/* * Copyright (c) 2015, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package jdk.internal.util; import java.util.Arrays; import java.util.Collection; import jdk.internal.misc.Unsafe; import jdk.internal.vm.annotation.IntrinsicCandidate; /** * Utility methods to work with arrays. This includes a set of methods * to find a mismatch between two primitive arrays. Also included is * a method to calculate the new length of an array to be reallocated. * *
Array equality and lexicographical comparison can be built on top of * array mismatch functionality. * *
The mismatch method implementation, {@link #vectorizedMismatch}, leverages * vector-based techniques to access and compare the contents of two arrays. * The Java implementation uses {@code Unsafe.getLongUnaligned} to access the * content of an array, thus access is supported on platforms that do not * support unaligned access. For a byte[] array, 8 bytes (64 bits) can be * accessed and compared as a unit rather than individually, which increases * the performance when the method is compiled by the HotSpot VM. On supported * platforms the mismatch implementation is intrinsified to leverage SIMD * instructions. So for a byte[] array, 16 bytes (128 bits), 32 bytes * (256 bits), and perhaps in the future even 64 bytes (512 bits), platform * permitting, can be accessed and compared as a unit, which further increases * the performance over the Java implementation. * *
None of the mismatch methods perform array bounds checks. It is the * responsibility of the caller (direct or otherwise) to perform such checks * before calling this method. */ public class ArraysSupport { static final Unsafe U = Unsafe.getUnsafe(); // Android-changed: Android is little endian. private static final boolean BIG_ENDIAN = false; public static final int LOG2_ARRAY_BOOLEAN_INDEX_SCALE = exactLog2(Unsafe.ARRAY_BOOLEAN_INDEX_SCALE); public static final int LOG2_ARRAY_BYTE_INDEX_SCALE = exactLog2(Unsafe.ARRAY_BYTE_INDEX_SCALE); public static final int LOG2_ARRAY_CHAR_INDEX_SCALE = exactLog2(Unsafe.ARRAY_CHAR_INDEX_SCALE); public static final int LOG2_ARRAY_SHORT_INDEX_SCALE = exactLog2(Unsafe.ARRAY_SHORT_INDEX_SCALE); public static final int LOG2_ARRAY_INT_INDEX_SCALE = exactLog2(Unsafe.ARRAY_INT_INDEX_SCALE); public static final int LOG2_ARRAY_LONG_INDEX_SCALE = exactLog2(Unsafe.ARRAY_LONG_INDEX_SCALE); public static final int LOG2_ARRAY_FLOAT_INDEX_SCALE = exactLog2(Unsafe.ARRAY_FLOAT_INDEX_SCALE); public static final int LOG2_ARRAY_DOUBLE_INDEX_SCALE = exactLog2(Unsafe.ARRAY_DOUBLE_INDEX_SCALE); private static final int LOG2_BYTE_BIT_SIZE = exactLog2(Byte.SIZE); private static int exactLog2(int scale) { if ((scale & (scale - 1)) != 0) throw new Error("data type scale not a power of two"); return Integer.numberOfTrailingZeros(scale); } private ArraysSupport() {} /** * Find the relative index of the first mismatching pair of elements in two * primitive arrays of the same component type. Pairs of elements will be * tested in order relative to given offsets into both arrays. * *
This method does not perform type checks or bounds checks. It is the * responsibility of the caller to perform such checks before calling this * method. * *
The given offsets, in bytes, need not be aligned according to the * given log2 size the array elements. More specifically, an * offset modulus the size need not be zero. * * @param a the first array to be tested for mismatch, or {@code null} for * direct memory access * @param aOffset the relative offset, in bytes, from the base address of * the first array to test from, otherwise if the first array is * {@code null}, an absolute address pointing to the first element to test. * @param b the second array to be tested for mismatch, or {@code null} for * direct memory access * @param bOffset the relative offset, in bytes, from the base address of * the second array to test from, otherwise if the second array is * {@code null}, an absolute address pointing to the first element to test. * @param