/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.util.apk; import android.annotation.NonNull; import android.annotation.Nullable; import java.io.IOException; import java.io.RandomAccessFile; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.security.DigestException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.ArrayList; /** * VerityBuilder builds the verity Merkle tree and other metadata. The generated tree format can * be stored on disk for fs-verity setup and used by kernel. The builder support standard * fs-verity, and Android specific apk-verity that requires additional kernel patches. * *
Unlike a regular Merkle tree of fs-verity, the apk-verity tree does not cover the file content * fully, and has to skip APK Signing Block with some special treatment for the "Central Directory * offset" field of ZIP End of Central Directory. * * @hide */ public abstract class VerityBuilder { private VerityBuilder() {} private static final int CHUNK_SIZE_BYTES = 4096; // Typical Linux block size private static final int DIGEST_SIZE_BYTES = 32; // SHA-256 size private static final int FSVERITY_HEADER_SIZE_BYTES = 64; private static final int ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_SIZE = 4; private static final int ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_OFFSET = 16; private static final String JCA_DIGEST_ALGORITHM = "SHA-256"; private static final byte[] DEFAULT_SALT = new byte[8]; /** Result generated by the builder. */ public static class VerityResult { /** Raw fs-verity metadata and Merkle tree ready to be deployed on disk. */ public final ByteBuffer verityData; /** Size of the Merkle tree in {@code verityData}. */ public final int merkleTreeSize; /** Root hash of the Merkle tree. */ public final byte[] rootHash; private VerityResult(ByteBuffer verityData, int merkleTreeSize, byte[] rootHash) { this.verityData = verityData; this.merkleTreeSize = merkleTreeSize; this.rootHash = rootHash; } } /** * Generates the 4k, SHA-256 based Merkle tree for the given APK and stores in the {@link * ByteBuffer} created by the {@link ByteBufferFactory}. The Merkle tree does not cover Signing * Block specificed in {@code signatureInfo}. The output is suitable to be used as the on-disk * format for fs-verity to use (with elide and patch extensions). * * @return VerityResult containing a buffer with the generated Merkle tree stored at the * front, the tree size, and the calculated root hash. */ @NonNull public static VerityResult generateApkVerityTree(@NonNull RandomAccessFile apk, @Nullable SignatureInfo signatureInfo, @NonNull ByteBufferFactory bufferFactory) throws IOException, SecurityException, NoSuchAlgorithmException, DigestException { return generateVerityTreeInternal(apk, bufferFactory, signatureInfo); } @NonNull private static VerityResult generateVerityTreeInternal(@NonNull RandomAccessFile apk, @NonNull ByteBufferFactory bufferFactory, @Nullable SignatureInfo signatureInfo) throws IOException, SecurityException, NoSuchAlgorithmException, DigestException { long signingBlockSize = signatureInfo.centralDirOffset - signatureInfo.apkSigningBlockOffset; long dataSize = apk.getChannel().size() - signingBlockSize; int[] levelOffset = calculateVerityLevelOffset(dataSize); int merkleTreeSize = levelOffset[levelOffset.length - 1]; ByteBuffer output = bufferFactory.create( merkleTreeSize + CHUNK_SIZE_BYTES); // maximum size of apk-verity metadata output.order(ByteOrder.LITTLE_ENDIAN); ByteBuffer tree = slice(output, 0, merkleTreeSize); byte[] apkRootHash = generateVerityTreeInternal(apk, signatureInfo, DEFAULT_SALT, levelOffset, tree); return new VerityResult(output, merkleTreeSize, apkRootHash); } static void generateApkVerityFooter(@NonNull RandomAccessFile apk, @NonNull SignatureInfo signatureInfo, @NonNull ByteBuffer footerOutput) throws IOException { footerOutput.order(ByteOrder.LITTLE_ENDIAN); generateApkVerityHeader(footerOutput, apk.getChannel().size(), DEFAULT_SALT); long