script-astra/Android/Sdk/sources/android-35/android/icu/text/UnicodeSet.java
localadmin 4380f00a78 init
2025-01-20 18:15:20 +03:00

5014 lines
192 KiB
Java
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* GENERATED SOURCE. DO NOT MODIFY. */
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 1996-2016, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*/
package android.icu.text;
import java.io.IOException;
import java.text.ParsePosition;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.SortedSet;
import java.util.TreeSet;
import android.icu.impl.BMPSet;
import android.icu.impl.CharacterPropertiesImpl;
import android.icu.impl.PatternProps;
import android.icu.impl.RuleCharacterIterator;
import android.icu.impl.SortedSetRelation;
import android.icu.impl.StringRange;
import android.icu.impl.UCaseProps;
import android.icu.impl.UCharacterProperty;
import android.icu.impl.UPropertyAliases;
import android.icu.impl.UnicodeSetStringSpan;
import android.icu.impl.Utility;
import android.icu.lang.CharSequences;
import android.icu.lang.CharacterProperties;
import android.icu.lang.UCharacter;
import android.icu.lang.UProperty;
import android.icu.lang.UScript;
import android.icu.util.Freezable;
import android.icu.util.ICUUncheckedIOException;
import android.icu.util.OutputInt;
import android.icu.util.ULocale;
import android.icu.util.VersionInfo;
/**
* A mutable set of Unicode characters and multicharacter strings.
* Objects of this class represent <em>character classes</em> used
* in regular expressions. A character specifies a subset of Unicode
* code points. Legal code points are U+0000 to U+10FFFF, inclusive.
*
* Note: method freeze() will not only make the set immutable, but
* also makes important methods much higher performance:
* contains(c), containsNone(...), span(...), spanBack(...) etc.
* After the object is frozen, any subsequent call that wants to change
* the object will throw UnsupportedOperationException.
*
* <p>The UnicodeSet class is not designed to be subclassed.
*
* <p><code>UnicodeSet</code> supports two APIs. The first is the
* <em>operand</em> API that allows the caller to modify the value of
* a <code>UnicodeSet</code> object. It conforms to Java 2's
* <code>java.util.Set</code> interface, although
* <code>UnicodeSet</code> does not actually implement that
* interface. All methods of <code>Set</code> are supported, with the
* modification that they take a character range or single character
* instead of an <code>Object</code>, and they take a
* <code>UnicodeSet</code> instead of a <code>Collection</code>. The
* operand API may be thought of in terms of boolean logic: a boolean
* OR is implemented by <code>add</code>, a boolean AND is implemented
* by <code>retain</code>, a boolean XOR is implemented by
* <code>complement</code> taking an argument, and a boolean NOT is
* implemented by <code>complement</code> with no argument. In terms
* of traditional set theory function names, <code>add</code> is a
* union, <code>retain</code> is an intersection, <code>remove</code>
* is an asymmetric difference, and <code>complement</code> with no
* argument is a set complement with respect to the superset range
* <code>MIN_VALUE-MAX_VALUE</code>
*
* <p>The second API is the
* <code>applyPattern()</code>/<code>toPattern()</code> API from the
* <code>java.text.Format</code>-derived classes. Unlike the
* methods that add characters, add categories, and control the logic
* of the set, the method <code>applyPattern()</code> sets all
* attributes of a <code>UnicodeSet</code> at once, based on a
* string pattern.