length the number of array elements to test * @param log2ArrayIndexScale log2 of the array index scale, that * corresponds to the size, in bytes, of an array element. * @return if a mismatch is found a relative index, between 0 (inclusive) * and {@code length} (exclusive), of the first mismatching pair of elements * in the two arrays. Otherwise, if a mismatch is not found the bitwise * compliment of the number of remaining pairs of elements to be checked in * the tail of the two arrays. */ @IntrinsicCandidate public static int vectorizedMismatch(Object a, long aOffset, Object b, long bOffset, int length, int log2ArrayIndexScale) { // assert a.getClass().isArray(); // assert b.getClass().isArray(); // assert 0 <= length <= sizeOf(a) // assert 0 <= length <= sizeOf(b) // assert 0 <= log2ArrayIndexScale <= 3 int log2ValuesPerWidth = LOG2_ARRAY_LONG_INDEX_SCALE - log2ArrayIndexScale; int wi = 0; for (; wi < length >> log2ValuesPerWidth; wi++) { long bi = ((long) wi) << LOG2_ARRAY_LONG_INDEX_SCALE; long av = U.getLongUnaligned(a, aOffset + bi); long bv = U.getLongUnaligned(b, bOffset + bi); if (av != bv) { long x = av ^ bv; int o = BIG_ENDIAN ? Long.numberOfLeadingZeros(x) >> (LOG2_BYTE_BIT_SIZE + log2ArrayIndexScale) : Long.numberOfTrailingZeros(x) >> (LOG2_BYTE_BIT_SIZE + log2ArrayIndexScale); return (wi << log2ValuesPerWidth) + o; } } // Calculate the tail of remaining elements to check int tail = length - (wi << log2ValuesPerWidth); if (log2ArrayIndexScale < LOG2_ARRAY_INT_INDEX_SCALE) { int wordTail = 1 << (LOG2_ARRAY_INT_INDEX_SCALE - log2ArrayIndexScale); // Handle 4 bytes or 2 chars in the tail using int width if (tail >= wordTail) { long bi = ((long) wi) << LOG2_ARRAY_LONG_INDEX_SCALE; int av = U.getIntUnaligned(a, aOffset + bi); int bv = U.getIntUnaligned(b, bOffset + bi); if (av != bv) { int x = av ^ bv; int o = BIG_ENDIAN ? Integer.numberOfLeadingZeros(x) >> (LOG2_BYTE_BIT_SIZE + log2ArrayIndexScale) : Integer.numberOfTrailingZeros(x) >> (LOG2_BYTE_BIT_SIZE + log2ArrayIndexScale); return (wi << log2ValuesPerWidth) + o; } tail -= wordTail; } return ~tail; } else { return ~tail; } } // Possible values for the type operand of the NEWARRAY instruction. // See https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-6.html#jvms-6.5.newarray. public static final int T_BOOLEAN = 4; public static final int T_CHAR = 5; public static final int T_FLOAT = 6; public static final int T_DOUBLE = 7; public static final int T_BYTE = 8; public static final int T_SHORT = 9; public static final int T_INT = 10; public static final int T_LONG = 11; /** * Calculate the hash code for an array in a way that enables efficient * vectorization. * *
This method does not perform type checks or bounds checks. It is the * responsibility of the caller to perform such checks before calling this * method. * * @param array for which to calculate hash code * @param fromIndex start index, scaled to basicType * @param length number of elements to include in the hash * @param initialValue the initial value for the hash (typically constant 0 or 1) * @param basicType type constant denoting how to interpret the array content. * T_BOOLEAN is used to signify unsigned bytes, and T_CHAR might be used * even if array is a byte[]. * @implNote currently basicType must be constant at the call site for this method * to be intrinsified. * * @return the calculated hash value */ @IntrinsicCandidate public static int vectorizedHashCode(Object array, int fromIndex, int length, int initialValue, int basicType) { return switch (basicType) { case T_BOOLEAN -> signedHashCode(initialValue, (byte[]) array, fromIndex, length); case T_CHAR -> array instanceof byte[] ? utf16hashCode(initialValue, (byte[]) array, fromIndex, length) : hashCode(initialValue, (char[]) array, fromIndex, length); case T_BYTE -> hashCode(initialValue, (byte[]) array, fromIndex, length); case T_SHORT -> hashCode(initialValue, (short[]) array, fromIndex, length); case T_INT -> hashCode(initialValue, (int[]) array, fromIndex, length); default -> throw new IllegalArgumentException("unrecognized basic type: " + basicType); }; } private static int signedHashCode(int result, byte[] a, int fromIndex, int length) { int end = fromIndex + length; for (int i = fromIndex; i < end; i++) { result = 31 * result + (a[i] & 0xff); } return result; } private static int hashCode(int result, byte[] a, int fromIndex, int length) { int end = fromIndex + length; for (int i = fromIndex; i < end; i++) { result = 31 * result + a[i]; } return result; } private static int hashCode(int result, char[] a, int fromIndex, int length) { int end = fromIndex + length; for (int i = fromIndex; i < end; i++) { result = 31 * result + a[i]; } return result; } private static int hashCode(int result, short[] a, int fromIndex, int length) { int end = fromIndex + length; for (int i = fromIndex; i < end; i++) { result = 31 * result + a[i]; } return result; } private static int hashCode(int result, int[] a, int fromIndex, int length) { int end = fromIndex + length; for (int i = fromIndex; i < end; i++) { result = 31 * result + a[i]; } return result; } // Android-removed: Make the StringUTF16 public on Android, and avoid JavaLangAccess. // private static final JavaLangAccess JLA = SharedSecrets.getJavaLangAccess(); /* * fromIndex and length must be scaled to char indexes. */ public static int utf16hashCode(int result, byte[] value, int fromIndex, int length) { int end = fromIndex + length; for (int i = fromIndex; i < end; i++) { // Android-removed: Make the StringUTF16 public on Android, and avoid JavaLangAccess. // result = 31 * result + JLA.getUTF16Char(value, i); result = 31 * result + StringUTF16.getChar(value, i); } return result; } // Booleans // Each boolean element takes up one byte public static int mismatch(boolean[] a, boolean[] b, int length) { int i = 0; if (length > 7) { if (a[0] != b[0]) return 0; i = vectorizedMismatch( a, Unsafe.ARRAY_BOOLEAN_BASE_OFFSET, b, Unsafe.ARRAY_BOOLEAN_BASE_OFFSET, length, LOG2_ARRAY_BOOLEAN_INDEX_SCALE); if (i >= 0) return i; i = length - ~i; } for (; i < length; i++) { if (a[i] != b[i]) return i; } return -1; } public static int mismatch(boolean[] a, int aFromIndex, boolean[] b, int bFromIndex, int length) { int i = 0; if (length > 7) { if (a[aFromIndex] != b[bFromIndex]) return 0; int aOffset = Unsafe.ARRAY_BOOLEAN_BASE_OFFSET + aFromIndex; int bOffset = Unsafe.ARRAY_BOOLEAN_BASE_OFFSET + bFromIndex; i = vectorizedMismatch( a, aOffset, b, bOffset, length, LOG2_ARRAY_BOOLEAN_INDEX_SCALE); if (i >= 0) return i; i = length - ~i; } for (; i < length; i++) { if (a[aFromIndex + i] != b[bFromIndex + i]) return i; } return -1; } // Bytes /** * Find the index of a mismatch between two arrays. * *
This method does not perform bounds checks. It is the responsibility * of the caller to perform such bounds checks before calling this method. * * @param a the first array to be tested for a mismatch * @param b the second array to be tested for a mismatch * @param length the number of bytes from each array to check * @return the index of a mismatch between the two arrays, otherwise -1 if * no mismatch. The index will be within the range of (inclusive) 0 to * (exclusive) the smaller of the two array lengths. */ public static int mismatch(byte[] a, byte[] b, int length) { // ISSUE: defer to index receiving methods if performance is good // assert length <= a.length // assert length <= b.length int i = 0; if (length > 7) { if (a[0] != b[0]) return 0; i = vectorizedMismatch( a, Unsafe.ARRAY_BYTE_BASE_OFFSET, b, Unsafe.ARRAY_BYTE_BASE_OFFSET, length, LOG2_ARRAY_BYTE_INDEX_SCALE); if (i >= 0) return i; // Align to tail i = length - ~i; // assert i >= 0 && i <= 7; } // Tail < 8 bytes for (; i < length; i++) { if (a[i] != b[i]) return i; } return -1; } /** * Find the relative index of a mismatch between two arrays starting from * given indexes. * *
This method does not perform bounds checks. It is the responsibility
* of the caller to perform such bounds checks before calling this method.
