/* * Copyright (C) 2014 The Android Open Source Project * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import android.compat.Compatibility; import android.compat.annotation.ChangeId; import android.compat.annotation.EnabledSince; import dalvik.annotation.compat.VersionCodes; import dalvik.system.VMRuntime; import java.io.BufferedWriter; import java.io.Closeable; import java.io.IOException; import java.io.File; import java.io.FileOutputStream; import java.io.FileNotFoundException; import java.io.Flushable; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintStream; import java.io.UnsupportedEncodingException; import java.math.BigDecimal; import java.math.BigInteger; import java.math.MathContext; import java.math.RoundingMode; import java.nio.charset.Charset; import java.nio.charset.IllegalCharsetNameException; import java.nio.charset.UnsupportedCharsetException; import java.text.DateFormatSymbols; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.text.NumberFormat; import java.time.DateTimeException; import java.time.Instant; import java.time.ZoneId; import java.time.ZoneOffset; import java.time.temporal.ChronoField; import java.time.temporal.TemporalAccessor; import java.time.temporal.TemporalQueries; import java.time.temporal.UnsupportedTemporalTypeException; import libcore.icu.DecimalFormatData; import libcore.icu.LocaleData; import jdk.internal.math.DoubleConsts; import jdk.internal.math.FormattedFloatingDecimal; // Android-changed: Use localized exponent separator for %e. /** * An interpreter for printf-style format strings. This class provides support * for layout justification and alignment, common formats for numeric, string, * and date/time data, and locale-specific output. Common Java types such as * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar} * are supported. Limited formatting customization for arbitrary user types is * provided through the {@link Formattable} interface. * *
Formatters are not necessarily safe for multithreaded access. Thread * safety is optional and is the responsibility of users of methods in this * class. * *
Formatted printing for the Java language is heavily inspired by C's * {@code printf}. Although the format strings are similar to C, some * customizations have been made to accommodate the Java language and exploit * some of its features. Also, Java formatting is more strict than C's; for * example, if a conversion is incompatible with a flag, an exception will be * thrown. In C inapplicable flags are silently ignored. The format strings * are thus intended to be recognizable to C programmers but not necessarily * completely compatible with those in C. * *
Examples of expected usage: * *
* ** StringBuilder sb = new StringBuilder(); * // Send all output to the Appendable object sb * Formatter formatter = new Formatter(sb, Locale.US); * * // Explicit argument indices may be used to re-order output. * formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d") * // -> " d c b a" * * // Optional locale as the first argument can be used to get * // locale-specific formatting of numbers. The precision and width can be * // given to round and align the value. * formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E); * // -> "e = +2,7183" * * // The '(' numeric flag may be used to format negative numbers with * // parentheses rather than a minus sign. Group separators are * // automatically inserted. * formatter.format("Amount gained or lost since last statement: $ %(,.2f", * balanceDelta); * // -> "Amount gained or lost since last statement: $ (6,217.58)" *
Convenience methods for common formatting requests exist as illustrated * by the following invocations: * *
* ** // Writes a formatted string to System.out. * System.out.format("Local time: %tT", Calendar.getInstance()); * // -> "Local time: 13:34:18" * * // Writes formatted output to System.err. * System.err.printf("Unable to open file '%1$s': %2$s", * fileName, exception.getMessage()); * // -> "Unable to open file 'food': No such file or directory" *
Like C's {@code sprintf(3)}, Strings may be formatted using the static * method {@link String#format(String,Object...) String.format}: * *
* ** // Format a string containing a date. * import java.util.Calendar; * import java.util.GregorianCalendar; * import static java.util.Calendar.*; * * Calendar c = new GregorianCalendar(1995, MAY, 23); * String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c); * // -> s == "Duke's Birthday: May 23, 1995" *
This specification is divided into two sections. The first section, Summary, covers the basic formatting concepts. This * section is intended for users who want to get started quickly and are * familiar with formatted printing in other programming languages. The second * section, Details, covers the specific implementation * details. It is intended for users who want more precise specification of * formatting behavior. * *
This section is intended to provide a brief overview of formatting * concepts. For precise behavioral details, refer to the Details section. * *
Every method which produces formatted output requires a format * string and an argument list. The format string is a {@link * String} which may contain fixed text and one or more embedded format * specifiers. Consider the following example: * *
* * This format string is the first argument to the {@code format} method. It * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and * "{@code %1$tY}" which indicate how the arguments should be processed and * where they should be inserted in the text. The remaining portions of the * format string are fixed text including {@code "Dukes Birthday: "} and any * other spaces or punctuation. * * The argument list consists of all arguments passed to the method after the * format string. In the above example, the argument list is of size one and * consists of the {@link java.util.Calendar Calendar} object {@code c}. * ** Calendar c = ...; * String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c); *
* ** %[argument_index$][flags][width][.precision]conversion *
The optional argument_index is a decimal integer indicating the * position of the argument in the argument list. The first argument is * referenced by "{@code 1$}", the second by "{@code 2$}", etc. * *
The optional flags is a set of characters that modify the output * format. The set of valid flags depends on the conversion. * *
The optional width is a positive decimal integer indicating * the minimum number of characters to be written to the output. * *
The optional precision is a non-negative decimal integer usually * used to restrict the number of characters. The specific behavior depends on * the conversion. * *
The required conversion is a character indicating how the * argument should be formatted. The set of valid conversions for a given * argument depends on the argument's data type. * *
* ** %[argument_index$][flags][width]conversion *
The optional argument_index, flags and width are * defined as above. * *
The required conversion is a two character sequence. The first * character is {@code 't'} or {@code 'T'}. The second character indicates * the format to be used. These characters are similar to but not completely * identical to those defined by GNU {@code date} and POSIX * {@code strftime(3c)}. * *
* ** %[flags][width]conversion *
The optional flags and width is defined as above. * *
The required conversion is a character indicating content to be * inserted in the output. * *
Conversions are divided into the following categories: * *
'\u0025'
)
*
* For category General, Character, Numeric, * Integral and Date/Time conversion, unless otherwise specified, * if the argument arg is {@code null}, then the result is "{@code null}". * *
The following table summarizes the supported conversions. Conversions * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'}, * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'}, * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding * lower-case conversion characters except that the result is converted to * upper case according to the rules of the prevailing {@link java.util.Locale * Locale}. If there is no explicit locale specified, either at the * construction of the instance or as a parameter to its method * invocation, then the {@link java.util.Locale.Category#FORMAT default locale} * is used. * * *
Conversion * | Argument Category * | Description * |
---|---|---|
{@code 'b'}, {@code 'B'} * | general * | If the argument arg is {@code null}, then the result is * "{@code false}". If arg is a {@code boolean} or {@link * Boolean}, then the result is the string returned by {@link * String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is * "true". * * |
{@code 'h'}, {@code 'H'} * | general * | The result is obtained by invoking * {@code Integer.toHexString(arg.hashCode())}. * * |
{@code 's'}, {@code 'S'} * | general * | If arg implements {@link Formattable}, then * {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the * result is obtained by invoking {@code arg.toString()}. * * |
{@code 'c'}, {@code 'C'} * | character * | The result is a Unicode character * * |
{@code 'd'} * | integral * | The result is formatted as a decimal integer * * |
{@code 'o'} * | integral * | The result is formatted as an octal integer * * |
{@code 'x'}, {@code 'X'} * | integral * | The result is formatted as a hexadecimal integer * * |
{@code 'e'}, {@code 'E'} * | floating point * | The result is formatted as a decimal number in computerized * scientific notation * * |
{@code 'f'} * | floating point * | The result is formatted as a decimal number * * |
{@code 'g'}, {@code 'G'} * | floating point * | The result is formatted using computerized scientific notation or * decimal format, depending on the precision and the value after rounding. * * |
{@code 'a'}, {@code 'A'} * | floating point * | The result is formatted as a hexadecimal floating-point number with * a significand and an exponent. This conversion is not supported * for the {@code BigDecimal} type despite the latter's being in the * floating point argument category. * * |
{@code 't'}, {@code 'T'} * | date/time * | Prefix for date and time conversion characters. See Date/Time Conversions. * * |
{@code '%'} * | percent * | The result is a literal {@code '%'} ('\u0025' )
*
* |
{@code 'n'} * | line separator * | The result is the platform-specific line separator * * |
Any characters not explicitly defined as conversions are illegal and are * reserved for future extensions. * *
The following date and time conversion suffix characters are defined for * the {@code 't'} and {@code 'T'} conversions. The types are similar to but * not completely identical to those defined by GNU {@code date} and POSIX * {@code strftime(3c)}. Additional conversion types are provided to access * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the * second). * *
The following conversion characters are used for formatting times: * *
{@code 'H'} * | Hour of the day for the 24-hour clock, formatted as two digits with * a leading zero as necessary i.e. {@code 00 - 23}. * * |
---|---|
{@code 'I'} * | Hour for the 12-hour clock, formatted as two digits with a leading * zero as necessary, i.e. {@code 01 - 12}. * * |
{@code 'k'} * | Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. * * |
{@code 'l'} * | Hour for the 12-hour clock, i.e. {@code 1 - 12}. * * |
{@code 'M'} * | Minute within the hour formatted as two digits with a leading zero * as necessary, i.e. {@code 00 - 59}. * * |
{@code 'S'} * | Seconds within the minute, formatted as two digits with a leading * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special * value required to support leap seconds). * * |
{@code 'L'} * | Millisecond within the second formatted as three digits with * leading zeros as necessary, i.e. {@code 000 - 999}. * * |
{@code 'N'} * | Nanosecond within the second, formatted as nine digits with leading * zeros as necessary, i.e. {@code 000000000 - 999999999}. * * |
{@code 'p'} * | Locale-specific {@linkplain * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker * in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion * prefix {@code 'T'} forces this output to upper case. * * |
{@code 'z'} * | RFC 822 * style numeric time zone offset from GMT, e.g. {@code -0800}. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. * * |
{@code 'Z'} * | A string representing the abbreviation for the time zone. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. The Formatter's locale will * supersede the locale of the argument (if any). * * |
{@code 's'} * | Seconds since the beginning of the epoch starting at 1 January 1970 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to * {@code Long.MAX_VALUE/1000}. * * |
{@code 'Q'} * | Milliseconds since the beginning of the epoch starting at 1 January * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to * {@code Long.MAX_VALUE}. * * |
The following conversion characters are used for formatting dates: * *
{@code 'B'} * | Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths * full month name}, e.g. {@code "January"}, {@code "February"}. * * |
---|---|
{@code 'b'} * | Locale-specific {@linkplain * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, * e.g. {@code "Jan"}, {@code "Feb"}. * * |
{@code 'h'} * | Same as {@code 'b'}. * * |
{@code 'A'} * | Locale-specific full name of the {@linkplain * java.text.DateFormatSymbols#getWeekdays day of the week}, * e.g. {@code "Sunday"}, {@code "Monday"} * * |
{@code 'a'} * | Locale-specific short name of the {@linkplain * java.text.DateFormatSymbols#getShortWeekdays day of the week}, * e.g. {@code "Sun"}, {@code "Mon"} * * |
{@code 'C'} * | Four-digit year divided by {@code 100}, formatted as two digits * with leading zero as necessary, i.e. {@code 00 - 99} * * |
{@code 'Y'} * | Year, formatted as at least four digits with leading zeros as * necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian * calendar. * * |
{@code 'y'} * | Last two digits of the year, formatted with leading zeros as * necessary, i.e. {@code 00 - 99}. * * |
{@code 'j'} * | Day of year, formatted as three digits with leading zeros as * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. * * |
{@code 'm'} * | Month, formatted as two digits with leading zeros as necessary, * i.e. {@code 01 - 13}. * * |
{@code 'd'} * | Day of month, formatted as two digits with leading zeros as * necessary, i.e. {@code 01 - 31} * * |
{@code 'e'} * | Day of month, formatted as two digits, i.e. {@code 1 - 31}. * * |
The following conversion characters are used for formatting common * date/time compositions. * *
{@code 'R'} * | Time formatted for the 24-hour clock as {@code "%tH:%tM"} * * |
---|---|
{@code 'T'} * | Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. * * |
{@code 'r'} * | Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}. * The location of the morning or afternoon marker ({@code '%Tp'}) may be * locale-dependent. * * |
{@code 'D'} * | Date formatted as {@code "%tm/%td/%ty"}. * * |
{@code 'F'} * | ISO 8601 * complete date formatted as {@code "%tY-%tm-%td"}. * * |
{@code 'c'} * | Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. * * |
Any characters not explicitly defined as date/time conversion suffixes * are illegal and are reserved for future extensions. * *
The following table summarizes the supported flags. y means the * flag is supported for the indicated argument types. * *
Flag | General * | Character | Integral * | Floating Point * | Date/Time * | Description * |
---|---|---|---|---|---|---|
'-' | y * | y * | y * | y * | y * | The result will be left-justified. * * |
'#' | y1 * | - * | y3 * | y * | - * | The result should use a conversion-dependent alternate form * * |
'+' | - * | - * | y4 * | y * | - * | The result will always include a sign * * |
' ' | - * | - * | y4 * | y * | - * | The result will include a leading space for positive values * * |
'0' | - * | - * | y * | y * | - * | The result will be zero-padded * * |
',' | - * | - * | y2 * | y5 * | - * | The result will include locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators} * * |
'(' | - * | - * | y4 * | y5 * | - * | The result will enclose negative numbers in parentheses * * |
1 Depends on the definition of {@link Formattable}. * *
2 For {@code 'd'} conversion only. * *
3 For {@code 'o'}, {@code 'x'}, and {@code 'X'} * conversions only. * *
4 For {@code 'd'}, {@code 'o'}, {@code 'x'}, and * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger} * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}. * *
5 For {@code 'e'}, {@code 'E'}, {@code 'f'}, * {@code 'g'}, and {@code 'G'} conversions only. * *
Any characters not explicitly defined as flags are illegal and are * reserved for future extensions. * *
The width is the minimum number of characters to be written to the * output. For the line separator conversion, width is not applicable; if it * is provided, an exception will be thrown. * *
For general argument types, the precision is the maximum number of * characters to be written to the output. * *
For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'}, * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the * radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the * precision is the total number of digits in the resulting magnitude after * rounding. * *
For character, integral, and date/time argument types and the percent * and line separator conversions, the precision is not applicable; if a * precision is provided, an exception will be thrown. * *
The argument index is a decimal integer indicating the position of the * argument in the argument list. The first argument is referenced by * "{@code 1$}", the second by "{@code 2$}", etc. * *
Another way to reference arguments by position is to use the
* {@code '<'} ('\u003c'
) flag, which causes the argument for
* the previous format specifier to be re-used. For example, the following two
* statements would produce identical strings:
*
*
* ** Calendar c = ...; * String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c); * * String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c); *
This section is intended to provide behavioral details for formatting, * including conditions and exceptions, supported data types, localization, and * interactions between flags, conversions, and data types. For an overview of * formatting concepts, refer to the Summary * *
Any characters not explicitly defined as conversions, date/time * conversion suffixes, or flags are illegal and are reserved for * future extensions. Use of such a character in a format string will * cause an {@link UnknownFormatConversionException} or {@link * UnknownFormatFlagsException} to be thrown. * *
If the format specifier contains a width or precision with an invalid * value or which is otherwise unsupported, then a {@link * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException} * respectively will be thrown. Similarly, values of zero for an argument * index will result in an {@link IllegalFormatException}. * *
If a format specifier contains a conversion character that is not * applicable to the corresponding argument, then an {@link * IllegalFormatConversionException} will be thrown. * *
Values of precision must be in the range zero to * {@link Integer#MAX_VALUE}, inclusive, otherwise * {@link IllegalFormatPrecisionException} is thrown.