*
* <p><b>Pattern syntax</b></p>
*
* Patterns are accepted by the constructors and the
* <code>applyPattern()</code> methods and returned by the
* <code>toPattern()</code> method. These patterns follow a syntax
* similar to that employed by version 8 regular expression character
* classes. Here are some simple examples:
*
* <blockquote>
* <table>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[]</code></td>
* <td style="vertical-align: top;">No characters</td>
* </tr><tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[a]</code></td>
* <td style="vertical-align: top;">The character 'a'</td>
* </tr><tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[ae]</code></td>
* <td style="vertical-align: top;">The characters 'a' and 'e'</td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[a-e]</code></td>
* <td style="vertical-align: top;">The characters 'a' through 'e' inclusive, in Unicode code
* point order</td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[\\u4E01]</code></td>
* <td style="vertical-align: top;">The character U+4E01</td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[a{ab}{ac}]</code></td>
* <td style="vertical-align: top;">The character 'a' and the multicharacter strings &quot;ab&quot; and
* &quot;ac&quot;</td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top; horizontal-align: left;"><code>[\p{Lu}]</code></td>
* <td style="vertical-align: top;">All characters in the general category Uppercase Letter</td>
* </tr>
* </table>
* </blockquote>
*
* Any character may be preceded by a backslash in order to remove any special
* meaning. White space characters, as defined by the Unicode Pattern_White_Space property, are
* ignored, unless they are escaped.
*
* <p>Property patterns specify a set of characters having a certain
* property as defined by the Unicode standard. Both the POSIX-like
* "[:Lu:]" and the Perl-like syntax "\p{Lu}" are recognized. For a
* complete list of supported property patterns, see the User's Guide
* for UnicodeSet at
* <a href="https://unicode-org.github.io/icu/userguide/strings/unicodeset">
* https://unicode-org.github.io/icu/userguide/strings/unicodeset</a>.
* Actual determination of property data is defined by the underlying
* Unicode database as implemented by UCharacter.
*
* <p>Patterns specify individual characters, ranges of characters, and
* Unicode property sets. When elements are concatenated, they
* specify their union. To complement a set, place a '^' immediately
* after the opening '['. Property patterns are inverted by modifying
* their delimiters; "[:^foo]" and "\P{foo}". In any other location,
* '^' has no special meaning.
*
* <p>Since ICU 70, "[^...]", "[:^foo]", "\P{foo}", and "[:binaryProperty=No:]"
* perform a “code point complement” (all code points minus the original set),
* removing all multicharacter strings,
* equivalent to .{@link #complement()}.{@link #removeAllStrings()} .
* The {@link #complement()} API function continues to perform a
* symmetric difference with all code points and thus retains all multicharacter strings.
*
* <p>Ranges are indicated by placing two a '-' between two
* characters, as in "a-z". This specifies the range of all
* characters from the left to the right, in Unicode order. If the
* left character is greater than or equal to the
* right character it is a syntax error. If a '-' occurs as the first
* character after the opening '[' or '[^', or if it occurs as the
* last character before the closing ']', then it is taken as a
* literal. Thus "[a\\-b]", "[-ab]", and "[ab-]" all indicate the same
* set of three characters, 'a', 'b', and '-'.
*
* <p>Sets may be intersected using the '&amp;' operator or the asymmetric
* set difference may be taken using the '-' operator, for example,
* "[[:L:]&amp;[\\u0000-\\u0FFF]]" indicates the set of all Unicode letters
* with values less than 4096. Operators ('&amp;' and '|') have equal
* precedence and bind left-to-right. Thus
* "[[:L:]-[a-z]-[\\u0100-\\u01FF]]" is equivalent to
* "[[[:L:]-[a-z]]-[\\u0100-\\u01FF]]". This only really matters for
* difference; intersection is commutative.