signingBlockSize = signatureInfo.centralDirOffset - signatureInfo.apkSigningBlockOffset; generateApkVerityExtensions(footerOutput, signatureInfo.apkSigningBlockOffset, signingBlockSize, signatureInfo.eocdOffset); } /** * Generates the fs-verity hash tree. It is the actual verity tree format on disk, as is * re-generated on device. * * The tree is built bottom up. The bottom level has 256-bit digest for each 4 KB block in the * input file. If the total size is larger than 4 KB, take this level as input and repeat the * same procedure, until the level is within 4 KB. If salt is given, it will apply to each * digestion before the actual data. * * The returned root hash is calculated from the last level of 4 KB chunk, similarly with salt. * * @return the root hash of the generated hash tree. */ public static byte[] generateFsVerityRootHash(@NonNull String apkPath, byte[] salt, @NonNull ByteBufferFactory bufferFactory) throws IOException, NoSuchAlgorithmException, DigestException { try (RandomAccessFile apk = new RandomAccessFile(apkPath, "r")) { int[] levelOffset = calculateVerityLevelOffset(apk.length()); int merkleTreeSize = levelOffset[levelOffset.length - 1]; ByteBuffer output = bufferFactory.create( merkleTreeSize + CHUNK_SIZE_BYTES); // maximum size of apk-verity metadata output.order(ByteOrder.LITTLE_ENDIAN); ByteBuffer tree = slice(output, 0, merkleTreeSize); return generateFsVerityTreeInternal(apk, salt, levelOffset, tree); } } /** * Generates the apk-verity header and hash tree to be used by kernel for the given apk. This * method does not check whether the root hash exists in the Signing Block or not. * *
The output is stored in the {@link ByteBuffer} created by the given {@link
* ByteBufferFactory}.
*
* @return the root hash of the generated hash tree.
*/
@NonNull
static byte[] generateApkVerity(@NonNull String apkPath,
@NonNull ByteBufferFactory bufferFactory, @NonNull SignatureInfo signatureInfo)
throws IOException, SignatureNotFoundException, SecurityException, DigestException,
NoSuchAlgorithmException {
try (RandomAccessFile apk = new RandomAccessFile(apkPath, "r")) {
VerityResult result = generateVerityTreeInternal(apk, bufferFactory, signatureInfo);
ByteBuffer footer = slice(result.verityData, result.merkleTreeSize,
result.verityData.limit());
generateApkVerityFooter(apk, signatureInfo, footer);
// Put the reverse offset to apk-verity header at the end.
footer.putInt(footer.position() + 4);
result.verityData.limit(result.merkleTreeSize + footer.position());
return result.rootHash;
}
}
/**
* A helper class to consume and digest data by block continuously, and write into a buffer.
*/
private static class BufferedDigester implements DataDigester {
/** Amount of the data to digest in each cycle before writting out the digest. */
private static final int BUFFER_SIZE = CHUNK_SIZE_BYTES;
/**
* Amount of data the {@link MessageDigest} has consumed since the last reset. This must be
* always less than BUFFER_SIZE since {@link MessageDigest} is reset whenever it has
* consumed BUFFER_SIZE of data.
*/
private int mBytesDigestedSinceReset;
/** The final output {@link ByteBuffer} to write the digest to sequentially. */
private final ByteBuffer mOutput;
private final MessageDigest mMd;
private final byte[] mDigestBuffer = new byte[DIGEST_SIZE_BYTES];
private final byte[] mSalt;
private BufferedDigester(@Nullable byte[] salt, @NonNull ByteBuffer output)
throws NoSuchAlgorithmException {
mSalt = salt;
mOutput = output.slice();
mMd = MessageDigest.getInstance(JCA_DIGEST_ALGORITHM);
if (mSalt != null) {
mMd.update(mSalt);
}
mBytesDigestedSinceReset = 0;
}
/**
* Consumes and digests data up to BUFFER_SIZE (may continue from the previous remaining),
* then writes the final digest to the output buffer. Repeat until all data are consumed.
* If the last consumption is not enough for BUFFER_SIZE, the state will stay and future
* consumption will continuous from there.