* *Values of width must be in the range one to * {@link Integer#MAX_VALUE}, inclusive, otherwise * {@link IllegalFormatWidthException} will be thrown * Note that widths can appear to have a negative value, but the negative sign * is a flag. For example in the format string {@code "%-20s"} the * width is 20 and the flag is "-".
* *Values of index must be in the range one to * {@link Integer#MAX_VALUE}, inclusive, otherwise * {@link IllegalFormatException} will be thrown.
* *All specified exceptions may be thrown by any of the {@code format} * methods of {@code Formatter} as well as by any {@code format} convenience * methods such as {@link String#format(String,Object...) String.format} and * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}. * *
For category General, Character, Numeric, * Integral and Date/Time conversion, unless otherwise specified, * if the argument arg is {@code null}, then the result is "{@code null}". * *
Conversions denoted by an upper-case character (i.e. {@code 'B'}, * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the * corresponding lower-case conversion characters except that the result is * converted to upper case according to the rules of the prevailing {@link * java.util.Locale Locale}. If there is no explicit locale specified, * either at the construction of the instance or as a parameter to its method * invocation, then the {@link java.util.Locale.Category#FORMAT default locale} * is used. * *
The following general conversions may be applied to any argument type: * *
{@code 'b'} * | '\u0062'
* | Produces either "{@code true}" or "{@code false}" as returned by
* {@link Boolean#toString(boolean)}.
*
* If the argument is {@code null}, then the result is * "{@code false}". If the argument is a {@code boolean} or {@link * Boolean}, then the result is the string returned by {@link * String#valueOf(boolean) String.valueOf()}. Otherwise, the result is * "{@code true}". * * If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
---|---|---|
{@code 'B'} * | '\u0042'
* | The upper-case variant of {@code 'b'}. * * |
{@code 'h'} * | '\u0068'
* | Produces a string representing the hash code value of the object.
*
* The result is obtained by invoking * {@code Integer.toHexString(arg.hashCode())}. * * If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
{@code 'H'} * | '\u0048'
* | The upper-case variant of {@code 'h'}. * * |
{@code 's'} * | '\u0073'
* | Produces a string.
*
* If the argument implements {@link Formattable}, then * its {@link Formattable#formatTo formatTo} method is invoked. * Otherwise, the result is obtained by invoking the argument's * {@code toString()} method. * * If the {@code '#'} flag is given and the argument is not a {@link * Formattable}, then a {@link FormatFlagsConversionMismatchException} * will be thrown. * * |
{@code 'S'} * | '\u0053'
* | The upper-case variant of {@code 's'}. * * |
The following flags apply to general conversions: * *
{@code '-'} * | '\u002d'
* | Left justifies the output. Spaces ('\u0020' ) will be
* added at the end of the converted value as required to fill the minimum
* width of the field. If the width is not provided, then a {@link
* MissingFormatWidthException} will be thrown. If this flag is not given
* then the output will be right-justified.
*
* |
---|---|---|
{@code '#'} * | '\u0023'
* | Requires the output use an alternate form. The definition of the * form is specified by the conversion. * * |
The width is the minimum number of characters to
* be written to the
* output. If the length of the converted value is less than the width then
* the output will be padded by ' '
('\u0020'
)
* until the total number of characters equals the width. The padding is on
* the left by default. If the {@code '-'} flag is given, then the padding
* will be on the right. If the width is not specified then there is no
* minimum.
*
*
The precision is the maximum number of characters to be written to the * output. The precision is applied before the width, thus the output will be * truncated to {@code precision} characters even if the width is greater than * the precision. If the precision is not specified then there is no explicit * limit on the number of characters. * *
{@code 'c'} * | '\u0063'
* | Formats the argument as a Unicode character as described in Unicode Character
* Representation. This may be more than one 16-bit {@code char} in
* the case where the argument represents a supplementary character.
*
* If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
---|---|---|
{@code 'C'} * | '\u0043'
* | The upper-case variant of {@code 'c'}. * * |
The {@code '-'} flag defined for General * conversions applies. If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *
The width is defined as for General conversions. * *
The precision is not applicable. If the precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *
Numeric conversions are divided into the following categories: * *
Numeric types will be formatted according to the following algorithm: * *
Number Localization Algorithm * *
After digits are obtained for the integer part, fractional part, and * exponent (as appropriate for the data type), the following transformation * is applied: * *
'\u002c'
)
* flag is given, then the locale-specific {@linkplain
* java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
* inserted by scanning the integer part of the string from least significant
* to most significant digits and inserting a separator at intervals defined by
* the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
* size}.
*
* '\u0028'
) is prepended and a {@code ')'}
* ('\u0029'
) is appended.
*
* '\u002d'
)
* is prepended.
*
* '\u002b'
)
* will be prepended.
*
* If the value is NaN or positive infinity the literal strings "NaN" or * "Infinity" respectively, will be output. If the value is negative infinity, * then the output will be "(Infinity)" if the {@code '('} flag is given * otherwise the output will be "-Infinity". These values are not localized. * *
Byte, Short, Integer, and Long * *
The following conversions may be applied to {@code byte}, {@link Byte}, * {@code short}, {@link Short}, {@code int} and {@link Integer}, * {@code long}, and {@link Long}. * *
{@code 'd'} * | '\u0064'
* | Formats the argument as a decimal integer. The localization algorithm is applied.
*
* If the {@code '0'} flag is given and the value is negative, then * the zero padding will occur after the sign. * * If the {@code '#'} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
---|---|---|
{@code 'o'} * | '\u006f'
* | Formats the argument as an integer in base eight. No localization
* is applied.
*
* If x is negative then the result will be an unsigned value * generated by adding 2n to the value where {@code n} is the * number of bits in the type as returned by the static {@code SIZE} field * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} * classes as appropriate. * * If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code '0'}. * * If the {@code '0'} flag is given then the output will be padded * with leading zeros to the field width following any indication of sign. * * If {@code '('}, {@code '+'}, ' ', or {@code ','} flags * are given then a {@link FormatFlagsConversionMismatchException} will be * thrown. * * |
{@code 'x'} * | '\u0078'
* | Formats the argument as an integer in base sixteen. No
* localization is applied.
*
* If x is negative then the result will be an unsigned value * generated by adding 2n to the value where {@code n} is the * number of bits in the type as returned by the static {@code SIZE} field * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} * classes as appropriate. * * If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code "0x"}. * * If the {@code '0'} flag is given then the output will be padded to * the field width with leading zeros after the radix indicator or sign (if * present). * * If {@code '('}, |
{@code 'X'} * | '\u0058'
* | The upper-case variant of {@code 'x'}. The entire string
* representing the number will be converted to {@linkplain
* String#toUpperCase upper case} including the {@code 'x'} (if any) and
* all hexadecimal digits {@code 'a'} - {@code 'f'}
* ('\u0061' - '\u0066' ).
*
* |
If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and * both the {@code '#'} and the {@code '0'} flags are given, then result will * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or * {@code "0X"} for hexadecimal), some number of zeros (based on the width), * and the value. * *
If the {@code '-'} flag is not given, then the space padding will occur * before the sign. * *
The following flags apply to numeric integral * conversions: * *
{@code '+'} * | '\u002b'
* | Requires the output to include a positive sign for all positive
* numbers. If this flag is not given then only negative values will
* include a sign.
*
* If both the {@code '+'} and |
---|---|---|
' '
* | '\u0020'
* | Requires the output to include a single extra space
* ('\u0020' ) for non-negative values.
*
* If both the {@code '+'} and |
{@code '0'} * | '\u0030'
* | Requires the output to be padded with leading {@linkplain
* java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
* width following any sign or radix indicator except when converting NaN
* or infinity. If the width is not provided, then a {@link
* MissingFormatWidthException} will be thrown.
*
* If both the {@code '-'} and {@code '0'} flags are given then an * {@link IllegalFormatFlagsException} will be thrown. * * |
{@code ','} * | '\u002c'
* | Requires the output to include the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as * described in the "group" section of the * localization algorithm. * * |
{@code '('} * | '\u0028'
* | Requires the output to prepend a {@code '('}
* ('\u0028' ) and append a {@code ')'}
* ('\u0029' ) to negative values.
*
* |
If no flags are given the default formatting is * as follows: * *
'\u002d'
)
*
* The width is the minimum number of characters to
* be written to the output. This includes any signs, digits, grouping
* separators, radix indicator, and parentheses. If the length of the
* converted value is less than the width then the output will be padded by
* spaces ('\u0020'
) until the total number of characters equals
* width. The padding is on the left by default. If {@code '-'} flag is
* given then the padding will be on the right. If width is not specified then
* there is no minimum.
*
*
The precision is not applicable. If precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *
BigInteger * *
The following conversions may be applied to {@link * java.math.BigInteger}. * *
{@code 'd'} * | '\u0064'
* | Requires the output to be formatted as a decimal integer. The localization algorithm is applied.
*
* If the {@code '#'} flag is given {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
---|---|---|
{@code 'o'} * | '\u006f'
* | Requires the output to be formatted as an integer in base eight.
* No localization is applied.
*
* If x is negative then the result will be a signed value
* beginning with {@code '-'} ( If x is positive or zero and the {@code '+'} flag is given
* then the result will begin with {@code '+'} ( If the {@code '#'} flag is given then the output will always begin * with {@code '0'} prefix. * * If the {@code '0'} flag is given then the output will be padded * with leading zeros to the field width following any indication of sign. * * If the {@code ','} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
{@code 'x'} * | '\u0078'
* | Requires the output to be formatted as an integer in base
* sixteen. No localization is applied.
*
* If x is negative then the result will be a signed value
* beginning with {@code '-'} ( If x is positive or zero and the {@code '+'} flag is given
* then the result will begin with {@code '+'} ( If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code "0x"}. * * If the {@code '0'} flag is given then the output will be padded to * the field width with leading zeros after the radix indicator or sign (if * present). * * If the {@code ','} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
{@code 'X'} * | '\u0058'
* | The upper-case variant of {@code 'x'}. The entire string
* representing the number will be converted to {@linkplain
* String#toUpperCase upper case} including the {@code 'x'} (if any) and
* all hexadecimal digits {@code 'a'} - {@code 'f'}
* ('\u0061' - '\u0066' ).
*
* |
If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and * both the {@code '#'} and the {@code '0'} flags are given, then result will * contain the base indicator ({@code '0'} for octal and {@code "0x"} or * {@code "0X"} for hexadecimal), some number of zeros (based on the width), * and the value. * *
If the {@code '0'} flag is given and the value is negative, then the * zero padding will occur after the sign. * *
If the {@code '-'} flag is not given, then the space padding will occur * before the sign. * *
All flags defined for Byte, Short, Integer, and * Long apply. The default behavior when no flags are * given is the same as for Byte, Short, Integer, and Long. * *
The specification of width is the same as * defined for Byte, Short, Integer, and Long. * *
The precision is not applicable. If precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *
Float and Double * *
The following conversions may be applied to {@code float}, {@link * Float}, {@code double} and {@link Double}. * *
{@code 'e'} * | '\u0065'
* | Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied.