*
* <table>
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[a]</code><td>The set containing 'a'
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[a-z]</code><td>The set containing 'a'
* through 'z' and all letters in between, in Unicode order
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[^a-z]</code><td>The set containing
* all characters but 'a' through 'z',
* that is, U+0000 through 'a'-1 and 'z'+1 through U+10FFFF
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[[<em>pat1</em>][<em>pat2</em>]]</code>
* <td>The union of sets specified by <em>pat1</em> and <em>pat2</em>
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[[<em>pat1</em>]&amp;[<em>pat2</em>]]</code>
* <td>The intersection of sets specified by <em>pat1</em> and <em>pat2</em>
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[[<em>pat1</em>]-[<em>pat2</em>]]</code>
* <td>The asymmetric difference of sets specified by <em>pat1</em> and
* <em>pat2</em>
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[:Lu:] or \p{Lu}</code>
* <td>The set of characters having the specified
* Unicode property; in
* this case, Unicode uppercase letters
* <tr style="vertical-align: top;"><td style="white-space: nowrap;"><code>[:^Lu:] or \P{Lu}</code>
* <td>The set of characters <em>not</em> having the given
* Unicode property
* </table>
*
* <p><b>Formal syntax</b></p>
*
* <blockquote>
* <table>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>pattern :=&nbsp; </code></td>
* <td style="vertical-align: top;"><code>('[' '^'? item* ']') |
* property</code></td>
* </tr>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>item :=&nbsp; </code></td>
* <td style="vertical-align: top;"><code>char | (char '-' char) | pattern-expr<br>
* </code></td>
* </tr>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>pattern-expr :=&nbsp; </code></td>
* <td style="vertical-align: top;"><code>pattern | pattern-expr pattern |
* pattern-expr op pattern<br>
* </code></td>
* </tr>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>op :=&nbsp; </code></td>
* <td style="vertical-align: top;"><code>'&amp;' | '-'<br>
* </code></td>
* </tr>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>special :=&nbsp; </code></td>
* <td style="vertical-align: top;"><code>'[' | ']' | '-'<br>
* </code></td>
* </tr>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>char :=&nbsp; </code></td>
* <td style="vertical-align: top;"><em>any character that is not</em><code> special<br>
* | ('\\' </code><em>any character</em><code>)<br>
* | ('&#92;u' hex hex hex hex)<br>
* </code></td>
* </tr>
* <tr style="vertical-align: top">
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>hex :=&nbsp; </code></td>
* <td style="vertical-align: top;"><code>'0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' |<br>
* &nbsp;&nbsp;&nbsp;&nbsp;'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'</code></td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top;" align="right"><code>property :=&nbsp; </code></td>
* <td style="vertical-align: top;"><em>a Unicode property set pattern</em></td>
* </tr>
* </table>
* <br>
* <table border="1">
* <tr>
* <td>Legend: <table>
* <tr>
* <td style="white-space: nowrap; vertical-align: top;"><code>a := b</code></td>
* <td style="width: 20; vertical-align: top;">&nbsp; </td>
* <td style="vertical-align: top;"><code>a</code> may be replaced by <code>b</code> </td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top;"><code>a?</code></td>
* <td style="vertical-align: top;"></td>
* <td style="vertical-align: top;">zero or one instance of <code>a</code><br>
* </td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top;"><code>a*</code></td>
* <td style="vertical-align: top;"></td>
* <td style="vertical-align: top;">one or more instances of <code>a</code><br>
* </td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top;"><code>a | b</code></td>
* <td style="vertical-align: top;"></td>
* <td style="vertical-align: top;">either <code>a</code> or <code>b</code><br>
* </td>
* </tr>
* <tr>
* <td style="white-space: nowrap; vertical-align: top;"><code>'a'</code></td>
* <td style="vertical-align: top;"></td>
* <td style="vertical-align: top;">the literal string between the quotes </td>
* </tr>
* </table>
* </td>
* </tr>
* </table>
* </blockquote>
* <p>To iterate over contents of UnicodeSet, the following are available:
* <ul><li>{@link #ranges()} to iterate through the ranges</li>
* <li>{@link #strings()} to iterate through the strings</li>
* <li>{@link #iterator()} to iterate through the entire contents in a single loop.
* That method is, however, not particularly efficient, since it "boxes" each code point into a String.
* </ul>
* All of the above can be used in <b>for</b> loops.
* The {@link android.icu.text.UnicodeSetIterator UnicodeSetIterator} can also be used, but not in <b>for</b> loops.
* <p>To replace, count elements, or delete spans, see {@link android.icu.text.UnicodeSetSpanner UnicodeSetSpanner}.