*/
@Override
public void consume(ByteBuffer buffer) throws DigestException {
int offset = buffer.position();
int remaining = buffer.remaining();
while (remaining > 0) {
int allowance = (int) Math.min(remaining, BUFFER_SIZE - mBytesDigestedSinceReset);
// Optimization: set the buffer limit to avoid allocating a new ByteBuffer object.
buffer.limit(buffer.position() + allowance);
mMd.update(buffer);
offset += allowance;
remaining -= allowance;
mBytesDigestedSinceReset += allowance;
if (mBytesDigestedSinceReset == BUFFER_SIZE) {
mMd.digest(mDigestBuffer, 0, mDigestBuffer.length);
mOutput.put(mDigestBuffer);
// After digest, MessageDigest resets automatically, so no need to reset again.
if (mSalt != null) {
mMd.update(mSalt);
}
mBytesDigestedSinceReset = 0;
}
}
}
public void assertEmptyBuffer() throws DigestException {
if (mBytesDigestedSinceReset != 0) {
throw new IllegalStateException("Buffer is not empty: " + mBytesDigestedSinceReset);
}
}
private void fillUpLastOutputChunk() {
int lastBlockSize = (int) (mOutput.position() % BUFFER_SIZE);
if (lastBlockSize == 0) {
return;
}
mOutput.put(ByteBuffer.allocate(BUFFER_SIZE - lastBlockSize));
}
}
/**
* Digest the source by chunk in the given range. If the last chunk is not a full chunk,
* digest the remaining.
*/
private static void consumeByChunk(DataDigester digester, DataSource source, int chunkSize)
throws IOException, DigestException {
long inputRemaining = source.size();
long inputOffset = 0;
while (inputRemaining > 0) {
int size = (int) Math.min(inputRemaining, chunkSize);
source.feedIntoDataDigester(digester, inputOffset, size);
inputOffset += size;
inputRemaining -= size;
}
}
// Rationale: 1) 1 MB should fit in memory space on all devices. 2) It is not too granular
// thus the syscall overhead is not too big.
private static final int MMAP_REGION_SIZE_BYTES = 1024 * 1024;
private static void generateFsVerityDigestAtLeafLevel(RandomAccessFile file,
@Nullable byte[] salt, ByteBuffer output)
throws IOException, NoSuchAlgorithmException, DigestException {
BufferedDigester digester = new BufferedDigester(salt, output);
// 1. Digest the whole file by chunks.
consumeByChunk(digester,
DataSource.create(file.getFD(), 0, file.length()),
MMAP_REGION_SIZE_BYTES);
// 2. Pad 0s up to the nearest 4096-byte block before hashing.
int lastIncompleteChunkSize = (int) (file.length() % CHUNK_SIZE_BYTES);
if (lastIncompleteChunkSize != 0) {
digester.consume(ByteBuffer.allocate(CHUNK_SIZE_BYTES - lastIncompleteChunkSize));
}
digester.assertEmptyBuffer();
// 3. Fill up the rest of buffer with 0s.
digester.fillUpLastOutputChunk();
}
private static void generateApkVerityDigestAtLeafLevel(RandomAccessFile apk,
SignatureInfo signatureInfo, byte[] salt, ByteBuffer output)
throws IOException, NoSuchAlgorithmException, DigestException {
BufferedDigester digester = new BufferedDigester(salt, output);
// 1. Digest from the beginning of the file, until APK Signing Block is reached.
consumeByChunk(digester,
DataSource.create(apk.getFD(), 0, signatureInfo.apkSigningBlockOffset),
MMAP_REGION_SIZE_BYTES);
// 2. Skip APK Signing Block and continue digesting, until the Central Directory offset
// field in EoCD is reached.
long eocdCdOffsetFieldPosition =
signatureInfo.eocdOffset + ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_OFFSET;
consumeByChunk(digester,
DataSource.create(apk.getFD(), signatureInfo.centralDirOffset,
eocdCdOffsetFieldPosition - signatureInfo.centralDirOffset),
MMAP_REGION_SIZE_BYTES);
// 3. Consume offset of Signing Block as an alternative EoCD.
