final V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
long nanos = unit.toNanos(timeout);
int s = awaitDone(null, false, true, true, nanos);
if (s >= 0 || (s & ABNORMAL) != 0)
reportExecutionException(s);
return getRawResult();
}
/**
* Joins this task, without returning its result or throwing its
* exception. This method may be useful when processing
* collections of tasks when some have been cancelled or otherwise
* known to have aborted.
*/
public final void quietlyJoin() {
if (status >= 0)
awaitDone(null, false, false, false, 0L);
}
/**
* Commences performing this task and awaits its completion if
* necessary, without returning its result or throwing its
* exception.
*/
public final void quietlyInvoke() {
if (doExec() >= 0)
awaitDone(null, true, false, false, 0L);
}
// Versions of join/get for pool.invoke* methods that use external,
// possibly-non-commonPool submits
final void awaitPoolInvoke(ForkJoinPool pool) {
awaitDone(pool, false, false, false, 0L);
}
final void awaitPoolInvoke(ForkJoinPool pool, long nanos) {
awaitDone(pool, false, true, true, nanos);
}
final V joinForPoolInvoke(ForkJoinPool pool) {
int s = awaitDone(pool, false, false, false, 0L);
if ((s & ABNORMAL) != 0)
reportException(s);
return getRawResult();
}
final V getForPoolInvoke(ForkJoinPool pool)
throws InterruptedException, ExecutionException {
int s = awaitDone(pool, false, true, false, 0L);
if ((s & ABNORMAL) != 0)
reportExecutionException(s);
return getRawResult();
}
final V getForPoolInvoke(ForkJoinPool pool, long nanos)
throws InterruptedException, ExecutionException, TimeoutException {
int s = awaitDone(pool, false, true, true, nanos);
if (s >= 0 || (s & ABNORMAL) != 0)
reportExecutionException(s);
return getRawResult();
}
/**
* Possibly executes tasks until the pool hosting the current task
* {@linkplain ForkJoinPool#isQuiescent is quiescent}. This
* method may be of use in designs in which many tasks are forked,
* but none are explicitly joined, instead executing them until
* all are processed.
*/
public static void helpQuiesce() {
Thread t; ForkJoinWorkerThread w; ForkJoinPool p;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
(p = (w = (ForkJoinWorkerThread)t).pool) != null)
p.helpQuiescePool(w.workQueue, Long.MAX_VALUE, false);
else
ForkJoinPool.common.externalHelpQuiescePool(Long.MAX_VALUE, false);
}
/**
* Resets the internal bookkeeping state of this task, allowing a
* subsequent {@code fork}. This method allows repeated reuse of
* this task, but only if reuse occurs when this task has either
* never been forked, or has been forked, then completed and all
* outstanding joins of this task have also completed. Effects
* under any other usage conditions are not guaranteed.
* This method may be useful when executing
* pre-constructed trees of subtasks in loops.
*
* Upon completion of this method, {@code isDone()} reports
* {@code false}, and {@code getException()} reports {@code
* null}. However, the value returned by {@code getRawResult} is
* unaffected. To clear this value, you can invoke {@code
* setRawResult(null)}.
*/
public void reinitialize() {
aux = null;
status = 0;
}
/**
* Returns the pool hosting the current thread, or {@code null}
* if the current thread is executing outside of any ForkJoinPool.
*
* This method returns {@code null} if and only if {@link
* #inForkJoinPool} returns {@code false}.
*
* @return the pool, or {@code null} if none
*/
public static ForkJoinPool getPool() {
Thread t;
return (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
((ForkJoinWorkerThread) t).pool : null);
}
/**
* Returns {@code true} if the current thread is a {@link
* ForkJoinWorkerThread} executing as a ForkJoinPool computation.
*
* @return {@code true} if the current thread is a {@link
* ForkJoinWorkerThread} executing as a ForkJoinPool computation,
* or {@code false} otherwise
*/
public static boolean inForkJoinPool() {
return Thread.currentThread() instanceof ForkJoinWorkerThread;
}
/**
* Tries to unschedule this task for execution. This method will
* typically (but is not guaranteed to) succeed if this task is
* the most recently forked task by the current thread, and has
* not commenced executing in another thread. This method may be
* useful when arranging alternative local processing of tasks
* that could have been, but were not, stolen.
*
* @return {@code true} if unforked
*/
public boolean tryUnfork() {
Thread t; ForkJoinPool.WorkQueue q;
return ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
? (q = ((ForkJoinWorkerThread)t).workQueue) != null
&& q.tryUnpush(this)
: (q = ForkJoinPool.commonQueue()) != null
&& q.externalTryUnpush(this);
}
/**
* Returns an estimate of the number of tasks that have been
* forked by the current worker thread but not yet executed. This
* value may be useful for heuristic decisions about whether to
* fork other tasks.
*
* @return the number of tasks
*/
public static int getQueuedTaskCount() {
Thread t; ForkJoinPool.WorkQueue q;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
q = ((ForkJoinWorkerThread)t).workQueue;
else
q = ForkJoinPool.commonQueue();
return (q == null) ? 0 : q.queueSize();
}
/**
* Returns an estimate of how many more locally queued tasks are
* held by the current worker thread than there are other worker
* threads that might steal them, or zero if this thread is not
* operating in a ForkJoinPool. This value may be useful for
* heuristic decisions about whether to fork other tasks. In many
* usages of ForkJoinTasks, at steady state, each worker should
* aim to maintain a small constant surplus (for example, 3) of
* tasks, and to process computations locally if this threshold is
* exceeded.