*
* @author Alan Liu
* @see UnicodeSetIterator
* @see UnicodeSetSpanner
*/
public class UnicodeSet extends UnicodeFilter implements Iterable<String>, Comparable<UnicodeSet>, Freezable<UnicodeSet> {
private static final SortedSet<String> EMPTY_STRINGS =
Collections.unmodifiableSortedSet(new TreeSet<String>());
/**
* Constant for the empty set.
*/
public static final UnicodeSet EMPTY = new UnicodeSet().freeze();
/**
* Constant for the set of all code points. (Since UnicodeSets can include strings, does not include everything that a UnicodeSet can.)
*/
public static final UnicodeSet ALL_CODE_POINTS = new UnicodeSet(0, 0x10FFFF).freeze();
private static XSymbolTable XSYMBOL_TABLE = null; // for overriding the the function processing
private static final int LOW = 0x000000; // LOW <= all valid values. ZERO for codepoints
private static final int HIGH = 0x110000; // HIGH > all valid values. 10000 for code units.
// 110000 for codepoints
/**
* Enough for sets with few ranges.
* For example, White_Space has 10 ranges, list length 21.
*/
private static final int INITIAL_CAPACITY = 25;
/** Max list [0, 1, 2, ..., max code point, HIGH] */
private static final int MAX_LENGTH = HIGH + 1;
/**
* Minimum value that can be stored in a UnicodeSet.
*/
public static final int MIN_VALUE = LOW;
/**
* Maximum value that can be stored in a UnicodeSet.
*/
public static final int MAX_VALUE = HIGH - 1;
private int len; // length used; list may be longer to minimize reallocs
private int[] list; // MUST be terminated with HIGH
private int[] rangeList; // internal buffer
private int[] buffer; // internal buffer
// is not private so that UnicodeSetIterator can get access
SortedSet<String> strings = EMPTY_STRINGS;
/**
* The pattern representation of this set. This may not be the
* most economical pattern. It is the pattern supplied to
* applyPattern(), with variables substituted and whitespace
* removed. For sets constructed without applyPattern(), or
* modified using the non-pattern API, this string will be null,
* indicating that toPattern() must generate a pattern
* representation from the inversion list.
*/
private String pat = null;
// Special property set IDs
private static final String ANY_ID = "ANY"; // [\u0000-\U0010FFFF]
private static final String ASCII_ID = "ASCII"; // [\u0000-\u007F]
private static final String ASSIGNED = "Assigned"; // [:^Cn:]
private volatile BMPSet bmpSet; // The set is frozen if bmpSet or stringSpan is not null.
private volatile UnicodeSetStringSpan stringSpan;
//----------------------------------------------------------------
// Public API
//----------------------------------------------------------------
/**
* Constructs an empty set.
*/
public UnicodeSet() {
list = new int[INITIAL_CAPACITY];
list[0] = HIGH;
len = 1;
}
/**
* Constructs a copy of an existing set.
*/
public UnicodeSet(UnicodeSet other) {
set(other);
}
/**
* Constructs a set containing the given range. If <code>end &gt;
* start</code> then an empty set is created.
*
* @param start first character, inclusive, of range
* @param end last character, inclusive, of range
*/
public UnicodeSet(int start, int end) {
this();
add(start, end);
}
/**
* Quickly constructs a set from a set of ranges &lt;s0, e0, s1, e1, s2, e2, ..., sn, en&gt;.
* There must be an even number of integers, and they must be all greater than zero,
* all less than or equal to Character.MAX_CODE_POINT.
