/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.security; import java.security.spec.KeySpec; import java.security.spec.InvalidKeySpecException; /** * This class defines the Service Provider Interface (SPI) * for the {@code KeyFactory} class. * All the abstract methods in this class must be implemented by each * cryptographic service provider who wishes to supply the implementation * of a key factory for a particular algorithm. * *
Key factories are used to convert keys (opaque * cryptographic keys of type {@code Key}) into key specifications * (transparent representations of the underlying key material), and vice * versa. * *
Key factories are bi-directional. That is, they allow you to build an * opaque key object from a given key specification (key material), or to * retrieve the underlying key material of a key object in a suitable format. * *
Multiple compatible key specifications may exist for the same key. * For example, a DSA public key may be specified using * {@code DSAPublicKeySpec} or * {@code X509EncodedKeySpec}. A key factory can be used to translate * between compatible key specifications. * *
A provider should document all the key specifications supported by its
* key factory.
*
* @author Jan Luehe
*
*
* @see KeyFactory
* @see Key
* @see PublicKey
* @see PrivateKey
* @see java.security.spec.KeySpec
* @see java.security.spec.DSAPublicKeySpec
* @see java.security.spec.X509EncodedKeySpec
*
* @since 1.2
*/
public abstract class KeyFactorySpi {
/**
* Generates a public key object from the provided key
* specification (key material).
*
* @param keySpec the specification (key material) of the public key.
*
* @return the public key.
*
* @exception InvalidKeySpecException if the given key specification
* is inappropriate for this key factory to produce a public key.
*/
protected abstract PublicKey engineGeneratePublic(KeySpec keySpec)
throws InvalidKeySpecException;
/**
* Generates a private key object from the provided key
* specification (key material).
*
* @param keySpec the specification (key material) of the private key.
*
* @return the private key.
*
* @exception InvalidKeySpecException if the given key specification
* is inappropriate for this key factory to produce a private key.
*/
protected abstract PrivateKey engineGeneratePrivate(KeySpec keySpec)
throws InvalidKeySpecException;
/**
* Returns a specification (key material) of the given key
* object.
* {@code keySpec} identifies the specification class in which
* the key material should be returned. It could, for example, be
* {@code DSAPublicKeySpec.class}, to indicate that the
* key material should be returned in an instance of the
* {@code DSAPublicKeySpec} class.
*
* @param