/* * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import java.util.function.DoubleConsumer; import java.util.stream.Collector; import java.util.stream.DoubleStream; /** * A state object for collecting statistics such as count, min, max, sum, and * average. * *
This class is designed to work with (though does not require) * {@linkplain java.util.stream streams}. For example, you can compute * summary statistics on a stream of doubles with: *
{@code * DoubleSummaryStatistics stats = doubleStream.collect(DoubleSummaryStatistics::new, * DoubleSummaryStatistics::accept, * DoubleSummaryStatistics::combine); * }* *
{@code DoubleSummaryStatistics} can be used as a * {@linkplain java.util.stream.Stream#collect(Collector) reduction} * target for a {@linkplain java.util.stream.Stream stream}. For example: * *
{@code * DoubleSummaryStatistics stats = people.stream() * .collect(Collectors.summarizingDouble(Person::getWeight)); *}* * This computes, in a single pass, the count of people, as well as the minimum, * maximum, sum, and average of their weights. * * @implNote This implementation is not thread safe. However, it is safe to use * {@link java.util.stream.Collectors#summarizingDouble(java.util.function.ToDoubleFunction) * Collectors.summarizingDouble()} on a parallel stream, because the parallel * implementation of {@link java.util.stream.Stream#collect Stream.collect()} * provides the necessary partitioning, isolation, and merging of results for * safe and efficient parallel execution. * *
This implementation does not check for overflow of the count. * @since 1.8 */ public class DoubleSummaryStatistics implements DoubleConsumer { private long count; private double sum; private double sumCompensation; // Low order bits of sum private double simpleSum; // Used to compute right sum for non-finite inputs private double min = Double.POSITIVE_INFINITY; private double max = Double.NEGATIVE_INFINITY; /** * Constructs an empty instance with zero count, zero sum, * {@code Double.POSITIVE_INFINITY} min, {@code Double.NEGATIVE_INFINITY} * max and zero average. */ public DoubleSummaryStatistics() { } /** * Constructs a non-empty instance with the specified {@code count}, * {@code min}, {@code max}, and {@code sum}. * *
If {@code count} is zero then the remaining arguments are ignored and * an empty instance is constructed. * *
If the arguments are inconsistent then an {@code IllegalArgumentException} * is thrown. The necessary consistent argument conditions are: *
The value of a floating-point sum is a function both of the * input values as well as the order of addition operations. The * order of addition operations of this method is intentionally * not defined to allow for implementation flexibility to improve * the speed and accuracy of the computed result. * * In particular, this method may be implemented using compensated * summation or other technique to reduce the error bound in the * numerical sum compared to a simple summation of {@code double} * values. * * Because of the unspecified order of operations and the * possibility of using differing summation schemes, the output of * this method may vary on the same input values. * *
Various conditions can result in a non-finite sum being * computed. This can occur even if the all the recorded values * being summed are finite. If any recorded value is non-finite, * the sum will be non-finite: * *
The computed average can vary numerically and have the * special case behavior as computing the sum; see {@link #getSum} * for details. * * @apiNote Values sorted by increasing absolute magnitude tend to yield * more accurate results. * * @return the arithmetic mean of values, or zero if none */ public final double getAverage() { return getCount() > 0 ? getSum() / getCount() : 0.0d; } /** * Returns a non-empty string representation of this object suitable for * debugging. The exact presentation format is unspecified and may vary * between implementations and versions. */ @Override public String toString() { return String.format( "%s{count=%d, sum=%f, min=%f, average=%f, max=%f}", this.getClass().getSimpleName(), getCount(), getSum(), getMin(), getAverage(), getMax()); } }