/* * Copyright (c) 1997, 2002, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.x509; import java.io.IOException; import java.lang.Integer; import java.net.InetAddress; import java.util.Arrays; import sun.misc.HexDumpEncoder; import sun.security.util.BitArray; import sun.security.util.DerOutputStream; import sun.security.util.DerValue; /** * This class implements the IPAddressName as required by the GeneralNames * ASN.1 object. Both IPv4 and IPv6 addresses are supported using the * formats specified in IETF PKIX RFC2459. *
* [RFC2459 4.2.1.7 Subject Alternative Name] * When the subjectAltName extension contains a iPAddress, the address * MUST be stored in the octet string in "network byte order," as * specified in RFC 791. The least significant bit (LSB) of * each octet is the LSB of the corresponding byte in the network * address. For IP Version 4, as specified in RFC 791, the octet string * MUST contain exactly four octets. For IP Version 6, as specified in * RFC 1883, the octet string MUST contain exactly sixteen octets. *
* [RFC2459 4.2.1.11 Name Constraints] * The syntax of iPAddress MUST be as described in section 4.2.1.7 with * the following additions specifically for Name Constraints. For IPv4 * addresses, the ipAddress field of generalName MUST contain eight (8) * octets, encoded in the style of RFC 1519 (CIDR) to represent an * address range.[RFC 1519] For IPv6 addresses, the ipAddress field * MUST contain 32 octets similarly encoded. For example, a name * constraint for "class C" subnet 10.9.8.0 shall be represented as the * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation * 10.9.8.0/255.255.255.0. *
* @see GeneralName * @see GeneralNameInterface * @see GeneralNames * * * @author Amit Kapoor * @author Hemma Prafullchandra */ public class IPAddressName implements GeneralNameInterface { private byte[] address; private boolean isIPv4; private String name; /** * Create the IPAddressName object from the passed encoded Der value. * * @params derValue the encoded DER IPAddressName. * @exception IOException on error. */ public IPAddressName(DerValue derValue) throws IOException { this(derValue.getOctetString()); } /** * Create the IPAddressName object with the specified octets. * * @params address the IP address * @throws IOException if address is not a valid IPv4 or IPv6 address */ public IPAddressName(byte[] address) throws IOException { /* * A valid address must consist of 4 bytes of address and * optional 4 bytes of 4 bytes of mask, or 16 bytes of address * and optional 16 bytes of mask. */ if (address.length == 4 || address.length == 8) { isIPv4 = true; } else if (address.length == 16 || address.length == 32) { isIPv4 = false; } else { throw new IOException("Invalid IPAddressName"); } this.address = address; } /** * Create an IPAddressName from a String. * [IETF RFC1338 Supernetting & IETF RFC1519 Classless Inter-Domain * Routing (CIDR)] For IPv4 addresses, the forms are * "b1.b2.b3.b4" or "b1.b2.b3.b4/m1.m2.m3.m4", where b1 - b4 are decimal * byte values 0-255 and m1 - m4 are decimal mask values * 0 - 255. *
* [IETF RFC2373 IP Version 6 Addressing Architecture] * For IPv6 addresses, the forms are "a1:a2:...:a8" or "a1:a2:...:a8/n", * where a1-a8 are hexadecimal values representing the eight 16-bit pieces * of the address. If /n is used, n is a decimal number indicating how many * of the leftmost contiguous bits of the address comprise the prefix for * this subnet. Internally, a mask value is created using the prefix length. *
* @param name String form of IPAddressName
* @throws IOException if name can not be converted to a valid IPv4 or IPv6
* address
*/
public IPAddressName(String name) throws IOException {
if (name == null || name.length() == 0) {
throw new IOException("IPAddress cannot be null or empty");
}
if (name.charAt(name.length() - 1) == '/') {
throw new IOException("Invalid IPAddress: " + name);
}
if (name.indexOf(':') >= 0) {
// name is IPv6: uses colons as value separators
// Parse name into byte-value address components and optional
// prefix
parseIPv6(name);
isIPv4 = false;
} else if (name.indexOf('.') >= 0) {
//name is IPv4: uses dots as value separators
parseIPv4(name);
isIPv4 = true;
} else {
throw new IOException("Invalid IPAddress: " + name);
}
}
/**
* Parse an IPv4 address.
*
* @param name IPv4 address with optional mask values
* @throws IOException on error
*/
private void parseIPv4(String name) throws IOException {
// Parse name into byte-value address components
int slashNdx = name.indexOf('/');
if (slashNdx == -1) {
address = InetAddress.getByName(name).getAddress();
} else {
address = new byte[8];
// parse mask
byte[] mask = InetAddress.getByName
(name.substring(slashNdx+1)).getAddress();
// parse base address
byte[] host = InetAddress.getByName
(name.substring(0, slashNdx)).getAddress();
System.arraycopy(host, 0, address, 0, 4);
System.arraycopy(mask, 0, address, 4, 4);
}
}
/**
* Parse an IPv6 address.