* In each pair (..., si, ei, ...) it must be true that si &lt;= ei
* Between adjacent pairs (...ei, sj...), it must be true that ei+1 &lt; sj
* @param pairs pairs of character representing ranges
*/
public UnicodeSet(int... pairs) {
if ((pairs.length & 1) != 0) {
throw new IllegalArgumentException("Must have even number of integers");
}
list = new int[pairs.length + 1]; // don't allocate extra space, because it is likely that this is a fixed set.
len = list.length;
int last = -1; // used to ensure that the results are monotonically increasing.
int i = 0;
while (i < pairs.length) {
int start = pairs[i];
if (last >= start) {
throw new IllegalArgumentException("Must be monotonically increasing.");
}
list[i++] = start;
int limit = pairs[i] + 1;
if (start >= limit) {
throw new IllegalArgumentException("Must be monotonically increasing.");
}
list[i++] = last = limit;
}
list[i] = HIGH; // terminate
}
/**
* Constructs a set from the given pattern. See the class description
* for the syntax of the pattern language. Whitespace is ignored.
* @param pattern a string specifying what characters are in the set
* @exception java.lang.IllegalArgumentException if the pattern contains
* a syntax error.
*/
public UnicodeSet(String pattern) {
this();
applyPattern(pattern, null, null, IGNORE_SPACE);
}
/**
* Constructs a set from the given pattern. See the class description
* for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param ignoreWhitespace if true, ignore Unicode Pattern_White_Space characters
* @exception java.lang.IllegalArgumentException if the pattern contains
* a syntax error.
*/
public UnicodeSet(String pattern, boolean ignoreWhitespace) {
this();
applyPattern(pattern, null, null, ignoreWhitespace ? IGNORE_SPACE : 0);
}
/**
* Constructs a set from the given pattern. See the class description
* for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param options a bitmask indicating which options to apply.
* Valid options are {@link #IGNORE_SPACE} and
* at most one of {@link #CASE_INSENSITIVE}, {@link #ADD_CASE_MAPPINGS},
* {@link #SIMPLE_CASE_INSENSITIVE}. These case options are mutually exclusive.
* @exception java.lang.IllegalArgumentException if the pattern contains
* a syntax error.
*/
public UnicodeSet(String pattern, int options) {
this();
applyPattern(pattern, null, null, options);
}
/**
* Constructs a set from the given pattern. See the class description
* for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param pos on input, the position in pattern at which to start parsing.
* On output, the position after the last character parsed.
* @param symbols a symbol table mapping variables to char[] arrays
* and chars to UnicodeSets
* @exception java.lang.IllegalArgumentException if the pattern
* contains a syntax error.
*/
public UnicodeSet(String pattern, ParsePosition pos, SymbolTable symbols) {
this();
applyPattern(pattern, pos, symbols, IGNORE_SPACE);
}
/**
* Constructs a set from the given pattern. See the class description
* for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param pos on input, the position in pattern at which to start parsing.
* On output, the position after the last character parsed.
* @param symbols a symbol table mapping variables to char[] arrays
* and chars to UnicodeSets
* @param options a bitmask indicating which options to apply.
* Valid options are {@link #IGNORE_SPACE} and
* at most one of {@link #CASE_INSENSITIVE}, {@link #ADD_CASE_MAPPINGS},
* {@link #SIMPLE_CASE_INSENSITIVE}. These case options are mutually exclusive.
* @exception java.lang.IllegalArgumentException if the pattern
* contains a syntax error.
*/
public UnicodeSet(String pattern, ParsePosition pos, SymbolTable symbols, int options) {
this();
applyPattern(pattern, pos, symbols, options);
}
/**
* Return a new set that is equivalent to this one.
*/
@Override
public Object clone() {
if (isFrozen()) {
return this;
}
return new UnicodeSet(this);
}
/**
* Make this object represent the range <code>start - end</code>.
* If <code>start &gt; end</code> then this object is set to an empty range.
*
* @param start first character in the set, inclusive
* @param end last character in the set, inclusive
*/
public UnicodeSet set(int start, int end) {
checkFrozen();
clear();
complement(start, end);
return this;
}
/**
* Make this object represent the same set as <code>other</code>.