*
* The formatting of the magnitude m depends upon its value. * * If m is NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. These values are not * localized. * * If m is positive-zero or negative-zero, then the exponent * will be {@code "+00"}. * * Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. The formatting of the sign * is described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * * Let n be the unique integer such that 10n * <= m < 10n+1; then let a be the * mathematically exact quotient of m and 10n so * that 1 <= a < 10. The magnitude is then represented as the * integer part of a, as a single decimal digit, followed by the * decimal separator followed by decimal digits representing the fractional * part of a, followed by the lower-case locale-specific {@linkplain * java.text.DecimalFormatSymbols#getExponentSeparator exponent separator} * (e.g. {@code 'e'}), followed by the sign of the exponent, followed * by a representation of n as a decimal integer, as produced by the * method {@link Long#toString(long, int)}, and zero-padded to include at * least two digits. * * The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is less * than the number of digits which would appear after the decimal point in * the string returned by {@link Float#toString(float)} or {@link * Double#toString(double)} respectively, then the value will be rounded * using the {@linkplain java.math.RoundingMode#HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * Float#toString(float)} or {@link Double#toString(double)} as * appropriate. * * If the {@code ','} flag is given, then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
---|---|---|
{@code 'E'} * | '\u0045'
* | The upper-case variant of {@code 'e'}. The exponent symbol * will be the upper-case locale-specific {@linkplain * java.text.DecimalFormatSymbols#getExponentSeparator exponent separator} * (e.g. {@code 'E'}). * * |
{@code 'g'} * | '\u0067'
* | Requires the output to be formatted in general scientific notation
* as described below. The localization
* algorithm is applied.
*
* After rounding for the precision, the formatting of the resulting * magnitude m depends on its value. * * If m is greater than or equal to 10-4 but less * than 10precision then it is represented in decimal format. * * If m is less than 10-4 or greater than or equal to * 10precision, then it is represented in computerized scientific notation. * * The total number of significant digits in m is equal to the * precision. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * * If the {@code '#'} flag is given then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
{@code 'G'} * | '\u0047'
* | The upper-case variant of {@code 'g'}. * * |
{@code 'f'} * | '\u0066'
* | Requires the output to be formatted using decimal
* format. The localization algorithm is
* applied.
*
* The result is a string that represents the sign and magnitude * (absolute value) of the argument. The formatting of the sign is * described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * * If m NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. These values are not * localized. * * The magnitude is formatted as the integer part of m, with no * leading zeroes, followed by the decimal separator followed by one or * more decimal digits representing the fractional part of m. * * The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is less * than the number of digits which would appear after the decimal point in * the string returned by {@link Float#toString(float)} or {@link * Double#toString(double)} respectively, then the value will be rounded * using the {@linkplain java.math.RoundingMode#HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * Float#toString(float)} or {@link Double#toString(double)} as * appropriate. * * |
{@code 'a'} * | '\u0061'
* | Requires the output to be formatted in hexadecimal exponential
* form. No localization is applied.
*
* The result is a string that represents the sign and magnitude * (absolute value) of the argument x. * * If x is negative or a negative-zero value then the result
* will begin with {@code '-'} ( If x is positive or a positive-zero value and the
* {@code '+'} flag is given then the result will begin with {@code '+'}
* ( The formatting of the magnitude m depends upon its value. * *
If the {@code '('} or {@code ','} flags are given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
{@code 'A'} * | '\u0041'
* | The upper-case variant of {@code 'a'}. The entire string
* representing the number will be converted to upper case including the
* {@code 'x'} ('\u0078' ) and {@code 'p'}
* ('\u0070' and all hexadecimal digits {@code 'a'} -
* {@code 'f'} ('\u0061' - '\u0066' ).
*
* |
All flags defined for Byte, Short, Integer, and * Long apply. * *
If the {@code '#'} flag is given, then the decimal separator will * always be present. * *
If no flags are given the default formatting * is as follows: * *
The width is the minimum number of characters
* to be written to the output. This includes any signs, digits, grouping
* separators, decimal separators, exponential symbol, radix indicator,
* parentheses, and strings representing infinity and NaN as applicable. If
* the length of the converted value is less than the width then the output
* will be padded by spaces ('\u0020'
) until the total number of
* characters equals width. The padding is on the left by default. If the
* {@code '-'} flag is given then the padding will be on the right. If width
* is not specified then there is no minimum.
*
*
If the conversion is {@code 'e'}, * {@code 'E'} or {@code 'f'}, then the precision is the number of digits * after the decimal separator. If the precision is not specified, then it is * assumed to be {@code 6}. * *
If the conversion is {@code 'g'} or {@code 'G'}, then the precision is * the total number of significant digits in the resulting magnitude after * rounding. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * *
If the conversion is {@code 'a'} or {@code 'A'}, then the precision * is the number of hexadecimal digits after the radix point. If the * precision is not provided, then all of the digits as returned by {@link * Double#toHexString(double)} will be output. * *
BigDecimal * *
The following conversions may be applied {@link java.math.BigDecimal * BigDecimal}. * *
{@code 'e'} * | '\u0065'
* | Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied.
*
* The formatting of the magnitude m depends upon its value. * * If m is positive-zero or negative-zero, then the exponent * will be {@code "+00"}. * * Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. The formatting of the sign * is described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * * Let n be the unique integer such that 10n
* <= m < 10n+1; then let a be the
* mathematically exact quotient of m and 10n so
* that 1 <= a < 10. The magnitude is then represented as the
* integer part of a, as a single decimal digit, followed by the
* decimal separator followed by decimal digits representing the fractional
* part of a, followed by the exponent symbol {@code 'e'}
* ( The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is * less than the number of digits to the right of the decimal point then * the value will be rounded using the * {@linkplain java.math.RoundingMode#HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * BigDecimal#toString()}. * * If the {@code ','} flag is given, then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
---|---|---|
{@code 'E'} * | '\u0045'
* | The upper-case variant of {@code 'e'}. The exponent symbol
* will be {@code 'E'} ('\u0045' ).
*
* |
{@code 'g'} * | '\u0067'
* | Requires the output to be formatted in general scientific notation
* as described below. The localization
* algorithm is applied.
*
* After rounding for the precision, the formatting of the resulting * magnitude m depends on its value. * * If m is greater than or equal to 10-4 but less * than 10precision then it is represented in decimal format. * * If m is less than 10-4 or greater than or equal to * 10precision, then it is represented in computerized scientific notation. * * The total number of significant digits in m is equal to the * precision. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * * If the {@code '#'} flag is given then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * |
{@code 'G'} * | '\u0047'
* | The upper-case variant of {@code 'g'}. * * |
{@code 'f'} * | '\u0066'
* | Requires the output to be formatted using decimal
* format. The localization algorithm is
* applied.
*
* The result is a string that represents the sign and magnitude * (absolute value) of the argument. The formatting of the sign is * described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * * The magnitude is formatted as the integer part of m, with no * leading zeroes, followed by the decimal separator followed by one or * more decimal digits representing the fractional part of m. * * The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is * less than the number of digits to the right of the decimal point * then the value will be rounded using the * {@linkplain java.math.RoundingMode#HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * BigDecimal#toString()}. * * |
All flags defined for Byte, Short, Integer, and * Long apply. * *
If the {@code '#'} flag is given, then the decimal separator will * always be present. * *
The default behavior when no flags are * given is the same as for Float and Double. * *
The specification of width and precision is the same as defined for Float and * Double. * *
This conversion may be applied to {@code long}, {@link Long}, {@link * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor} * *
{@code 't'} * | '\u0074'
* | Prefix for date and time conversion characters. * |
---|---|---|
{@code 'T'} * | '\u0054'
* | The upper-case variant of {@code 't'}. * * |
The following date and time conversion character suffixes are defined * for the {@code 't'} and {@code 'T'} conversions. The types are similar to * but not completely identical to those defined by GNU {@code date} and * POSIX {@code strftime(3c)}. Additional conversion types are provided to * access Java-specific functionality (e.g. {@code 'L'} for milliseconds * within the second). * *
The following conversion characters are used for formatting times: * *
{@code 'H'} * | '\u0048'
* | Hour of the day for the 24-hour clock, formatted as two digits with * a leading zero as necessary i.e. {@code 00 - 23}. {@code 00} * corresponds to midnight. * * |
---|---|---|
{@code 'I'} * | '\u0049'
* | Hour for the 12-hour clock, formatted as two digits with a leading * zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to * one o'clock (either morning or afternoon). * * |
{@code 'k'} * | '\u006b'
* | Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. * {@code 0} corresponds to midnight. * * |
{@code 'l'} * | '\u006c'
* | Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1} * corresponds to one o'clock (either morning or afternoon). * * |
{@code 'M'} * | '\u004d'
* | Minute within the hour formatted as two digits with a leading zero * as necessary, i.e. {@code 00 - 59}. * * |
{@code 'S'} * | '\u0053'
* | Seconds within the minute, formatted as two digits with a leading * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special * value required to support leap seconds). * * |
{@code 'L'} * | '\u004c'
* | Millisecond within the second formatted as three digits with * leading zeros as necessary, i.e. {@code 000 - 999}. * * |
{@code 'N'} * | '\u004e'
* | Nanosecond within the second, formatted as nine digits with leading * zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision * of this value is limited by the resolution of the underlying operating * system or hardware. * * |
{@code 'p'} * | '\u0070'
* | Locale-specific {@linkplain * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker * in lower case, e.g."{@code am}" or "{@code pm}". Use of the * conversion prefix {@code 'T'} forces this output to upper case. (Note * that {@code 'p'} produces lower-case output. This is different from * GNU {@code date} and POSIX {@code strftime(3c)} which produce * upper-case output.) * * |
{@code 'z'} * | '\u007a'
* | RFC 822 * style numeric time zone offset from GMT, e.g. {@code -0800}. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. * * |
{@code 'Z'} * | '\u005a'
* | A string representing the abbreviation for the time zone. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. The Formatter's locale will * supersede the locale of the argument (if any). * * |
{@code 's'} * | '\u0073'
* | Seconds since the beginning of the epoch starting at 1 January 1970 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to * {@code Long.MAX_VALUE/1000}. * * |
{@code 'Q'} * | '\u004f'
* | Milliseconds since the beginning of the epoch starting at 1 January * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to * {@code Long.MAX_VALUE}. The precision of this value is limited by * the resolution of the underlying operating system or hardware. * * |
The following conversion characters are used for formatting dates: * *
{@code 'B'} * | '\u0042'
* | Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths * full month name}, e.g. {@code "January"}, {@code "February"}. * * |
---|---|---|
{@code 'b'} * | '\u0062'
* | Locale-specific {@linkplain * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, * e.g. {@code "Jan"}, {@code "Feb"}. * * |
{@code 'h'} * | '\u0068'
* | Same as {@code 'b'}. * * |
{@code 'A'} * | '\u0041'
* | Locale-specific full name of the {@linkplain * java.text.DateFormatSymbols#getWeekdays day of the week}, * e.g. {@code "Sunday"}, {@code "Monday"} * * |
{@code 'a'} * | '\u0061'
* | Locale-specific short name of the {@linkplain * java.text.DateFormatSymbols#getShortWeekdays day of the week}, * e.g. {@code "Sun"}, {@code "Mon"} * * |
{@code 'C'} * | '\u0043'
* | Four-digit year divided by {@code 100}, formatted as two digits * with leading zero as necessary, i.e. {@code 00 - 99} * * |
{@code 'Y'} * | '\u0059' | Year, formatted to at least * four digits with leading zeros as necessary, e.g. {@code 0092} equals * {@code 92} CE for the Gregorian calendar. * * |
{@code 'y'} * | '\u0079'
* | Last two digits of the year, formatted with leading zeros as * necessary, i.e. {@code 00 - 99}. * * |
{@code 'j'} * | '\u006a'
* | Day of year, formatted as three digits with leading zeros as * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. * {@code 001} corresponds to the first day of the year. * * |
{@code 'm'} * | '\u006d'
* | Month, formatted as two digits with leading zeros as necessary, * i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the * year and ("{@code 13}" is a special value required to support lunar * calendars). * * |
{@code 'd'} * | '\u0064'
* | Day of month, formatted as two digits with leading zeros as * necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day * of the month. * * |
{@code 'e'} * | '\u0065'
* | Day of month, formatted as two digits, i.e. {@code 1 - 31} where * "{@code 1}" is the first day of the month. * * |
The following conversion characters are used for formatting common * date/time compositions. * *
{@code 'R'} * | '\u0052'
* | Time formatted for the 24-hour clock as {@code "%tH:%tM"} * * |
---|---|---|
{@code 'T'} * | '\u0054'
* | Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. * * |
{@code 'r'} * | '\u0072'
* | Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS * %Tp"}. The location of the morning or afternoon marker * ({@code '%Tp'}) may be locale-dependent. * * |
{@code 'D'} * | '\u0044'
* | Date formatted as {@code "%tm/%td/%ty"}. * * |
{@code 'F'} * | '\u0046'
* | ISO 8601 * complete date formatted as {@code "%tY-%tm-%td"}. * * |
{@code 'c'} * | '\u0063'
* | Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. * * |
The {@code '-'} flag defined for General * conversions applies. If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *
The width is the minimum number of characters to
* be written to the output. If the length of the converted value is less than
* the {@code width} then the output will be padded by spaces
* ('\u0020'
) until the total number of characters equals width.