*
* @param name String IPv6 address with optional /
* [RFC2459] The syntax of iPAddress MUST be as described in section
* 4.2.1.7 with the following additions specifically for Name Constraints.
* For IPv4 addresses, the ipAddress field of generalName MUST contain
* eight (8) octets, encoded in the style of RFC 1519 (CIDR) to represent an
* address range.[RFC 1519] For IPv6 addresses, the ipAddress field
* MUST contain 32 octets similarly encoded. For example, a name
* constraint for "class C" subnet 10.9.8.0 shall be represented as the
* octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
* 10.9.8.0/255.255.255.0.
*
* @param inputName to be checked for being constrained
* @returns constraint type above
* @throws UnsupportedOperationException if name is not exact match, but
* narrowing and widening are not supported for this name type.
*/
public int constrains(GeneralNameInterface inputName)
throws UnsupportedOperationException {
int constraintType;
if (inputName == null)
constraintType = NAME_DIFF_TYPE;
else if (inputName.getType() != NAME_IP)
constraintType = NAME_DIFF_TYPE;
else if (((IPAddressName)inputName).equals(this))
constraintType = NAME_MATCH;
else {
IPAddressName otherName = (IPAddressName)inputName;
byte[] otherAddress = otherName.address;
if (otherAddress.length == 4 && address.length == 4)
// Two host addresses
constraintType = NAME_SAME_TYPE;
else if ((otherAddress.length == 8 && address.length == 8) ||
(otherAddress.length == 32 && address.length == 32)) {
// Two subnet addresses
// See if one address fully encloses the other address
boolean otherSubsetOfThis = true;
boolean thisSubsetOfOther = true;
boolean thisEmpty = false;
boolean otherEmpty = false;
int maskOffset = address.length/2;
for (int i=0; i < maskOffset; i++) {
if ((byte)(address[i] & address[i+maskOffset]) != address[i])
thisEmpty=true;
if ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) != otherAddress[i])
otherEmpty=true;
if (!(((byte)(address[i+maskOffset] & otherAddress[i+maskOffset]) == address[i+maskOffset]) &&
((byte)(address[i] & address[i+maskOffset]) == (byte)(otherAddress[i] & address[i+maskOffset])))) {
otherSubsetOfThis = false;
}
if (!(((byte)(otherAddress[i+maskOffset] & address[i+maskOffset]) == otherAddress[i+maskOffset]) &&
((byte)(otherAddress[i] & otherAddress[i+maskOffset]) == (byte)(address[i] & otherAddress[i+maskOffset])))) {
thisSubsetOfOther = false;
}
}
if (thisEmpty || otherEmpty) {
if (thisEmpty && otherEmpty)
constraintType = NAME_MATCH;
else if (thisEmpty)
constraintType = NAME_WIDENS;
else
constraintType = NAME_NARROWS;
} else if (otherSubsetOfThis)
constraintType = NAME_NARROWS;
else if (thisSubsetOfOther)
constraintType = NAME_WIDENS;
else
constraintType = NAME_SAME_TYPE;
} else if (otherAddress.length == 8 || otherAddress.length == 32) {
//Other is a subnet, this is a host address
int i = 0;
int maskOffset = otherAddress.length/2;
for (; i < maskOffset; i++) {
// Mask this address by other address mask and compare to other address
// If all match, then this address is in other address subnet
if ((address[i] & otherAddress[i+maskOffset]) != otherAddress[i])
break;
}
if (i == maskOffset)
constraintType = NAME_WIDENS;
else
constraintType = NAME_SAME_TYPE;
} else if (address.length == 8 || address.length == 32) {
//This is a subnet, other is a host address
int i = 0;
int maskOffset = address.length/2;
for (; i < maskOffset; i++) {
// Mask other address by this address mask and compare to this address
if ((otherAddress[i] & address[i+maskOffset]) != address[i])
break;
}
if (i == maskOffset)
constraintType = NAME_NARROWS;
else
constraintType = NAME_SAME_TYPE;
} else {
constraintType = NAME_SAME_TYPE;
}
}
return constraintType;
}
/**
* Return subtree depth of this name for purposes of determining
* NameConstraints minimum and maximum bounds and for calculating
* path lengths in name subtrees.
*
* @returns distance of name from root
* @throws UnsupportedOperationException if not supported for this name type
*/
public int subtreeDepth() throws UnsupportedOperationException {
throw new UnsupportedOperationException
("subtreeDepth() not defined for IPAddressName");
}
}