ByteBuffer alternativeCentralDirOffset = ByteBuffer.allocate(
ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_SIZE).order(ByteOrder.LITTLE_ENDIAN);
alternativeCentralDirOffset.putInt(Math.toIntExact(signatureInfo.apkSigningBlockOffset));
alternativeCentralDirOffset.flip();
digester.consume(alternativeCentralDirOffset);
// 4. Read from end of the Central Directory offset field in EoCD to the end of the file.
long offsetAfterEocdCdOffsetField =
eocdCdOffsetFieldPosition + ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_SIZE;
consumeByChunk(digester,
DataSource.create(apk.getFD(), offsetAfterEocdCdOffsetField,
apk.getChannel().size() - offsetAfterEocdCdOffsetField),
MMAP_REGION_SIZE_BYTES);
// 5. Pad 0s up to the nearest 4096-byte block before hashing.
int lastIncompleteChunkSize = (int) (apk.getChannel().size() % CHUNK_SIZE_BYTES);
if (lastIncompleteChunkSize != 0) {
digester.consume(ByteBuffer.allocate(CHUNK_SIZE_BYTES - lastIncompleteChunkSize));
}
digester.assertEmptyBuffer();
// 6. Fill up the rest of buffer with 0s.
digester.fillUpLastOutputChunk();
}
@NonNull
private static byte[] generateFsVerityTreeInternal(@NonNull RandomAccessFile apk,
@Nullable byte[] salt, @NonNull int[] levelOffset, @NonNull ByteBuffer output)
throws IOException, NoSuchAlgorithmException, DigestException {
// 1. Digest the apk to generate the leaf level hashes.
generateFsVerityDigestAtLeafLevel(apk, salt,
slice(output, levelOffset[levelOffset.length - 2],
levelOffset[levelOffset.length - 1]));
// 2. Digest the lower level hashes bottom up.
for (int level = levelOffset.length - 3; level >= 0; level--) {
ByteBuffer inputBuffer = slice(output, levelOffset[level + 1], levelOffset[level + 2]);
ByteBuffer outputBuffer = slice(output, levelOffset[level], levelOffset[level + 1]);
DataSource source = new ByteBufferDataSource(inputBuffer);
BufferedDigester digester = new BufferedDigester(salt, outputBuffer);
consumeByChunk(digester, source, CHUNK_SIZE_BYTES);
digester.assertEmptyBuffer();
digester.fillUpLastOutputChunk();
}
// 3. Digest the first block (i.e. first level) to generate the root hash.
byte[] rootHash = new byte[DIGEST_SIZE_BYTES];
BufferedDigester digester = new BufferedDigester(salt, ByteBuffer.wrap(rootHash));
digester.consume(slice(output, 0, CHUNK_SIZE_BYTES));
digester.assertEmptyBuffer();
return rootHash;
}
@NonNull
private static byte[] generateVerityTreeInternal(@NonNull RandomAccessFile apk,
@Nullable SignatureInfo signatureInfo, @Nullable byte[] salt,
@NonNull int[] levelOffset, @NonNull ByteBuffer output)
throws IOException, NoSuchAlgorithmException, DigestException {
// 1. Digest the apk to generate the leaf level hashes.
assertSigningBlockAlignedAndHasFullPages(signatureInfo);
generateApkVerityDigestAtLeafLevel(apk, signatureInfo, salt, slice(output,
levelOffset[levelOffset.length - 2], levelOffset[levelOffset.length - 1]));
// 2. Digest the lower level hashes bottom up.
for (int level = levelOffset.length - 3; level >= 0; level--) {
ByteBuffer inputBuffer = slice(output, levelOffset[level + 1], levelOffset[level + 2]);
ByteBuffer outputBuffer = slice(output, levelOffset[level], levelOffset[level + 1]);
DataSource source = new ByteBufferDataSource(inputBuffer);
BufferedDigester digester = new BufferedDigester(salt, outputBuffer);
consumeByChunk(digester, source, CHUNK_SIZE_BYTES);
digester.assertEmptyBuffer();
digester.fillUpLastOutputChunk();
}
// 3. Digest the first block (i.e. first level) to generate the root hash.