* The padding is on the left by default. If the {@code '-'} flag is given
* then the padding will be on the right. If width is not specified then there
* is no minimum.
*
*
The precision is not applicable. If the precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *
The conversion does not correspond to any argument. * *
{@code '%'} * | The result is a literal {@code '%'} ('\u0025' )
*
* The width is the minimum number of characters to
* be written to the output including the {@code '%'}. If the length of the
* converted value is less than the {@code width} then the output will be
* padded by spaces ( The {@code '-'} flag defined for General * conversions applies. If any other flags are provided, then a * {@link IllegalFormatFlagsException } will be thrown. * * The precision is not applicable. If the precision is specified an * {@link IllegalFormatPrecisionException} will be thrown. * * |
---|
The conversion does not correspond to any argument. * *
{@code 'n'} * | the platform-specific line separator as returned by {@link * System#lineSeparator()}. * * |
---|
Flags, width, and precision are not applicable. If any are provided an * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException}, * and {@link IllegalFormatPrecisionException}, respectively will be thrown. * *
Format specifiers can reference arguments in three ways: * *
For example: * *
* ** formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s", * "a", "b", "c", "d") * // -> "d c b a d c b a" *
'\u003c'
) flag which causes the argument for
* the previous format specifier to be re-used. If there is no previous
* argument, then a {@link MissingFormatArgumentException} is thrown.
*
* * ** formatter.format("%s %s %<s %<s", "a", "b", "c", "d") * // -> "a b b b" * // "c" and "d" are ignored because they are not referenced *
* ** formatter.format("%s %s %s %s", "a", "b", "c", "d") * // -> "a b c d" *
It is possible to have a format string which uses all forms of indexing, * for example: * *
* ** formatter.format("%2$s %s %<s %s", "a", "b", "c", "d") * // -> "b a a b" * // "c" and "d" are ignored because they are not referenced *
The maximum number of arguments is limited by the maximum dimension of a * Java array as defined by * The Java Virtual Machine Specification. * If the argument index does not correspond to an * available argument, then a {@link MissingFormatArgumentException} is thrown. * *
If there are more arguments than format specifiers, the extra arguments * are ignored. * *
Unless otherwise specified, passing a {@code null} argument to any * method or constructor in this class will cause a {@link * NullPointerException} to be thrown. * * @author Iris Clark * @since 1.5 */ // Android-added: errorprone crashes with NPE otherwise. See: https://github.com/google/error-prone/issues/2638 @SuppressWarnings("FallThrough") public final class Formatter implements Closeable, Flushable { private Appendable a; private final Locale l; private IOException lastException; // Non-character value used to mark zero as uninitialized private static final char ZERO_SENTINEL = '\uFFFE'; private char zero = ZERO_SENTINEL; /** * Returns a charset object for the given charset name. * @throws NullPointerException is csn is null * @throws UnsupportedEncodingException if the charset is not supported */ private static Charset toCharset(String csn) throws UnsupportedEncodingException { Objects.requireNonNull(csn, "charsetName"); try { return Charset.forName(csn); } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) { // UnsupportedEncodingException should be thrown throw new UnsupportedEncodingException(csn); } } private static final Appendable nonNullAppendable(Appendable a) { if (a == null) return new StringBuilder(); return a; } /* Private constructors */ private Formatter(Locale l, Appendable a) { this.a = a; this.l = l; } private Formatter(Charset charset, Locale l, File file) throws FileNotFoundException { this(l, new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset))); } /** * Constructs a new formatter. * *
The destination of the formatted output is a {@link StringBuilder} * which may be retrieved by invoking {@link #out out()} and whose * current content may be converted into a string by invoking {@link * #toString toString()}. The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. */ public Formatter() { this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder()); } /** * Constructs a new formatter with the specified destination. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param a * Destination for the formatted output. If {@code a} is * {@code null} then a {@link StringBuilder} will be created. */ public Formatter(Appendable a) { this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a)); } /** * Constructs a new formatter with the specified locale. * *
The destination of the formatted output is a {@link StringBuilder} * which may be retrieved by invoking {@link #out out()} and whose current * content may be converted into a string by invoking {@link #toString * toString()}. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. */ public Formatter(Locale l) { this(l, new StringBuilder()); } /** * Constructs a new formatter with the specified destination and locale. * * @param a * Destination for the formatted output. If {@code a} is * {@code null} then a {@link StringBuilder} will be created. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. */ public Formatter(Appendable a, Locale l) { this(l, nonNullAppendable(a)); } /** * Constructs a new formatter with the specified file name. * *
The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file */ public Formatter(String fileName) throws FileNotFoundException { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName)))); } /** * Constructs a new formatter with the specified file name and charset. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(String fileName, String csn) throws FileNotFoundException, UnsupportedEncodingException { this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT)); } /** * Constructs a new formatter with the specified file name, charset, and * locale. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(String fileName, String csn, Locale l) throws FileNotFoundException, UnsupportedEncodingException { this(toCharset(csn), l, new File(fileName)); } /** * Constructs a new formatter with the specified file name, charset, and * locale. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param charset * A {@linkplain java.nio.charset.Charset charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws IOException * if an I/O error occurs while opening or creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws NullPointerException * if {@code fileName} or {@code charset} is {@code null}. */ public Formatter(String fileName, Charset charset, Locale l) throws IOException { this(Objects.requireNonNull(charset, "charset"), l, new File(fileName)); } /** * Constructs a new formatter with the specified file. * *
The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file */ public Formatter(File file) throws FileNotFoundException { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file)))); } /** * Constructs a new formatter with the specified file and charset. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(File file, String csn) throws FileNotFoundException, UnsupportedEncodingException { this(file, csn, Locale.getDefault(Locale.Category.FORMAT)); } /** * Constructs a new formatter with the specified file, charset, and * locale. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(File file, String csn, Locale l) throws FileNotFoundException, UnsupportedEncodingException { this(toCharset(csn), l, file); } /** * Constructs a new formatter with the specified file, charset, and * locale. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param charset * A {@linkplain java.nio.charset.Charset charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws IOException * if an I/O error occurs while opening or creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws NullPointerException * if {@code file} or {@code charset} is {@code null}. */ public Formatter(File file, Charset charset, Locale l) throws IOException { this(Objects.requireNonNull(charset, "charset"), l, file); } /** * Constructs a new formatter with the specified print stream. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * *
Characters are written to the given {@link java.io.PrintStream * PrintStream} object and are therefore encoded using that object's * charset. * * @param ps * The stream to use as the destination of this formatter. */ public Formatter(PrintStream ps) { this(Locale.getDefault(Locale.Category.FORMAT), (Appendable)Objects.requireNonNull(ps)); } /** * Constructs a new formatter with the specified output stream. * *
The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. */ public Formatter(OutputStream os) { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(os))); } /** * Constructs a new formatter with the specified output stream and * charset. * *
The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(OutputStream os, String csn) throws UnsupportedEncodingException { this(os, csn, Locale.getDefault(Locale.Category.FORMAT)); } /** * Constructs a new formatter with the specified output stream, charset, * and locale. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(OutputStream os, String csn, Locale l) throws UnsupportedEncodingException { this(l, new BufferedWriter(new OutputStreamWriter(os, csn))); } /** * Constructs a new formatter with the specified output stream, charset, * and locale. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param charset * A {@linkplain java.nio.charset.Charset charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws NullPointerException * if {@code os} or {@code charset} is {@code null}. */ public Formatter(OutputStream os, Charset charset, Locale l) { this(l, new BufferedWriter(new OutputStreamWriter(os, charset))); } private char zero() { char zero = this.zero; if (zero == ZERO_SENTINEL) { if ((l != null) && !l.equals(Locale.US)) { // Android-changed: Improve the performance by 10x http://b/197788756 // Unclear if this mapping is needed but inherited from DecimalFormatSymbols DecimalFormatData decimalFormatData = DecimalFormatData.getInstance(LocaleData.mapInvalidAndNullLocales(l)); return decimalFormatData.getZeroDigit(); // DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); // zero = dfs.getZeroDigit(); } else { zero = '0'; } this.zero = zero; } return zero; } /** * Returns the locale set by the construction of this formatter. * *
The {@link #format(java.util.Locale,String,Object...) format} method * for this object which has a locale argument does not change this value. * * @return {@code null} if no localization is applied, otherwise a * locale * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public Locale locale() { ensureOpen(); return l; } /** * Returns the destination for the output. * * @return The destination for the output * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public Appendable out() { ensureOpen(); return a; } /** * Returns the result of invoking {@code toString()} on the destination * for the output. For example, the following code formats text into a * {@link StringBuilder} then retrieves the resultant string: * *
* ** Formatter f = new Formatter(); * f.format("Last reboot at %tc", lastRebootDate); * String s = f.toString(); * // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000" *
An invocation of this method behaves in exactly the same way as the * invocation * *
* out().toString()* *
Depending on the specification of {@code toString} for the {@link * Appendable}, the returned string may or may not contain the characters * written to the destination. For instance, buffers typically return * their contents in {@code toString()}, but streams cannot since the * data is discarded. * * @return The result of invoking {@code toString()} on the destination * for the output * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public String toString() { ensureOpen(); return a.toString(); } /** * Flushes this formatter. If the destination implements the {@link * java.io.Flushable} interface, its {@code flush} method will be invoked. * *
Flushing a formatter writes any buffered output in the destination * to the underlying stream. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public void flush() { ensureOpen(); if (a instanceof Flushable) { try { ((Flushable)a).flush(); } catch (IOException ioe) { lastException = ioe; } } } /** * Closes this formatter. If the destination implements the {@link * java.io.Closeable} interface, its {@code close} method will be invoked. * *
Closing a formatter allows it to release resources it may be holding * (such as open files). If the formatter is already closed, then invoking * this method has no effect. * *
Attempting to invoke any methods except {@link #ioException()} in * this formatter after it has been closed will result in a {@link * FormatterClosedException}. */ public void close() { if (a == null) return; try { if (a instanceof Closeable) ((Closeable)a).close(); } catch (IOException ioe) { lastException = ioe; } finally { a = null; } } private void ensureOpen() { if (a == null) throw new FormatterClosedException(); } /** * Returns the {@code IOException} last thrown by this formatter's {@link * Appendable}. * *
If the destination's {@code append()} method never throws
* {@code IOException}, then this method will always return {@code null}.
*
* @return The last exception thrown by the Appendable or {@code null} if
* no such exception exists.
*/
public IOException ioException() {
return lastException;
}
/**
* Writes a formatted string to this object's destination using the
* specified format string and arguments. The locale used is the one
* defined during the construction of this formatter.
*
* @param format
* A format string as described in Format string
* syntax.
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java Virtual Machine Specification.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details
* section of the formatter class specification.
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*
* @return This formatter
*/
public Formatter format(String format, Object ... args) {
return format(l, format, args);
}
/**
* Writes a formatted string to this object's destination using the
* specified locale, format string, and arguments.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied. This does not change this object's locale that was
* set during construction.
*
* @param format
* A format string as described in Format string
* syntax
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java Virtual Machine Specification.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details
* section of the formatter class specification.
*
* @throws FormatterClosedException
* If this formatter has been closed by invoking its {@link
* #close()} method
*
* @return This formatter
*/
public Formatter format(Locale l, String format, Object ... args) {
ensureOpen();
// index of last argument referenced
int last = -1;
// last ordinary index
int lasto = -1;
List Now it will throw exception, as documentation says. Flag is enabled on Android 15+.
* @hide
*/
@ChangeId
@EnabledSince(targetSdkVersion = VersionCodes.VANILLA_ICE_CREAM)
public static final long ENABLE_STRICT_FORMATTER_VALIDATION = 270674727L;
private static boolean isStrictValidationEnabled() {
return VMRuntime.getSdkVersion() >= VersionCodes.VANILLA_ICE_CREAM
&& Compatibility.isChangeEnabled(ENABLE_STRICT_FORMATTER_VALIDATION);
}
private class FormatSpecifier implements FormatString {
private int index = 0;
private Flags f = Flags.NONE;
private int width = -1;
private int precision = -1;
private boolean dt = false;
private char c;
// BEGIN Android-changed: entire String is always consumed.
/*
private void index(String s, int start, int end) {
if (start >= 0) {
try {
// skip the trailing '$'
index = Integer.parseInt(s, start, end - 1, 10);
if (index <= 0) {
throw new IllegalFormatArgumentIndexException(index);
}
} catch (NumberFormatException x) {
throw new IllegalFormatArgumentIndexException(Integer.MIN_VALUE);
}
}
}
*/
private void index(String s) {
if (s != null) {
try {
// FormatSpecifierParser passes in correct String.
index = Integer.parseInt(s);
// Before V no exception was thrown by this method.
if (isStrictValidationEnabled()) {
if (index <= 0) {
throw new IllegalFormatArgumentIndexException(index);
}
}
} catch (NumberFormatException x) {
// And this exception was swallowed.
if (isStrictValidationEnabled()) {
throw new IllegalFormatArgumentIndexException(Integer.MIN_VALUE);
} else {
// -1 is the default value of the old implementation. index value was left
// untouched in NFE case.
index = -1;
}
}
}
}
// END Android-changed: entire String is always consumed.
public int index() {
return index;
}
// Android-changed: entire String is always consumed.