*
* @param a the first array to be tested for a mismatch
* @param aFromIndex the index of the first element (inclusive) in the first
* array to be compared
* @param b the second array to be tested for a mismatch
* @param bFromIndex the index of the first element (inclusive) in the
* second array to be compared
* @param length the number of bytes from each array to check
* @return the relative index of a mismatch between the two arrays,
* otherwise -1 if no mismatch. The index will be within the range of
* (inclusive) 0 to (exclusive) the smaller of the two array bounds.
*/
public static int mismatch(byte[] a, int aFromIndex,
byte[] b, int bFromIndex,
int length) {
// assert 0 <= aFromIndex < a.length
// assert 0 <= aFromIndex + length <= a.length
// assert 0 <= bFromIndex < b.length
// assert 0 <= bFromIndex + length <= b.length
// assert length >= 0
int i = 0;
if (length > 7) {
if (a[aFromIndex] != b[bFromIndex])
return 0;
int aOffset = Unsafe.ARRAY_BYTE_BASE_OFFSET + aFromIndex;
int bOffset = Unsafe.ARRAY_BYTE_BASE_OFFSET + bFromIndex;
i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_BYTE_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[aFromIndex + i] != b[bFromIndex + i])
return i;
}
return -1;
}
// Chars
public static int mismatch(char[] a,
char[] b,
int length) {
int i = 0;
if (length > 3) {
if (a[0] != b[0])
return 0;
i = vectorizedMismatch(
a, Unsafe.ARRAY_CHAR_BASE_OFFSET,
b, Unsafe.ARRAY_CHAR_BASE_OFFSET,
length, LOG2_ARRAY_CHAR_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[i] != b[i])
return i;
}
return -1;
}
public static int mismatch(char[] a, int aFromIndex,
char[] b, int bFromIndex,
int length) {
int i = 0;
if (length > 3) {
if (a[aFromIndex] != b[bFromIndex])
return 0;
int aOffset = Unsafe.ARRAY_CHAR_BASE_OFFSET + (aFromIndex << LOG2_ARRAY_CHAR_INDEX_SCALE);
int bOffset = Unsafe.ARRAY_CHAR_BASE_OFFSET + (bFromIndex << LOG2_ARRAY_CHAR_INDEX_SCALE);
i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_CHAR_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[aFromIndex + i] != b[bFromIndex + i])
return i;
}
return -1;
}
// Shorts
public static int mismatch(short[] a,
short[] b,
int length) {
int i = 0;
if (length > 3) {
if (a[0] != b[0])
return 0;
i = vectorizedMismatch(
a, Unsafe.ARRAY_SHORT_BASE_OFFSET,
b, Unsafe.ARRAY_SHORT_BASE_OFFSET,
length, LOG2_ARRAY_SHORT_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[i] != b[i])
return i;
}
return -1;
}
public static int mismatch(short[] a, int aFromIndex,
short[] b, int bFromIndex,
int length) {
int i = 0;
if (length > 3) {
if (a[aFromIndex] != b[bFromIndex])
return 0;
int aOffset = Unsafe.ARRAY_SHORT_BASE_OFFSET + (aFromIndex << LOG2_ARRAY_SHORT_INDEX_SCALE);
int bOffset = Unsafe.ARRAY_SHORT_BASE_OFFSET + (bFromIndex << LOG2_ARRAY_SHORT_INDEX_SCALE);
i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_SHORT_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[aFromIndex + i] != b[bFromIndex + i])
return i;
}
return -1;
}
// Ints
public static int mismatch(int[] a,
int[] b,
int length) {
int i = 0;
if (length > 1) {
if (a[0] != b[0])
return 0;
i = vectorizedMismatch(
a, Unsafe.ARRAY_INT_BASE_OFFSET,
b, Unsafe.ARRAY_INT_BASE_OFFSET,
length, LOG2_ARRAY_INT_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[i] != b[i])
return i;
}
return -1;
}
public static int mismatch(int[] a, int aFromIndex,
int[] b, int bFromIndex,
int length) {
int i = 0;
if (length > 1) {
if (a[aFromIndex] != b[bFromIndex])
return 0;
int aOffset = Unsafe.ARRAY_INT_BASE_OFFSET + (aFromIndex << LOG2_ARRAY_INT_INDEX_SCALE);