* @param other a <code>UnicodeSet</code> whose value will be
* copied to this object
*/
public UnicodeSet set(UnicodeSet other) {
checkFrozen();
list = Arrays.copyOf(other.list, other.len);
len = other.len;
pat = other.pat;
if (other.hasStrings()) {
strings = new TreeSet<>(other.strings);
} else {
strings = EMPTY_STRINGS;
}
return this;
}
/**
* Modifies this set to represent the set specified by the given pattern.
* See the class description for the syntax of the pattern language.
* Whitespace is ignored.
* @param pattern a string specifying what characters are in the set
* @exception java.lang.IllegalArgumentException if the pattern
* contains a syntax error.
*/
public final UnicodeSet applyPattern(String pattern) {
checkFrozen();
return applyPattern(pattern, null, null, IGNORE_SPACE);
}
/**
* Modifies this set to represent the set specified by the given pattern,
* optionally ignoring whitespace.
* See the class description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param ignoreWhitespace if true then Unicode Pattern_White_Space characters are ignored
* @exception java.lang.IllegalArgumentException if the pattern
* contains a syntax error.
*/
public UnicodeSet applyPattern(String pattern, boolean ignoreWhitespace) {
checkFrozen();
return applyPattern(pattern, null, null, ignoreWhitespace ? IGNORE_SPACE : 0);
}
/**
* Modifies this set to represent the set specified by the given pattern,
* optionally ignoring whitespace.
* See the class description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param options a bitmask indicating which options to apply.
* Valid options are {@link #IGNORE_SPACE} and
* at most one of {@link #CASE_INSENSITIVE}, {@link #ADD_CASE_MAPPINGS},
* {@link #SIMPLE_CASE_INSENSITIVE}. These case options are mutually exclusive.
* @exception java.lang.IllegalArgumentException if the pattern
* contains a syntax error.
*/
public UnicodeSet applyPattern(String pattern, int options) {
checkFrozen();
return applyPattern(pattern, null, null, options);
}
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a UnicodeSet pattern.
* @hide unsupported on Android
*/
public static boolean resemblesPattern(String pattern, int pos) {
return ((pos+1) < pattern.length() &&
pattern.charAt(pos) == '[') ||
resemblesPropertyPattern(pattern, pos);
}
/**
* TODO: create Appendable version of UTF16.append(buf, c),
* maybe in new class Appendables?
* @throws IOException
*/
private static void appendCodePoint(Appendable app, int c) {
assert 0 <= c && c <= 0x10ffff;
try {
if (c <= 0xffff) {
app.append((char) c);
} else {
app.append(UTF16.getLeadSurrogate(c)).append(UTF16.getTrailSurrogate(c));
}
} catch (IOException e) {
throw new ICUUncheckedIOException(e);
}
}
/**
* TODO: create class Appendables?
* @throws IOException
*/
private static void append(Appendable app, CharSequence s) {
try {
app.append(s);
} catch (IOException e) {
throw new ICUUncheckedIOException(e);
}
}
/**
* Append the <code>toPattern()</code> representation of a
* string to the given <code>Appendable</code>.
*/
private static <T extends Appendable> T _appendToPat(T buf, String s, boolean escapeUnprintable) {
int cp;
for (int i = 0; i < s.length(); i += Character.charCount(cp)) {
cp = s.codePointAt(i);
_appendToPat(buf, cp, escapeUnprintable);
}
return buf;
}
/**
* Append the <code>toPattern()</code> representation of a
* character to the given <code>Appendable</code>.