// private void flags(String s, int start, int end) {
private void flags(String s) {
// f = Flags.parse(s, start, end);
f = Flags.parse(s, 0, s.length());
if (f.contains(Flags.PREVIOUS))
index = -1;
}
// Android-changed: entire String is always consumed.
// private void width(String s, int start, int end) {
private void width(String s) {
width = -1;
// if (start >= 0) {
if (s != null) {
try {
// width = Integer.parseInt(s, start, end, 10);
width = Integer.parseInt(s);
if (width < 0)
throw new IllegalFormatWidthException(width);
} catch (NumberFormatException x) {
// Android-changed: prior to V this exception was swallowed.
// throw new IllegalFormatWidthException(Integer.MIN_VALUE);
if (isStrictValidationEnabled()) {
throw new IllegalFormatWidthException(Integer.MIN_VALUE);
}
}
}
}
// Android-changed: entire String is always consumed.
// private void precision(String s, int start, int end) {
private void precision(String s) {
precision = -1;
// if (start >= 0) {
if (s != null) {
try {
// Android-changed: FormatSpecifierParser passes in correct String.
// skip the leading '.'
// precision = Integer.parseInt(s, start + 1, end, 10);
precision = Integer.parseInt(s);
if (precision < 0)
throw new IllegalFormatPrecisionException(precision);
} catch (NumberFormatException x) {
// Android-changed: prior to V this exception was swallowed.
// throw new IllegalFormatPrecisionException(Integer.MIN_VALUE);
if (isStrictValidationEnabled()) {
throw new IllegalFormatPrecisionException(Integer.MIN_VALUE);
}
}
}
}
private void conversion(char conv) {
c = conv;
if (!dt) {
if (!Conversion.isValid(c)) {
throw new UnknownFormatConversionException(String.valueOf(c));
}
if (Character.isUpperCase(c)) {
f.add(Flags.UPPERCASE);
c = Character.toLowerCase(c);
}
if (Conversion.isText(c)) {
index = -2;
}
}
}
FormatSpecifier(char conv) {
c = conv;
if (Character.isUpperCase(conv)) {
f = Flags.UPPERCASE;
c = Character.toLowerCase(conv);
}
if (Conversion.isText(conv)) {
index = -2;
}
}
// BEGIN Android-changed: FormatSpecifierParser passes in the values instead of a Matcher.
FormatSpecifier(String indexStr, String flagsStr, String widthStr,
String precisionStr, String tTStr, String convStr) {
index(indexStr);
flags(flagsStr);
width(widthStr);
precision(precisionStr);
if (tTStr != null) {
dt = true;
if (tTStr.equals("T")) {
f.add(Flags.UPPERCASE);
}
}
conversion(convStr.charAt(0));
// END Android-changed: FormatSpecifierParser passes in the values instead of a Matcher.
if (dt)
checkDateTime();
else if (Conversion.isGeneral(c))
checkGeneral();
else if (Conversion.isCharacter(c))
checkCharacter();
else if (Conversion.isInteger(c))
checkInteger();
else if (Conversion.isFloat(c))
checkFloat();
else if (Conversion.isText(c))
checkText();
else
throw new UnknownFormatConversionException(String.valueOf(c));
}
public void print(Object arg, Locale l) throws IOException {
if (dt) {
printDateTime(arg, l);
return;
}
switch(c) {
case Conversion.DECIMAL_INTEGER:
case Conversion.OCTAL_INTEGER:
case Conversion.HEXADECIMAL_INTEGER:
printInteger(arg, l);
break;
case Conversion.SCIENTIFIC:
case Conversion.GENERAL:
case Conversion.DECIMAL_FLOAT:
case Conversion.HEXADECIMAL_FLOAT:
printFloat(arg, l);
break;
case Conversion.CHARACTER:
printCharacter(arg, l);
break;
case Conversion.BOOLEAN:
printBoolean(arg, l);
break;
case Conversion.STRING:
printString(arg, l);
break;
case Conversion.HASHCODE:
printHashCode(arg, l);
break;
case Conversion.LINE_SEPARATOR:
a.append(System.lineSeparator());
break;
case Conversion.PERCENT_SIGN:
print("%", l);
break;
default:
assert false;
}
}
private void printInteger(Object arg, Locale l) throws IOException {
if (arg == null)
print("null", l);
else if (arg instanceof Byte)
print(((Byte)arg).byteValue(), l);
else if (arg instanceof Short)
print(((Short)arg).shortValue(), l);
else if (arg instanceof Integer)
print(((Integer)arg).intValue(), l);
else if (arg instanceof Long)
print(((Long)arg).longValue(), l);
else if (arg instanceof BigInteger)
print(((BigInteger)arg), l);
else
failConversion(c, arg);
}
private void printFloat(Object arg, Locale l) throws IOException {
if (arg == null)
print("null", l);
else if (arg instanceof Float)
print(((Float)arg).floatValue(), l);
else if (arg instanceof Double)
print(((Double)arg).doubleValue(), l);
else if (arg instanceof BigDecimal)
print(((BigDecimal)arg), l);
else
failConversion(c, arg);
}
private void printDateTime(Object arg, Locale l) throws IOException {
if (arg == null) {
print("null", l);
return;
}
Calendar cal = null;
// Instead of Calendar.setLenient(true), perhaps we should
// wrap the IllegalArgumentException that might be thrown?
if (arg instanceof Long) {
// Note that the following method uses an instance of the
// default time zone (TimeZone.getDefaultRef().
cal = Calendar.getInstance(l == null ? Locale.US : l);
cal.setTimeInMillis((Long)arg);
} else if (arg instanceof Date) {
// Note that the following method uses an instance of the
// default time zone (TimeZone.getDefaultRef().
cal = Calendar.getInstance(l == null ? Locale.US : l);
cal.setTime((Date)arg);
} else if (arg instanceof Calendar) {
cal = (Calendar) ((Calendar) arg).clone();
cal.setLenient(true);
} else if (arg instanceof TemporalAccessor) {
print((TemporalAccessor) arg, c, l);
return;
} else {
failConversion(c, arg);
}
// Use the provided locale so that invocations of
// localizedMagnitude() use optimizations for null.
print(cal, c, l);
}
private void printCharacter(Object arg, Locale l) throws IOException {
if (arg == null) {
print("null", l);
return;
}
String s = null;
if (arg instanceof Character) {
s = ((Character)arg).toString();
} else if (arg instanceof Byte) {
byte i = (Byte) arg;
if (Character.isValidCodePoint(i))
s = new String(Character.toChars(i));
else
throw new IllegalFormatCodePointException(i);
} else if (arg instanceof Short) {
short i = (Short) arg;
if (Character.isValidCodePoint(i))
s = new String(Character.toChars(i));
else
throw new IllegalFormatCodePointException(i);
} else if (arg instanceof Integer) {
int i = (Integer) arg;
if (Character.isValidCodePoint(i))
s = new String(Character.toChars(i));
else
throw new IllegalFormatCodePointException(i);
} else {
failConversion(c, arg);
}
print(s, l);
}
private void printString(Object arg, Locale l) throws IOException {
if (arg instanceof Formattable) {
Formatter fmt = Formatter.this;
if (fmt.locale() != l)
fmt = new Formatter(fmt.out(), l);
((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
} else {
if (f.contains(Flags.ALTERNATE))
failMismatch(Flags.ALTERNATE, 's');
if (arg == null)
print("null", l);
else
print(arg.toString(), l);
}
}
private void printBoolean(Object arg, Locale l) throws IOException {
String s;
if (arg != null)
s = ((arg instanceof Boolean)
? ((Boolean)arg).toString()
: Boolean.toString(true));
else
s = Boolean.toString(false);
print(s, l);
}
private void printHashCode(Object arg, Locale l) throws IOException {
String s = (arg == null
? "null"
: Integer.toHexString(arg.hashCode()));
print(s, l);
}
private void print(String s, Locale l) throws IOException {
if (precision != -1 && precision < s.length())
s = s.substring(0, precision);
if (f.contains(Flags.UPPERCASE))
s = toUpperCaseWithLocale(s, l);
appendJustified(a, s);
}
private String toUpperCaseWithLocale(String s, Locale l) {
return s.toUpperCase(Objects.requireNonNullElse(l,
Locale.getDefault(Locale.Category.FORMAT)));
}
private void appendJustified(Appendable a, CharSequence cs) throws IOException {
if (width == -1) {
a.append(cs);
return;
}
boolean padRight = f.contains(Flags.LEFT_JUSTIFY);
int sp = width - cs.length();
if (padRight) {
a.append(cs);
}
for (int i = 0; i < sp; i++) {
a.append(' ');
}
if (!padRight) {
a.append(cs);
}
}
public String toString() {
StringBuilder sb = new StringBuilder("%");
// Flags.UPPERCASE is set internally for legal conversions.
Flags dupf = f.dup().remove(Flags.UPPERCASE);
sb.append(dupf.toString());
if (index > 0)
sb.append(index).append('$');
if (width != -1)
sb.append(width);
if (precision != -1)
sb.append('.').append(precision);
if (dt)
sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
sb.append(f.contains(Flags.UPPERCASE)
? Character.toUpperCase(c) : c);
return sb.toString();
}
private void checkGeneral() {
if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
&& f.contains(Flags.ALTERNATE))
failMismatch(Flags.ALTERNATE, c);
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
Flags.GROUP, Flags.PARENTHESES);
}
private void checkDateTime() {
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
if (!DateTime.isValid(c))
throw new UnknownFormatConversionException("t" + c);
checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
}
private void checkCharacter() {
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
}
private void checkInteger() {
checkNumeric();
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
if (c == Conversion.DECIMAL_INTEGER)
checkBadFlags(Flags.ALTERNATE);
else if (c == Conversion.OCTAL_INTEGER)
checkBadFlags(Flags.GROUP);
else
checkBadFlags(Flags.GROUP);
}
private void checkBadFlags(Flags ... badFlags) {
for (Flags badFlag : badFlags)
if (f.contains(badFlag))
failMismatch(badFlag, c);
}
private void checkFloat() {
checkNumeric();
if (c == Conversion.DECIMAL_FLOAT) {
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
} else if (c == Conversion.SCIENTIFIC) {
checkBadFlags(Flags.GROUP);
} else if (c == Conversion.GENERAL) {
checkBadFlags(Flags.ALTERNATE);
}
}
private void checkNumeric() {
if (width != -1 && width < 0)
throw new IllegalFormatWidthException(width);
if (precision != -1 && precision < 0)
throw new IllegalFormatPrecisionException(precision);
// '-' and '0' require a width
if (width == -1
&& (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
throw new MissingFormatWidthException(toString());
// bad combination
if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
|| (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
throw new IllegalFormatFlagsException(f.toString());
}
private void checkText() {
if (precision != -1)
throw new IllegalFormatPrecisionException(precision);
switch (c) {
case Conversion.PERCENT_SIGN:
if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
&& f.valueOf() != Flags.NONE.valueOf())
throw new IllegalFormatFlagsException(f.toString());
// '-' requires a width
if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
throw new MissingFormatWidthException(toString());
break;
case Conversion.LINE_SEPARATOR:
if (width != -1)
throw new IllegalFormatWidthException(width);
if (f.valueOf() != Flags.NONE.valueOf())
throw new IllegalFormatFlagsException(f.toString());
break;
default:
assert false;
}
}
private void print(byte value, Locale l) throws IOException {
long v = value;
if (value < 0
&& (c == Conversion.OCTAL_INTEGER
|| c == Conversion.HEXADECIMAL_INTEGER)) {
v += (1L << 8);
}
print(v, l);
}
private void print(short value, Locale l) throws IOException {
long v = value;
if (value < 0
&& (c == Conversion.OCTAL_INTEGER
|| c == Conversion.HEXADECIMAL_INTEGER)) {
v += (1L << 16);
assert v >= 0 : v;
}
print(v, l);
}
private void print(int value, Locale l) throws IOException {
long v = value;
if (value < 0
&& (c == Conversion.OCTAL_INTEGER
|| c == Conversion.HEXADECIMAL_INTEGER)) {
v += (1L << 32);
assert v >= 0 : v;
}
print(v, l);
}
private void print(long value, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
if (c == Conversion.DECIMAL_INTEGER) {
boolean neg = value < 0;
String valueStr = Long.toString(value, 10);
// leading sign indicator
leadingSign(sb, neg);
// the value
localizedMagnitude(sb, valueStr, neg ? 1 : 0, f, adjustWidth(width, f, neg), l);
// trailing sign indicator
trailingSign(sb, neg);
} else if (c == Conversion.OCTAL_INTEGER) {
checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
Flags.PLUS);
String s = Long.toOctalString(value);
int len = (f.contains(Flags.ALTERNATE)
? s.length() + 1
: s.length());
// apply ALTERNATE (radix indicator for octal) before ZERO_PAD
if (f.contains(Flags.ALTERNATE))
sb.append('0');
if (f.contains(Flags.ZERO_PAD)) {
trailingZeros(sb, width - len);
}
sb.append(s);
} else if (c == Conversion.HEXADECIMAL_INTEGER) {
checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
Flags.PLUS);
String s = Long.toHexString(value);
int len = (f.contains(Flags.ALTERNATE)
? s.length() + 2
: s.length());
// apply ALTERNATE (radix indicator for hex) before ZERO_PAD
if (f.contains(Flags.ALTERNATE))
sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
if (f.contains(Flags.ZERO_PAD)) {
trailingZeros(sb, width - len);
}
if (f.contains(Flags.UPPERCASE))
s = toUpperCaseWithLocale(s, l);
sb.append(s);
}
// justify based on width
appendJustified(a, sb);
}
// neg := val < 0
private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
if (!neg) {
if (f.contains(Flags.PLUS)) {
sb.append('+');
} else if (f.contains(Flags.LEADING_SPACE)) {
sb.append(' ');
}
} else {
if (f.contains(Flags.PARENTHESES))
sb.append('(');
else
sb.append('-');
}
return sb;
}
// neg := val < 0
private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
if (neg && f.contains(Flags.PARENTHESES))
sb.append(')');
return sb;
}
private void print(BigInteger value, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
boolean neg = value.signum() == -1;
BigInteger v = value.abs();
// leading sign indicator
leadingSign(sb, neg);
// the value
if (c == Conversion.DECIMAL_INTEGER) {
localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
} else if (c == Conversion.OCTAL_INTEGER) {
String s = v.toString(8);
int len = s.length() + sb.length();
if (neg && f.contains(Flags.PARENTHESES))
len++;
// apply ALTERNATE (radix indicator for octal) before ZERO_PAD
if (f.contains(Flags.ALTERNATE)) {
len++;
sb.append('0');
}
if (f.contains(Flags.ZERO_PAD)) {
trailingZeros(sb, width - len);
}
sb.append(s);
} else if (c == Conversion.HEXADECIMAL_INTEGER) {
String s = v.toString(16);
int len = s.length() + sb.length();
if (neg && f.contains(Flags.PARENTHESES))
len++;
// apply ALTERNATE (radix indicator for hex) before ZERO_PAD
if (f.contains(Flags.ALTERNATE)) {
len += 2;
sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
}
if (f.contains(Flags.ZERO_PAD)) {
trailingZeros(sb, width - len);
}
if (f.contains(Flags.UPPERCASE))
s = toUpperCaseWithLocale(s, l);
sb.append(s);
}
// trailing sign indicator
trailingSign(sb, (value.signum() == -1));
// justify based on width
appendJustified(a, sb);
}
private void print(float value, Locale l) throws IOException {
print((double) value, l);
}
private void print(double value, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
boolean neg = Double.compare(value, 0.0) == -1;
if (!Double.isNaN(value)) {
double v = Math.abs(value);
// leading sign indicator
leadingSign(sb, neg);
// the value
if (!Double.isInfinite(v))
print(sb, v, l, f, c, precision, neg);
else
sb.append(f.contains(Flags.UPPERCASE)
? "INFINITY" : "Infinity");
// trailing sign indicator
trailingSign(sb, neg);
} else {
sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
}
// justify based on width
appendJustified(a, sb);
}
// !Double.isInfinite(value) && !Double.isNaN(value)
private void print(StringBuilder sb, double value, Locale l,
Flags f, char c, int precision, boolean neg)
throws IOException
{
if (c == Conversion.SCIENTIFIC) {
// Create a new FormattedFloatingDecimal with the desired
// precision.