int bOffset = Unsafe.ARRAY_INT_BASE_OFFSET + (bFromIndex << LOG2_ARRAY_INT_INDEX_SCALE);
i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_INT_INDEX_SCALE);
if (i >= 0)
return i;
i = length - ~i;
}
for (; i < length; i++) {
if (a[aFromIndex + i] != b[bFromIndex + i])
return i;
}
return -1;
}
// Floats
public static int mismatch(float[] a,
float[] b,
int length) {
return mismatch(a, 0, b, 0, length);
}
public static int mismatch(float[] a, int aFromIndex,
float[] b, int bFromIndex,
int length) {
int i = 0;
if (length > 1) {
if (Float.floatToRawIntBits(a[aFromIndex]) == Float.floatToRawIntBits(b[bFromIndex])) {
int aOffset = Unsafe.ARRAY_FLOAT_BASE_OFFSET + (aFromIndex << LOG2_ARRAY_FLOAT_INDEX_SCALE);
int bOffset = Unsafe.ARRAY_FLOAT_BASE_OFFSET + (bFromIndex << LOG2_ARRAY_FLOAT_INDEX_SCALE);
i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_FLOAT_INDEX_SCALE);
}
// Mismatched
if (i >= 0) {
// Check if mismatch is not associated with two NaN values
if (!Float.isNaN(a[aFromIndex + i]) || !Float.isNaN(b[bFromIndex + i]))
return i;
// Mismatch on two different NaN values that are normalized to match
// Fall back to slow mechanism
// ISSUE: Consider looping over vectorizedMismatch adjusting ranges
// However, requires that returned value be relative to input ranges
i++;
}
// Matched
else {
i = length - ~i;
}
}
for (; i < length; i++) {
if (Float.floatToIntBits(a[aFromIndex + i]) != Float.floatToIntBits(b[bFromIndex + i]))
return i;
}
return -1;
}
// 64 bit sizes
// Long
public static int mismatch(long[] a,
long[] b,
int length) {
if (length == 0) {
return -1;
}
if (a[0] != b[0])
return 0;
int i = vectorizedMismatch(
a, Unsafe.ARRAY_LONG_BASE_OFFSET,
b, Unsafe.ARRAY_LONG_BASE_OFFSET,
length, LOG2_ARRAY_LONG_INDEX_SCALE);
return i >= 0 ? i : -1;
}
public static int mismatch(long[] a, int aFromIndex,
long[] b, int bFromIndex,
int length) {
if (length == 0) {
return -1;
}
if (a[aFromIndex] != b[bFromIndex])
return 0;
int aOffset = Unsafe.ARRAY_LONG_BASE_OFFSET + (aFromIndex << LOG2_ARRAY_LONG_INDEX_SCALE);
int bOffset = Unsafe.ARRAY_LONG_BASE_OFFSET + (bFromIndex << LOG2_ARRAY_LONG_INDEX_SCALE);
int i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_LONG_INDEX_SCALE);
return i >= 0 ? i : -1;
}
// Double
public static int mismatch(double[] a,
double[] b,
int length) {
return mismatch(a, 0, b, 0, length);
}
public static int mismatch(double[] a, int aFromIndex,
double[] b, int bFromIndex,
int length) {
if (length == 0) {
return -1;
}
int i = 0;
if (Double.doubleToRawLongBits(a[aFromIndex]) == Double.doubleToRawLongBits(b[bFromIndex])) {
int aOffset = Unsafe.ARRAY_DOUBLE_BASE_OFFSET + (aFromIndex << LOG2_ARRAY_DOUBLE_INDEX_SCALE);
int bOffset = Unsafe.ARRAY_DOUBLE_BASE_OFFSET + (bFromIndex << LOG2_ARRAY_DOUBLE_INDEX_SCALE);
i = vectorizedMismatch(
a, aOffset,
b, bOffset,
length, LOG2_ARRAY_DOUBLE_INDEX_SCALE);
}
if (i >= 0) {
// Check if mismatch is not associated with two NaN values
if (!Double.isNaN(a[aFromIndex + i]) || !Double.isNaN(b[bFromIndex + i]))
return i;
// Mismatch on two different NaN values that are normalized to match
// Fall back to slow mechanism
// ISSUE: Consider looping over vectorizedMismatch adjusting ranges
// However, requires that returned value be relative to input ranges
i++;
for (; i < length; i++) {
if (Double.doubleToLongBits(a[aFromIndex + i]) != Double.doubleToLongBits(b[bFromIndex + i]))
return i;
}
}
return -1;
}
/**
* A soft maximum array length imposed by array growth computations.