*/
private static <T extends Appendable> T _appendToPat(T buf, int c, boolean escapeUnprintable) {
try {
if (escapeUnprintable ? Utility.isUnprintable(c) : Utility.shouldAlwaysBeEscaped(c)) {
// Use hex escape notation (<backslash>uxxxx or <backslash>Uxxxxxxxx) for anything
// unprintable
return Utility.escape(buf, c);
}
// Okay to let ':' pass through
switch (c) {
case '[': // SET_OPEN:
case ']': // SET_CLOSE:
case '-': // HYPHEN:
case '^': // COMPLEMENT:
case '&': // INTERSECTION:
case '\\': //BACKSLASH:
case '{':
case '}':
case '$':
case ':':
buf.append('\\');
break;
default:
// Escape whitespace
if (PatternProps.isWhiteSpace(c)) {
buf.append('\\');
}
break;
}
appendCodePoint(buf, c);
return buf;
} catch (IOException e) {
throw new ICUUncheckedIOException(e);
}
}
private static <T extends Appendable> T _appendToPat(
T result, int start, int end, boolean escapeUnprintable) {
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
if ((start+1) != end ||
// Avoid writing what looks like a lead+trail surrogate pair.
start == 0xdbff) {
try {
result.append('-');
} catch (IOException e) {
throw new ICUUncheckedIOException(e);
}
}
_appendToPat(result, end, escapeUnprintable);
}
return result;
}
/**
* Returns a string representation of this set. If the result of
* calling this function is passed to a UnicodeSet constructor, it
* will produce another set that is equal to this one.
*/
@Override
public String toPattern(boolean escapeUnprintable) {
if (pat != null && !escapeUnprintable) {
return pat;
}
StringBuilder result = new StringBuilder();
return _toPattern(result, escapeUnprintable).toString();
}
/**
* Append a string representation of this set to result. This will be
* a cleaned version of the string passed to applyPattern(), if there
* is one. Otherwise it will be generated.
*/
private <T extends Appendable> T _toPattern(T result,
boolean escapeUnprintable) {
if (pat == null) {
return appendNewPattern(result, escapeUnprintable, true);
}
try {
if (!escapeUnprintable) {
// TODO: The C++ version does not have this shortcut, and instead
// always cleans up the pattern string,
// which also escapes Utility.shouldAlwaysBeEscaped(c).
// We should sync these implementations.
result.append(pat);
return result;
}
boolean oddNumberOfBackslashes = false;
for (int i=0; i<pat.length(); ) {
int c = pat.codePointAt(i);
i += Character.charCount(c);
if (Utility.isUnprintable(c)) {
// If the unprintable character is preceded by an odd
// number of backslashes, then it has been escaped
// and we omit the last backslash.
Utility.escape(result, c);
oddNumberOfBackslashes = false;
} else if (!oddNumberOfBackslashes && c == '\\') {
// Temporarily withhold an odd-numbered backslash.
oddNumberOfBackslashes = true;
} else {
if (oddNumberOfBackslashes) {
result.append('\\');
}
appendCodePoint(result, c);
oddNumberOfBackslashes = false;
}
}
if (oddNumberOfBackslashes) {
result.append('\\');
}
return result;
} catch (IOException e) {
throw new ICUUncheckedIOException(e);
}
}
/**
* Generate and append a string representation of this set to result.
* This does not use this.pat, the cleaned up copy of the string
* passed to applyPattern().
*
* @param result the buffer into which to generate the pattern
* @param escapeUnprintable escape unprintable characters if true
*/
public StringBuffer _generatePattern(StringBuffer result, boolean escapeUnprintable) {
return _generatePattern(result, escapeUnprintable, true);
}
/**
* Generate and append a string representation of this set to result.
* This does not use this.pat, the cleaned up copy of the string
* passed to applyPattern().
*
* @param result the buffer into which to generate the pattern
* @param escapeUnprintable escape unprintable characters if true
* @param includeStrings if false, doesn't include the strings.
*/
public StringBuffer _generatePattern(StringBuffer result,
boolean escapeUnprintable, boolean includeStrings) {
return appendNewPattern(result, escapeUnprintable, includeStrings);
}
// Implementation of public _generatePattern().
// Allows other callers to use a StringBuilder while the existing API is stuck with StringBuffer.
private <T extends Appendable> T appendNewPattern(
T result, boolean escapeUnprintable, boolean includeStrings) {
try {
result.append('[');
int i = 0;
int limit = len & ~1; // = 2 * getRangeCount()
// If the set contains at least 2 intervals and includes both
// MIN_VALUE and MAX_VALUE, then the inverse representation will
// be more economical.