int prec = (precision == -1 ? 6 : precision);
FormattedFloatingDecimal fd
= FormattedFloatingDecimal.valueOf(value, prec,
FormattedFloatingDecimal.Form.SCIENTIFIC);
StringBuilder mant = new StringBuilder().append(fd.getMantissa());
addZeros(mant, prec);
// If the precision is zero and the '#' flag is set, add the
// requested decimal point.
if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
mant.append('.');
}
char[] exp = (value == 0.0)
? new char[] {'+','0','0'} : fd.getExponent();
int newW = width;
if (width != -1) {
newW = adjustWidth(width - exp.length - 1, f, neg);
}
localizedMagnitude(sb, mant, 0, f, newW, l);
// BEGIN Android-changed: Use localized exponent separator for %e.
Locale separatorLocale = (l != null) ? l : Locale.getDefault();
DecimalFormatData formatData = DecimalFormatData.getInstance(separatorLocale);
sb.append(f.contains(Flags.UPPERCASE) ?
formatData.getExponentSeparator().toUpperCase(separatorLocale) :
formatData.getExponentSeparator().toLowerCase(separatorLocale));
// END Android-changed: Use localized exponent separator for %e.
char sign = exp[0];
assert(sign == '+' || sign == '-');
sb.append(sign);
localizedMagnitudeExp(sb, exp, 1, l);
} else if (c == Conversion.DECIMAL_FLOAT) {
// Create a new FormattedFloatingDecimal with the desired
// precision.
int prec = (precision == -1 ? 6 : precision);
FormattedFloatingDecimal fd
= FormattedFloatingDecimal.valueOf(value, prec,
FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
StringBuilder mant = new StringBuilder().append(fd.getMantissa());
addZeros(mant, prec);
// If the precision is zero and the '#' flag is set, add the
// requested decimal point.
if (f.contains(Flags.ALTERNATE) && (prec == 0))
mant.append('.');
int newW = width;
if (width != -1)
newW = adjustWidth(width, f, neg);
localizedMagnitude(sb, mant, 0, f, newW, l);
} else if (c == Conversion.GENERAL) {
int prec = precision;
if (precision == -1)
prec = 6;
else if (precision == 0)
prec = 1;
char[] exp;
StringBuilder mant = new StringBuilder();
int expRounded;
if (value == 0.0) {
exp = null;
mant.append('0');
expRounded = 0;
} else {
FormattedFloatingDecimal fd
= FormattedFloatingDecimal.valueOf(value, prec,
FormattedFloatingDecimal.Form.GENERAL);
exp = fd.getExponent();
mant.append(fd.getMantissa());
expRounded = fd.getExponentRounded();
}
if (exp != null) {
prec -= 1;
} else {
prec -= expRounded + 1;
}
addZeros(mant, prec);
// If the precision is zero and the '#' flag is set, add the
// requested decimal point.
if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
mant.append('.');
}
int newW = width;
if (width != -1) {
if (exp != null)
newW = adjustWidth(width - exp.length - 1, f, neg);
else
newW = adjustWidth(width, f, neg);
}
localizedMagnitude(sb, mant, 0, f, newW, l);
if (exp != null) {
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
char sign = exp[0];
assert(sign == '+' || sign == '-');
sb.append(sign);
localizedMagnitudeExp(sb, exp, 1, l);
}
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
int prec = precision;
if (precision == -1)
// assume that we want all of the digits
prec = 0;
else if (precision == 0)
prec = 1;
String s = hexDouble(value, prec);
StringBuilder va = new StringBuilder();
boolean upper = f.contains(Flags.UPPERCASE);
sb.append(upper ? "0X" : "0x");
if (f.contains(Flags.ZERO_PAD)) {
int leadingCharacters = 2;
if(f.contains(Flags.LEADING_SPACE) ||
f.contains(Flags.PLUS) || neg) {
leadingCharacters = 3;
}
trailingZeros(sb, width - s.length() - leadingCharacters);
}
int idx = s.indexOf('p');
if (upper) {
String tmp = s.substring(0, idx);
// don't localize hex
tmp = tmp.toUpperCase(Locale.ROOT);
va.append(tmp);
} else {
va.append(s, 0, idx);
}
if (prec != 0) {
addZeros(va, prec);
}
sb.append(va);
sb.append(upper ? 'P' : 'p');
sb.append(s, idx+1, s.length());
}
}
// Add zeros to the requested precision.
private void addZeros(StringBuilder sb, int prec) {
// Look for the dot. If we don't find one, the we'll need to add
// it before we add the zeros.
int len = sb.length();
int i;
for (i = 0; i < len; i++) {
if (sb.charAt(i) == '.') {
break;
}
}
boolean needDot = false;
if (i == len) {
needDot = true;
}
// Determine existing precision.
int outPrec = len - i - (needDot ? 0 : 1);
assert (outPrec <= prec);
if (outPrec == prec) {
return;
}
// Add dot if previously determined to be necessary.
if (needDot) {
sb.append('.');
}
// Add zeros.
trailingZeros(sb, prec - outPrec);
}
// Method assumes that d > 0.
private String hexDouble(double d, int prec) {
// Let Double.toHexString handle simple cases
if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
// remove "0x"
return Double.toHexString(d).substring(2);
} else {
assert(prec >= 1 && prec <= 12);
int exponent = Math.getExponent(d);
boolean subnormal
= (exponent == Double.MIN_EXPONENT - 1);
// If this is subnormal input so normalize (could be faster to
// do as integer operation).
if (subnormal) {
double scaleUp = Math.scalb(1.0, 54);
d *= scaleUp;
// Calculate the exponent. This is not just exponent + 54
// since the former is not the normalized exponent.
exponent = Math.getExponent(d);
assert exponent >= Double.MIN_EXPONENT &&
exponent <= Double.MAX_EXPONENT: exponent;
}
int precision = 1 + prec*4;
int shiftDistance
= DoubleConsts.SIGNIFICAND_WIDTH - precision;
assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
long doppel = Double.doubleToLongBits(d);
// Deterime the number of bits to keep.
long newSignif
= (doppel & (DoubleConsts.EXP_BIT_MASK
| DoubleConsts.SIGNIF_BIT_MASK))
>> shiftDistance;
// Bits to round away.
long roundingBits = doppel & ~(~0L << shiftDistance);
// To decide how to round, look at the low-order bit of the
// working significand, the highest order discarded bit (the
// round bit) and whether any of the lower order discarded bits
// are nonzero (the sticky bit).
boolean leastZero = (newSignif & 0x1L) == 0L;
boolean round
= ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
boolean sticky = shiftDistance > 1 &&
(~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
if((leastZero && round && sticky) || (!leastZero && round)) {
newSignif++;
}
long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
newSignif = signBit | (newSignif << shiftDistance);
double result = Double.longBitsToDouble(newSignif);
if (Double.isInfinite(result) ) {
// Infinite result generated by rounding
return "1.0p1024";
} else {
String res = Double.toHexString(result).substring(2);
if (!subnormal)
return res;
else {
// Create a normalized subnormal string.
int idx = res.indexOf('p');
if (idx == -1) {
// No 'p' character in hex string.
assert false;
return null;
} else {
// Get exponent and append at the end.
String exp = res.substring(idx + 1);
int iexp = Integer.parseInt(exp) -54;
return res.substring(0, idx) + "p"
+ Integer.toString(iexp);
}
}
}
}
}
private void print(BigDecimal value, Locale l) throws IOException {
if (c == Conversion.HEXADECIMAL_FLOAT)
failConversion(c, value);
StringBuilder sb = new StringBuilder();
boolean neg = value.signum() == -1;
BigDecimal v = value.abs();
// leading sign indicator
leadingSign(sb, neg);
// the value
print(sb, v, l, f, c, precision, neg);
// trailing sign indicator
trailingSign(sb, neg);
// justify based on width
appendJustified(a, sb);
}
// value > 0
private void print(StringBuilder sb, BigDecimal value, Locale l,
Flags f, char c, int precision, boolean neg)
throws IOException
{
if (c == Conversion.SCIENTIFIC) {
// Create a new BigDecimal with the desired precision.
int prec = (precision == -1 ? 6 : precision);
int scale = value.scale();
int origPrec = value.precision();
int nzeros = 0;
int compPrec;
if (prec > origPrec - 1) {
compPrec = origPrec;
nzeros = prec - (origPrec - 1);
} else {
compPrec = prec + 1;
}
MathContext mc = new MathContext(compPrec);
BigDecimal v
= new BigDecimal(value.unscaledValue(), scale, mc);
BigDecimalLayout bdl
= new BigDecimalLayout(v.unscaledValue(), v.scale(),
BigDecimalLayoutForm.SCIENTIFIC);
StringBuilder mant = bdl.mantissa();
// Add a decimal point if necessary. The mantissa may not
// contain a decimal point if the scale is zero (the internal
// representation has no fractional part) or the original
// precision is one. Append a decimal point if '#' is set or if
// we require zero padding to get to the requested precision.
if ((origPrec == 1 || !bdl.hasDot())
&& (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
mant.append('.');
}
// Add trailing zeros in the case precision is greater than
// the number of available digits after the decimal separator.
trailingZeros(mant, nzeros);
StringBuilder exp = bdl.exponent();
int newW = width;
if (width != -1) {
newW = adjustWidth(width - exp.length() - 1, f, neg);
}
localizedMagnitude(sb, mant, 0, f, newW, l);
sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
Flags flags = f.dup().remove(Flags.GROUP);
char sign = exp.charAt(0);
assert(sign == '+' || sign == '-');
sb.append(sign);
sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
} else if (c == Conversion.DECIMAL_FLOAT) {
// Create a new BigDecimal with the desired precision.
int prec = (precision == -1 ? 6 : precision);
int scale = value.scale();
if (scale > prec) {
// more "scale" digits than the requested "precision"
int compPrec = value.precision();
if (compPrec <= scale) {
// case of 0.xxxxxx
value = value.setScale(prec, RoundingMode.HALF_UP);
} else {
compPrec -= (scale - prec);
value = new BigDecimal(value.unscaledValue(),
scale,
new MathContext(compPrec));
}
}
BigDecimalLayout bdl = new BigDecimalLayout(
value.unscaledValue(),
value.scale(),
BigDecimalLayoutForm.DECIMAL_FLOAT);
StringBuilder mant = bdl.mantissa();
int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
// Add a decimal point if necessary. The mantissa may not
// contain a decimal point if the scale is zero (the internal
// representation has no fractional part). Append a decimal
// point if '#' is set or we require zero padding to get to the
// requested precision.