byte[] rootHash = new byte[DIGEST_SIZE_BYTES];
BufferedDigester digester = new BufferedDigester(salt, ByteBuffer.wrap(rootHash));
digester.consume(slice(output, 0, CHUNK_SIZE_BYTES));
digester.assertEmptyBuffer();
return rootHash;
}
private static ByteBuffer generateApkVerityHeader(ByteBuffer buffer, long fileSize,
byte[] salt) {
if (salt.length != 8) {
throw new IllegalArgumentException("salt is not 8 bytes long");
}
// TODO(b/30972906): update the reference when there is a better one in public.
buffer.put("TrueBrew".getBytes()); // magic
buffer.put((byte) 1); // major version
buffer.put((byte) 0); // minor version
buffer.put((byte) 12); // log2(block-size): log2(4096)
buffer.put((byte) 7); // log2(leaves-per-node): log2(4096 / 32)
buffer.putShort((short) 1); // meta algorithm, SHA256 == 1
buffer.putShort((short) 1); // data algorithm, SHA256 == 1
buffer.putInt(0); // flags
buffer.putInt(0); // reserved
buffer.putLong(fileSize); // original file size
buffer.put((byte) 2); // authenticated extension count
buffer.put((byte) 0); // unauthenticated extension count
buffer.put(salt); // salt (8 bytes)
skip(buffer, 22); // reserved
return buffer;
}
private static ByteBuffer generateApkVerityExtensions(ByteBuffer buffer,
long signingBlockOffset, long signingBlockSize, long eocdOffset) {
// Snapshot of the experimental fs-verity structs (different from upstream).
//
// struct fsverity_extension_elide {
// __le64 offset;
// __le64 length;
// }
//
// struct fsverity_extension_patch {
// __le64 offset;
// u8 databytes[];
// };
final int kSizeOfFsverityExtensionHeader = 8;
final int kExtensionSizeAlignment = 8;
{
// struct fsverity_extension #1
final int kSizeOfFsverityElidedExtension = 16;
// First field is total size of extension, padded to 64-bit alignment
buffer.putInt(kSizeOfFsverityExtensionHeader + kSizeOfFsverityElidedExtension);
buffer.putShort((short) 1); // ID of elide extension
skip(buffer, 2); // reserved
// struct fsverity_extension_elide
buffer.putLong(signingBlockOffset);
buffer.putLong(signingBlockSize);
}
{
// struct fsverity_extension #2
final int kTotalSize = kSizeOfFsverityExtensionHeader
+ 8 // offset size
+ ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_SIZE;
buffer.putInt(kTotalSize); // Total size of extension, padded to 64-bit alignment
buffer.putShort((short) 2); // ID of patch extension
skip(buffer, 2); // reserved
// struct fsverity_extension_patch
buffer.putLong(eocdOffset + ZIP_EOCD_CENTRAL_DIR_OFFSET_FIELD_OFFSET); // offset
buffer.putInt(Math.toIntExact(signingBlockOffset)); // databytes
// The extension needs to be 0-padded at the end, since the length may not be multiple
// of 8.
int kPadding = kExtensionSizeAlignment - kTotalSize % kExtensionSizeAlignment;
if (kPadding == kExtensionSizeAlignment) {
kPadding = 0;
}
skip(buffer, kPadding); // padding
}
return buffer;
}
/**
* Returns an array of summed area table of level size in the verity tree. In other words, the
* returned array is offset of each level in the verity tree file format, plus an additional
* offset of the next non-existing level (i.e. end of the last level + 1). Thus the array size
* is level + 1. Thus, the returned array is guarantee to have at least 2 elements.
*/
private static int[] calculateVerityLevelOffset(long fileSize) {
ArrayList