*
* @return the surplus number of tasks, which may be negative
*/
public static int getSurplusQueuedTaskCount() {
return ForkJoinPool.getSurplusQueuedTaskCount();
}
// Extension methods
/**
* Returns the result that would be returned by {@link #join}, even
* if this task completed abnormally, or {@code null} if this task
* is not known to have been completed. This method is designed
* to aid debugging, as well as to support extensions. Its use in
* any other context is discouraged.
*
* @return the result, or {@code null} if not completed
*/
public abstract V getRawResult();
/**
* Forces the given value to be returned as a result. This method
* is designed to support extensions, and should not in general be
* called otherwise.
*
* @param value the value
*/
protected abstract void setRawResult(V value);
/**
* Immediately performs the base action of this task and returns
* true if, upon return from this method, this task is guaranteed
* to have completed. This method may return false otherwise, to
* indicate that this task is not necessarily complete (or is not
* known to be complete), for example in asynchronous actions that
* require explicit invocations of completion methods. This method
* may also throw an (unchecked) exception to indicate abnormal
* exit. This method is designed to support extensions, and should
* not in general be called otherwise.
*
* @return {@code true} if this task is known to have completed normally
*/
protected abstract boolean exec();
/**
* Returns, but does not unschedule or execute, a task queued by
* the current thread but not yet executed, if one is immediately
* available. There is no guarantee that this task will actually
* be polled or executed next. Conversely, this method may return
* null even if a task exists but cannot be accessed without
* contention with other threads. This method is designed
* primarily to support extensions, and is unlikely to be useful
* otherwise.
*
* @return the next task, or {@code null} if none are available
*/
protected static ForkJoinTask> peekNextLocalTask() {
Thread t; ForkJoinPool.WorkQueue q;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
q = ((ForkJoinWorkerThread)t).workQueue;
else
q = ForkJoinPool.commonQueue();
return (q == null) ? null : q.peek();
}
/**
* Unschedules and returns, without executing, the next task
* queued by the current thread but not yet executed, if the
* current thread is operating in a ForkJoinPool. This method is
* designed primarily to support extensions, and is unlikely to be
* useful otherwise.
*
* @return the next task, or {@code null} if none are available
*/
protected static ForkJoinTask> pollNextLocalTask() {
Thread t;
return (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
((ForkJoinWorkerThread)t).workQueue.nextLocalTask() : null);
}
/**
* If the current thread is operating in a ForkJoinPool,
* unschedules and returns, without executing, the next task
* queued by the current thread but not yet executed, if one is
* available, or if not available, a task that was forked by some
* other thread, if available. Availability may be transient, so a
* {@code null} result does not necessarily imply quiescence of
* the pool this task is operating in. This method is designed
* primarily to support extensions, and is unlikely to be useful
* otherwise.
*
* @return a task, or {@code null} if none are available
*/
protected static ForkJoinTask> pollTask() {
Thread t; ForkJoinWorkerThread w;
return (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
(w = (ForkJoinWorkerThread)t).pool.nextTaskFor(w.workQueue) :
null);
}
/**
* If the current thread is operating in a ForkJoinPool,
* unschedules and returns, without executing, a task externally
* submitted to the pool, if one is available. Availability may be
* transient, so a {@code null} result does not necessarily imply
* quiescence of the pool. This method is designed primarily to
* support extensions, and is unlikely to be useful otherwise.
*
* @return a task, or {@code null} if none are available
* @since 9
* @hide API from OpenJDK 9, not yet exposed on Android.
*/
protected static ForkJoinTask> pollSubmission() {
Thread t;
return (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
((ForkJoinWorkerThread)t).pool.pollSubmission() : null);
}
// tag operations
/**
* Returns the tag for this task.
*
* @return the tag for this task
* @since 1.8
*/
public final short getForkJoinTaskTag() {
return (short)status;
}
/**
* Atomically sets the tag value for this task and returns the old value.
*
* @param newValue the new tag value
* @return the previous value of the tag
* @since 1.8
*/
public final short setForkJoinTaskTag(short newValue) {
for (int s;;) {
if (casStatus(s = status, (s & ~SMASK) | (newValue & SMASK)))
return (short)s;
}
}
/**
* Atomically conditionally sets the tag value for this task.
* Among other applications, tags can be used as visit markers
* in tasks operating on graphs, as in methods that check: {@code
* if (task.compareAndSetForkJoinTaskTag((short)0, (short)1))}
* before processing, otherwise exiting because the node has
* already been visited.
*
* @param expect the expected tag value
* @param update the new tag value
* @return {@code true} if successful; i.e., the current value was
* equal to {@code expect} and was changed to {@code update}.
* @since 1.8
*/
public final boolean compareAndSetForkJoinTaskTag(short expect, short update) {
for (int s;;) {
if ((short)(s = status) != expect)
return false;
if (casStatus(s, (s & ~SMASK) | (update & SMASK)))
return true;
}
}
/**
* Adapter for Runnables. This implements RunnableFuture
* to be compliant with AbstractExecutorService constraints
* when used in ForkJoinPool.
*/
static final class AdaptedRunnable