if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
|| nzeros > 0)) {
mant.append('.');
}
// Add trailing zeros if the precision is greater than the
// number of available digits after the decimal separator.
trailingZeros(mant, nzeros);
localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
} else if (c == Conversion.GENERAL) {
int prec = precision;
if (precision == -1)
prec = 6;
else if (precision == 0)
prec = 1;
value = value.round(new MathContext(prec));
if ((value.equals(BigDecimal.ZERO))
|| ((value.compareTo(BigDecimal.valueOf(1, 4)) != -1)
&& (value.compareTo(BigDecimal.valueOf(1, -prec)) == -1))) {
int e = - value.scale()
+ (value.unscaledValue().toString().length() - 1);
// xxx.yyy
// g precision (# sig digits) = #x + #y
// f precision = #y
// exponent = #x - 1
// => f precision = g precision - exponent - 1
// 0.000zzz
// g precision (# sig digits) = #z
// f precision = #0 (after '.') + #z
// exponent = - #0 (after '.') - 1
// => f precision = g precision - exponent - 1
prec = prec - e - 1;
print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
neg);
} else {
print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
}
} else if (c == Conversion.HEXADECIMAL_FLOAT) {
// This conversion isn't supported. The error should be
// reported earlier.
assert false;
}
}
private class BigDecimalLayout {
private StringBuilder mant;
private StringBuilder exp;
private boolean dot = false;
private int scale;
public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
layout(intVal, scale, form);
}
public boolean hasDot() {
return dot;
}
public int scale() {
return scale;
}
public StringBuilder mantissa() {
return mant;
}
// The exponent will be formatted as a sign ('+' or '-') followed
// by the exponent zero-padded to include at least two digits.
public StringBuilder exponent() {
return exp;
}
private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
String coeff = intVal.toString();
this.scale = scale;
// Construct a buffer, with sufficient capacity for all cases.
// If E-notation is needed, length will be: +1 if negative, +1
// if '.' needed, +2 for "E+", + up to 10 for adjusted
// exponent. Otherwise it could have +1 if negative, plus
// leading "0.00000"
int len = coeff.length();
mant = new StringBuilder(len + 14);
if (scale == 0) {
if (len > 1) {
mant.append(coeff.charAt(0));
if (form == BigDecimalLayoutForm.SCIENTIFIC) {
mant.append('.');
dot = true;
mant.append(coeff, 1, len);
exp = new StringBuilder("+");
if (len < 10) {
exp.append('0').append(len - 1);
} else {
exp.append(len - 1);
}
} else {
mant.append(coeff, 1, len);
}
} else {
mant.append(coeff);
if (form == BigDecimalLayoutForm.SCIENTIFIC) {
exp = new StringBuilder("+00");
}
}
} else if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
// count of padding zeros
if (scale >= len) {
// 0.xxx form
mant.append("0.");
dot = true;
trailingZeros(mant, scale - len);
mant.append(coeff);
} else {
if (scale > 0) {
// xx.xx form
int pad = len - scale;
mant.append(coeff, 0, pad);
mant.append('.');
dot = true;
mant.append(coeff, pad, len);
} else { // scale < 0
// xx form
mant.append(coeff, 0, len);
if (intVal.signum() != 0) {
trailingZeros(mant, -scale);
}
this.scale = 0;
}
}
} else {
// x.xxx form
mant.append(coeff.charAt(0));
if (len > 1) {
mant.append('.');
dot = true;
mant.append(coeff, 1, len);
}
exp = new StringBuilder();
long adjusted = -(long) scale + (len - 1);
if (adjusted != 0) {
long abs = Math.abs(adjusted);
// require sign
exp.append(adjusted < 0 ? '-' : '+');
if (abs < 10) {
exp.append('0');
}
exp.append(abs);
} else {
exp.append("+00");
}
}
}
}
private int adjustWidth(int width, Flags f, boolean neg) {
int newW = width;
if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
newW--;
return newW;
}
// Add trailing zeros
private void trailingZeros(StringBuilder sb, int nzeros) {
for (int i = 0; i < nzeros; i++) {
sb.append('0');
}
}
private void print(Calendar t, char c, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
print(sb, t, c, l);
// justify based on width
if (f.contains(Flags.UPPERCASE)) {
appendJustified(a, toUpperCaseWithLocale(sb.toString(), l));
} else {
appendJustified(a, sb);
}
}
private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
throws IOException {
if (sb == null)
sb = new StringBuilder();
switch (c) {
case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
case DateTime.HOUR_0: // 'I' (01 - 12)
case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H
case DateTime.HOUR: { // 'l' (1 - 12) -- like I
int i = t.get(Calendar.HOUR_OF_DAY);
if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
i = (i == 0 || i == 12 ? 12 : i % 12);
Flags flags = (c == DateTime.HOUR_OF_DAY_0
|| c == DateTime.HOUR_0
? Flags.ZERO_PAD
: Flags.NONE);
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.MINUTE: { // 'M' (00 - 59)
int i = t.get(Calendar.MINUTE);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
int i = t.get(Calendar.MILLISECOND) * 1000000;
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 9, l));
break;
}
case DateTime.MILLISECOND: { // 'L' (000 - 999)
int i = t.get(Calendar.MILLISECOND);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
long i = t.getTimeInMillis();
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.AM_PM: { // 'p' (am or pm)
// Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
String[] ampm = { "AM", "PM" };
if (l != null && l != Locale.US) {
DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
ampm = dfs.getAmPmStrings();
}
String s = ampm[t.get(Calendar.AM_PM)];
sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
Locale.getDefault(Locale.Category.FORMAT))));
break;
}
case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
long i = t.getTimeInMillis() / 1000;
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
int i = t.get(Calendar.SECOND);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
boolean neg = i < 0;
sb.append(neg ? '-' : '+');
if (neg)
i = -i;
int min = i / 60000;
// combine minute and hour into a single integer
int offset = (min / 60) * 100 + (min % 60);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, offset, flags, 4, l));
break;
}
case DateTime.ZONE: { // 'Z' (symbol)
TimeZone tz = t.getTimeZone();
sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
TimeZone.SHORT,
Objects.requireNonNullElse(l, Locale.US)));
break;
}
// Date
case DateTime.NAME_OF_DAY_ABBREV: // 'a'
case DateTime.NAME_OF_DAY: { // 'A'
int i = t.get(Calendar.DAY_OF_WEEK);
Locale lt = Objects.requireNonNullElse(l, Locale.US);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_DAY)
sb.append(dfs.getWeekdays()[i]);
else
sb.append(dfs.getShortWeekdays()[i]);
break;
}
case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
case DateTime.NAME_OF_MONTH: { // 'B'
int i = t.get(Calendar.MONTH);
Locale lt = Objects.requireNonNullElse(l, Locale.US);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_MONTH)
sb.append(dfs.getMonths()[i]);
else
sb.append(dfs.getShortMonths()[i]);
break;
}
case DateTime.CENTURY: // 'C' (00 - 99)
case DateTime.YEAR_2: // 'y' (00 - 99)
case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
int i = t.get(Calendar.YEAR);
int size = 2;
switch (c) {
case DateTime.CENTURY -> i /= 100;
case DateTime.YEAR_2 -> i %= 100;
case DateTime.YEAR_4 -> size = 4;
}
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, size, l));
break;
}
case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
int i = t.get(Calendar.DATE);
Flags flags = (c == DateTime.DAY_OF_MONTH_0
? Flags.ZERO_PAD
: Flags.NONE);
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
int i = t.get(Calendar.DAY_OF_YEAR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MONTH: { // 'm' (01 - 12)
int i = t.get(Calendar.MONTH) + 1;
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
// Composites
case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
char sep = ':';
print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l);
if (c == DateTime.TIME) {
sb.append(sep);
print(sb, t, DateTime.SECOND, l);
}
break;
}
case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
char sep = ':';
print(sb, t, DateTime.HOUR_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l).append(sep);
print(sb, t, DateTime.SECOND, l).append(' ');
// this may be in wrong place for some locales
StringBuilder tsb = new StringBuilder();
print(tsb, t, DateTime.AM_PM, l);
sb.append(toUpperCaseWithLocale(tsb.toString(), l));
break;
}
case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
char sep = ' ';
print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.TIME, l).append(sep);
print(sb, t, DateTime.ZONE, l).append(sep);
print(sb, t, DateTime.YEAR_4, l);
break;
}
case DateTime.DATE: { // 'D' (mm/dd/yy)
char sep = '/';
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.YEAR_2, l);
break;
}
case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
char sep = '-';
print(sb, t, DateTime.YEAR_4, l).append(sep);
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l);
break;
}
default:
assert false;
}
return sb;
}
private void print(TemporalAccessor t, char c, Locale l) throws IOException {
StringBuilder sb = new StringBuilder();
print(sb, t, c, l);
// justify based on width
if (f.contains(Flags.UPPERCASE)) {
appendJustified(a, toUpperCaseWithLocale(sb.toString(), l));
} else {
appendJustified(a, sb);
}
}
private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
Locale l) throws IOException {
if (sb == null)
sb = new StringBuilder();
try {
switch (c) {
case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23)
int i = t.get(ChronoField.HOUR_OF_DAY);
sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
break;
}
case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H
int i = t.get(ChronoField.HOUR_OF_DAY);
sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
break;
}
case DateTime.HOUR_0: { // 'I' (01 - 12)
int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
break;
}
case DateTime.HOUR: { // 'l' (1 - 12) -- like I
int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
break;
}
case DateTime.MINUTE: { // 'M' (00 - 59)
int i = t.get(ChronoField.MINUTE_OF_HOUR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
int i;
try {
i = t.get(ChronoField.NANO_OF_SECOND);
} catch (UnsupportedTemporalTypeException u) {
i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
}
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 9, l));
break;
}
case DateTime.MILLISECOND: { // 'L' (000 - 999)
int i = t.get(ChronoField.MILLI_OF_SECOND);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
t.getLong(ChronoField.MILLI_OF_SECOND);
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.AM_PM: { // 'p' (am or pm)
// Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
String[] ampm = { "AM", "PM" };
if (l != null && l != Locale.US) {
DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
ampm = dfs.getAmPmStrings();
}
String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
Locale.getDefault(Locale.Category.FORMAT))));
break;
}
case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
long i = t.getLong(ChronoField.INSTANT_SECONDS);
Flags flags = Flags.NONE;
sb.append(localizedMagnitude(null, i, flags, width, l));
break;
}
case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
int i = t.get(ChronoField.SECOND_OF_MINUTE);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
int i = t.get(ChronoField.OFFSET_SECONDS);
boolean neg = i < 0;
sb.append(neg ? '-' : '+');
if (neg)
i = -i;
int min = i / 60;
// combine minute and hour into a single integer
int offset = (min / 60) * 100 + (min % 60);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, offset, flags, 4, l));
break;
}
case DateTime.ZONE: { // 'Z' (symbol)
ZoneId zid = t.query(TemporalQueries.zone());
if (zid == null) {
throw new IllegalFormatConversionException(c, t.getClass());
}
if (!(zid instanceof ZoneOffset) &&
t.isSupported(ChronoField.INSTANT_SECONDS)) {
Instant instant = Instant.from(t);
sb.append(TimeZone.getTimeZone(zid.getId())
.getDisplayName(zid.getRules().isDaylightSavings(instant),
TimeZone.SHORT,
Objects.requireNonNullElse(l, Locale.US)));
break;
}
sb.append(zid.getId());
break;
}
// Date
case DateTime.NAME_OF_DAY_ABBREV: // 'a'
case DateTime.NAME_OF_DAY: { // 'A'
int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
Locale lt = Objects.requireNonNullElse(l, Locale.US);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_DAY)
sb.append(dfs.getWeekdays()[i]);
else
sb.append(dfs.getShortWeekdays()[i]);
break;
}
case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
case DateTime.NAME_OF_MONTH: { // 'B'
int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
Locale lt = Objects.requireNonNullElse(l, Locale.US);
DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
if (c == DateTime.NAME_OF_MONTH)
sb.append(dfs.getMonths()[i]);
else
sb.append(dfs.getShortMonths()[i]);
break;
}
case DateTime.CENTURY: // 'C' (00 - 99)
case DateTime.YEAR_2: // 'y' (00 - 99)
case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
int i = t.get(ChronoField.YEAR_OF_ERA);
int size = 2;
switch (c) {
case DateTime.CENTURY -> i /= 100;
case DateTime.YEAR_2 -> i %= 100;
case DateTime.YEAR_4 -> size = 4;
}
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, size, l));
break;
}
case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
int i = t.get(ChronoField.DAY_OF_MONTH);
Flags flags = (c == DateTime.DAY_OF_MONTH_0
? Flags.ZERO_PAD
: Flags.NONE);
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
int i = t.get(ChronoField.DAY_OF_YEAR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 3, l));
break;
}
case DateTime.MONTH: { // 'm' (01 - 12)
int i = t.get(ChronoField.MONTH_OF_YEAR);
Flags flags = Flags.ZERO_PAD;
sb.append(localizedMagnitude(null, i, flags, 2, l));
break;
}
// Composites
case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
char sep = ':';
print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l);
if (c == DateTime.TIME) {
sb.append(sep);
print(sb, t, DateTime.SECOND, l);
}
break;
}
case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
char sep = ':';
print(sb, t, DateTime.HOUR_0, l).append(sep);
print(sb, t, DateTime.MINUTE, l).append(sep);
print(sb, t, DateTime.SECOND, l).append(' ');
// this may be in wrong place for some locales
StringBuilder tsb = new StringBuilder();
print(tsb, t, DateTime.AM_PM, l);
sb.append(toUpperCaseWithLocale(tsb.toString(), l));
break;
}
case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
char sep = ' ';
print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.TIME, l).append(sep);
print(sb, t, DateTime.ZONE, l).append(sep);
print(sb, t, DateTime.YEAR_4, l);
break;
}
case DateTime.DATE: { // 'D' (mm/dd/yy)
char sep = '/';
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
print(sb, t, DateTime.YEAR_2, l);
break;
}
case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
char sep = '-';
print(sb, t, DateTime.YEAR_4, l).append(sep);
print(sb, t, DateTime.MONTH, l).append(sep);
print(sb, t, DateTime.DAY_OF_MONTH_0, l);
break;
}
default:
assert false;
}
} catch (DateTimeException x) {
throw new IllegalFormatConversionException(c, t.getClass());
}
return sb;
}
// -- Methods to support throwing exceptions --
private void failMismatch(Flags f, char c) {
String fs = f.toString();
throw new FormatFlagsConversionMismatchException(fs, c);
}
private void failConversion(char c, Object arg) {
throw new IllegalFormatConversionException(c, arg.getClass());
}
private char getZero(Locale l) {
if ((l != null) && !l.equals(locale())) {
// Android-changed: Improve the performance by 10x http://b/197788756
// Unclear if this mapping is needed but inherited from DecimalFormatSymbols
l = LocaleData.mapInvalidAndNullLocales(l);
DecimalFormatData decimalFormatData = DecimalFormatData.getInstance(l);
return decimalFormatData.getZeroDigit();
// DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
// return dfs.getZeroDigit();
}
return zero();
}
private StringBuilder localizedMagnitude(StringBuilder sb,
long value, Flags f, int width, Locale l) {
return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
}
private StringBuilder localizedMagnitude(StringBuilder sb,
CharSequence value, final int offset, Flags f, int width,
Locale l) {
if (sb == null) {
sb = new StringBuilder();
}
int begin = sb.length();
char zero = getZero(l);
// determine localized grouping separator and size
char grpSep = '\0';
int grpSize = -1;
char decSep = '\0';
int len = value.length();
int dot = len;
for (int j = offset; j < len; j++) {
if (value.charAt(j) == '.') {
dot = j;
break;
}
}
if (dot < len) {
if (l == null || l.equals(Locale.US)) {
decSep = '.';
} else {
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
decSep = dfs.getDecimalSeparator();
}
}
if (f.contains(Flags.GROUP)) {
if (l == null || l.equals(Locale.US)) {
grpSep = ',';
grpSize = 3;
} else {
DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
grpSep = dfs.getGroupingSeparator();
// Android-removed: DecimalFormat is always returned.