* Some JVMs (such as HotSpot) have an implementation limit that will cause
*
* OutOfMemoryError("Requested array size exceeds VM limit")
*
* to be thrown if a request is made to allocate an array of some length near
* Integer.MAX_VALUE, even if there is sufficient heap available. The actual
* limit might depend on some JVM implementation-specific characteristics such
* as the object header size. The soft maximum value is chosen conservatively so
* as to be smaller than any implementation limit that is likely to be encountered.
*/
public static final int SOFT_MAX_ARRAY_LENGTH = Integer.MAX_VALUE - 8;
/**
* Computes a new array length given an array's current length, a minimum growth
* amount, and a preferred growth amount. The computation is done in an overflow-safe
* fashion.
*
* This method is used by objects that contain an array that might need to be grown
* in order to fulfill some immediate need (the minimum growth amount) but would also
* like to request more space (the preferred growth amount) in order to accommodate
* potential future needs. The returned length is usually clamped at the soft maximum
* length in order to avoid hitting the JVM implementation limit. However, the soft
* maximum will be exceeded if the minimum growth amount requires it.
*
* If the preferred growth amount is less than the minimum growth amount, the
* minimum growth amount is used as the preferred growth amount.
*
* The preferred length is determined by adding the preferred growth amount to the
* current length. If the preferred length does not exceed the soft maximum length
* (SOFT_MAX_ARRAY_LENGTH) then the preferred length is returned.
*
* If the preferred length exceeds the soft maximum, we use the minimum growth
* amount. The minimum required length is determined by adding the minimum growth
* amount to the current length. If the minimum required length exceeds Integer.MAX_VALUE,
* then this method throws OutOfMemoryError. Otherwise, this method returns the greater of
* the soft maximum or the minimum required length.
*
* Note that this method does not do any array allocation itself; it only does array
* length growth computations. However, it will throw OutOfMemoryError as noted above.
*
* Note also that this method cannot detect the JVM's implementation limit, and it
* may compute and return a length value up to and including Integer.MAX_VALUE that
* might exceed the JVM's implementation limit. In that case, the caller will likely
* attempt an array allocation with that length and encounter an OutOfMemoryError.
* Of course, regardless of the length value returned from this method, the caller
* may encounter OutOfMemoryError if there is insufficient heap to fulfill the request.
*
* @param oldLength current length of the array (must be nonnegative)
* @param minGrowth minimum required growth amount (must be positive)
* @param prefGrowth preferred growth amount
* @return the new array length
* @throws OutOfMemoryError if the new length would exceed Integer.MAX_VALUE
*/
public static int newLength(int oldLength, int minGrowth, int prefGrowth) {
// preconditions not checked because of inlining
// assert oldLength >= 0
// assert minGrowth > 0
int prefLength = oldLength + Math.max(minGrowth, prefGrowth); // might overflow
if (0 < prefLength && prefLength <= SOFT_MAX_ARRAY_LENGTH) {
return prefLength;
} else {
// put code cold in a separate method
return hugeLength(oldLength, minGrowth);
}
}
private static int hugeLength(int oldLength, int minGrowth) {
int minLength = oldLength + minGrowth;
if (minLength < 0) { // overflow
throw new OutOfMemoryError(
"Required array length " + oldLength + " + " + minGrowth + " is too large");
} else if (minLength <= SOFT_MAX_ARRAY_LENGTH) {
return SOFT_MAX_ARRAY_LENGTH;
} else {
return minLength;
}
}
/**
* Reverses the elements of an array in-place.
*
* @param
* A constraint is that this method should issue exactly one method call on the collection
* to obtain the elements and the size. Having a separate size() call or using an Iterator
* could result in errors if the collection changes size between calls. This implies that
* the elements need to be obtained via a single call to one of the toArray() methods.
* This further implies allocating memory proportional to the number of elements and
* making an extra copy, but this seems unavoidable.
*
* An obvious approach would be simply to call coll.toArray(array) and then reverse the
* order of the elements. This doesn't work, because if given array is sufficiently long,
* we cannot tell how many elements were copied into it and thus there is no way to reverse
* the right set of elements while leaving the remaining array elements undisturbed.
*
* @throws ArrayStoreException if coll contains elements that can't be stored in the array
*/
public static