/*
DecimalFormat df = null;
NumberFormat nf = NumberFormat.getNumberInstance(l);
if (nf instanceof DecimalFormat) {
df = (DecimalFormat) nf;
} else {
// Use DecimalFormat constructor to obtain the instance,
// in case NumberFormat.getNumberInstance(l)
// returns instance other than DecimalFormat
LocaleProviderAdapter adapter = LocaleProviderAdapter
.getAdapter(NumberFormatProvider.class, l);
if (!(adapter instanceof ResourceBundleBasedAdapter)) {
adapter = LocaleProviderAdapter.getResourceBundleBased();
}
String[] all = adapter.getLocaleResources(l)
.getNumberPatterns();
df = new DecimalFormat(all[0], dfs);
}
*/
DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
grpSize = df.getGroupingSize();
if (!df.isGroupingUsed() || grpSize == 0) {
grpSep = '\0';
}
}
}
// localize the digits inserting group separators as necessary
for (int j = offset; j < len; j++) {
if (j == dot) {
sb.append(decSep);
// no more group separators after the decimal separator
grpSep = '\0';
continue;
}
char c = value.charAt(j);
sb.append((char) ((c - '0') + zero));
if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
sb.append(grpSep);
}
}
// apply zero padding
if (width != -1 && f.contains(Flags.ZERO_PAD)) {
for (int k = sb.length(); k < width; k++) {
sb.insert(begin, zero);
}
}
return sb;
}
// Specialized localization of exponents, where the source value can only
// contain characters '0' through '9', starting at index offset, and no
// group separators is added for any locale.
private void localizedMagnitudeExp(StringBuilder sb, char[] value,
final int offset, Locale l) {
char zero = getZero(l);
int len = value.length;
for (int j = offset; j < len; j++) {
char c = value[j];
sb.append((char) ((c - '0') + zero));
}
}
}
private static class Flags {
private int flags;
static final Flags NONE = new Flags(0); // ''
// duplicate declarations from Formattable.java
static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-'
static final Flags UPPERCASE = new Flags(1<<1); // '^'
static final Flags ALTERNATE = new Flags(1<<2); // '#'
// numerics
static final Flags PLUS = new Flags(1<<3); // '+'
static final Flags LEADING_SPACE = new Flags(1<<4); // ' '
static final Flags ZERO_PAD = new Flags(1<<5); // '0'
static final Flags GROUP = new Flags(1<<6); // ','
static final Flags PARENTHESES = new Flags(1<<7); // '('
// indexing
static final Flags PREVIOUS = new Flags(1<<8); // '<'
private Flags(int f) {
flags = f;
}
public int valueOf() {
return flags;
}
public boolean contains(Flags f) {
return (flags & f.valueOf()) == f.valueOf();
}
public Flags dup() {
return new Flags(flags);
}
private Flags add(Flags f) {
flags |= f.valueOf();
return this;
}
public Flags remove(Flags f) {
flags &= ~f.valueOf();
return this;
}
public static Flags parse(String s, int start, int end) {
Flags f = new Flags(0);
for (int i = start; i < end; i++) {
char c = s.charAt(i);
Flags v = parse(c);
if (f.contains(v))
throw new DuplicateFormatFlagsException(v.toString());
f.add(v);
}
return f;
}
// parse those flags which may be provided by users
private static Flags parse(char c) {
return switch (c) {
case '-' -> LEFT_JUSTIFY;
case '#' -> ALTERNATE;
case '+' -> PLUS;
case ' ' -> LEADING_SPACE;
case '0' -> ZERO_PAD;
case ',' -> GROUP;
case '(' -> PARENTHESES;
case '<' -> PREVIOUS;
default -> throw new UnknownFormatFlagsException(String.valueOf(c));
};
}
// Returns a string representation of the current {@code Flags}.
public static String toString(Flags f) {
return f.toString();
}
public String toString() {
StringBuilder sb = new StringBuilder();
if (contains(LEFT_JUSTIFY)) sb.append('-');
if (contains(UPPERCASE)) sb.append('^');
if (contains(ALTERNATE)) sb.append('#');
if (contains(PLUS)) sb.append('+');
if (contains(LEADING_SPACE)) sb.append(' ');
if (contains(ZERO_PAD)) sb.append('0');
if (contains(GROUP)) sb.append(',');
if (contains(PARENTHESES)) sb.append('(');
if (contains(PREVIOUS)) sb.append('<');
return sb.toString();
}
}
private static class Conversion {
// Byte, Short, Integer, Long, BigInteger
// (and associated primitives due to autoboxing)
static final char DECIMAL_INTEGER = 'd';
static final char OCTAL_INTEGER = 'o';
static final char HEXADECIMAL_INTEGER = 'x';
static final char HEXADECIMAL_INTEGER_UPPER = 'X';
// Float, Double, BigDecimal
// (and associated primitives due to autoboxing)
static final char SCIENTIFIC = 'e';
static final char SCIENTIFIC_UPPER = 'E';
static final char GENERAL = 'g';
static final char GENERAL_UPPER = 'G';
static final char DECIMAL_FLOAT = 'f';
static final char HEXADECIMAL_FLOAT = 'a';
static final char HEXADECIMAL_FLOAT_UPPER = 'A';
// Character, Byte, Short, Integer
// (and associated primitives due to autoboxing)
static final char CHARACTER = 'c';
static final char CHARACTER_UPPER = 'C';
// java.util.Date, java.util.Calendar, long
static final char DATE_TIME = 't';
static final char DATE_TIME_UPPER = 'T';
// if (arg.TYPE != boolean) return boolean
// if (arg != null) return true; else return false;
static final char BOOLEAN = 'b';
static final char BOOLEAN_UPPER = 'B';
// if (arg instanceof Formattable) arg.formatTo()
// else arg.toString();
static final char STRING = 's';
static final char STRING_UPPER = 'S';
// arg.hashCode()
static final char HASHCODE = 'h';
static final char HASHCODE_UPPER = 'H';
static final char LINE_SEPARATOR = 'n';
static final char PERCENT_SIGN = '%';
static boolean isValid(char c) {
return switch (c) {
case BOOLEAN,
BOOLEAN_UPPER,
STRING,
STRING_UPPER,
HASHCODE,
HASHCODE_UPPER,
CHARACTER,
CHARACTER_UPPER,
DECIMAL_INTEGER,
OCTAL_INTEGER,
HEXADECIMAL_INTEGER,
HEXADECIMAL_INTEGER_UPPER,
SCIENTIFIC,
SCIENTIFIC_UPPER,
GENERAL,
GENERAL_UPPER,
DECIMAL_FLOAT,
HEXADECIMAL_FLOAT,
HEXADECIMAL_FLOAT_UPPER,
LINE_SEPARATOR,
PERCENT_SIGN -> true;
default -> false;
};
}
// Returns true iff the Conversion is applicable to all objects.
static boolean isGeneral(char c) {
return switch (c) {
case BOOLEAN,
BOOLEAN_UPPER,
STRING,
STRING_UPPER,
HASHCODE,
HASHCODE_UPPER -> true;
default -> false;
};
}
// Returns true iff the Conversion is applicable to character.
static boolean isCharacter(char c) {
return switch (c) {
case CHARACTER,
CHARACTER_UPPER -> true;
default -> false;
};
}
// Returns true iff the Conversion is an integer type.
static boolean isInteger(char c) {
return switch (c) {
case DECIMAL_INTEGER,
OCTAL_INTEGER,
HEXADECIMAL_INTEGER,
HEXADECIMAL_INTEGER_UPPER -> true;
default -> false;
};
}
// Returns true iff the Conversion is a floating-point type.
static boolean isFloat(char c) {
return switch (c) {
case SCIENTIFIC,
SCIENTIFIC_UPPER,
GENERAL,
GENERAL_UPPER,
DECIMAL_FLOAT,
HEXADECIMAL_FLOAT,
HEXADECIMAL_FLOAT_UPPER -> true;
default -> false;
};
}
// Returns true iff the Conversion does not require an argument
static boolean isText(char c) {
return switch (c) {
case LINE_SEPARATOR, PERCENT_SIGN -> true;
default -> false;
};
}
}
private static class DateTime {
static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
static final char HOUR_0 = 'I'; // (01 - 12)
static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H
static final char HOUR = 'l'; // (1 - 12) -- like I
static final char MINUTE = 'M'; // (00 - 59)
static final char NANOSECOND = 'N'; // (000000000 - 999999999)
static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999)
static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
static final char AM_PM = 'p'; // (am or pm)
static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
static final char SECOND = 'S'; // (00 - 60 - leap second)
static final char TIME = 'T'; // (24 hour hh:mm:ss)
static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus?
static final char ZONE = 'Z'; // (symbol)
// Date
static final char NAME_OF_DAY_ABBREV = 'a'; // 'a'
static final char NAME_OF_DAY = 'A'; // 'A'
static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b'
static final char NAME_OF_MONTH = 'B'; // 'B'
static final char CENTURY = 'C'; // (00 - 99)
static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31)
static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d
static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b
static final char DAY_OF_YEAR = 'j'; // (001 - 366)
static final char MONTH = 'm'; // (01 - 12)
static final char YEAR_2 = 'y'; // (00 - 99)
static final char YEAR_4 = 'Y'; // (0000 - 9999)
// Composites
static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M)
static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M)
static final char DATE_TIME = 'c';
// (Sat Nov 04 12:02:33 EST 1999)
static final char DATE = 'D'; // (mm/dd/yy)
static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d)
static boolean isValid(char c) {
return switch (c) {
case HOUR_OF_DAY_0, HOUR_0, HOUR_OF_DAY, HOUR, MINUTE, NANOSECOND, MILLISECOND, MILLISECOND_SINCE_EPOCH,
AM_PM, SECONDS_SINCE_EPOCH, SECOND, TIME, ZONE_NUMERIC, ZONE -> true;
// Date
case NAME_OF_DAY_ABBREV, NAME_OF_DAY, NAME_OF_MONTH_ABBREV, NAME_OF_MONTH, CENTURY, DAY_OF_MONTH_0,
DAY_OF_MONTH, NAME_OF_MONTH_ABBREV_X, DAY_OF_YEAR, MONTH, YEAR_2, YEAR_4 -> true;
// Composites
case TIME_12_HOUR, TIME_24_HOUR, DATE_TIME, DATE, ISO_STANDARD_DATE -> true;
default -> false;
};
}
}
}