// if (getRangeCount() >= 2 &&
// getRangeStart(0) == MIN_VALUE &&
// getRangeEnd(last) == MAX_VALUE)
// Invariant: list[len-1] == HIGH == MAX_VALUE + 1
// If limit == len then len is even and the last range ends with MAX_VALUE.
//
// *But* do not write the inverse (complement) if there are strings.
// Since ICU 70, the '^' performs a code point complement which removes all strings.
if (len >= 4 && list[0] == 0 && limit == len && !hasStrings()) {
// Emit the inverse
result.append('^');
// Offsetting the inversion list index by one lets us
// iterate over the ranges of the set complement.
i = 1;
--limit;
}
// Emit the ranges as pairs.
while (i < limit) {
int start = list[i]; // getRangeStart()
int end = list[i + 1] - 1; // getRangeEnd() = range limit minus one
if (!(0xd800 <= end && end <= 0xdbff)) {
_appendToPat(result, start, end, escapeUnprintable);
i += 2;
} else {
// The range ends with a lead surrogate.
// Avoid writing what looks like a lead+trail surrogate pair.
// 1. Postpone ranges that start with a lead surrogate code point.
int firstLead = i;
while ((i += 2) < limit && list[i] <= 0xdbff) {}
int firstAfterLead = i;
// 2. Write following ranges that start with a trail surrogate code point.
while (i < limit && (start = list[i]) <= 0xdfff) {
_appendToPat(result, start, list[i + 1] - 1, escapeUnprintable);
i += 2;
}
// 3. Now write the postponed ranges.
for (int j = firstLead; j < firstAfterLead; j += 2) {
_appendToPat(result, list[j], list[j + 1] - 1, escapeUnprintable);
}
}
}
if (includeStrings && hasStrings()) {
for (String s : strings) {
result.append('{');
_appendToPat(result, s, escapeUnprintable);
result.append('}');
}
}
result.append(']');
return result;
} catch (IOException e) {
throw new ICUUncheckedIOException(e);
}
}
/**
* Returns the number of elements in this set (its cardinality)
* Note than the elements of a set may include both individual
* codepoints and strings.
*
* @return the number of elements in this set (its cardinality).
*/
public int size() {
int n = 0;
int count = getRangeCount();
for (int i = 0; i < count; ++i) {
n += getRangeEnd(i) - getRangeStart(i) + 1;
}
return n + strings.size();
}
/**
* Returns <tt>true</tt> if this set contains no elements.
*
* @return <tt>true</tt> if this set contains no elements.
*/
public boolean isEmpty() {
return len == 1 && !hasStrings();
}
/**
* @return true if this set contains multi-character strings or the empty string.
*/
public boolean hasStrings() {
return !strings.isEmpty();
}
/**
* Implementation of UnicodeMatcher API. Returns <tt>true</tt> if
* this set contains any character whose low byte is the given
* value. This is used by <tt>RuleBasedTransliterator</tt> for
* indexing.
*/
@Override
public boolean matchesIndexValue(int v) {
/* The index value v, in the range [0,255], is contained in this set if
* it is contained in any pair of this set. Pairs either have the high
* bytes equal, or unequal. If the high bytes are equal, then we have
* aaxx..aayy, where aa is the high byte. Then v is contained if xx <=
* v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa.
* Then v is contained if xx <= v || v <= yy. (This is identical to the
* time zone month containment logic.)
*/
for (int i=0; i<getRangeCount(); ++i) {
int low = getRangeStart(i);
int high = getRangeEnd(i);
if ((low & ~0xFF) == (high & ~0xFF)) {
if ((low & 0xFF) <= v && v <= (high & 0xFF)) {
return true;
}
} else if ((low & 0xFF) <= v || v <= (high & 0xFF)) {
return true;
}
}
if (hasStrings()) {
for (String s : strings) {
if (s.isEmpty()) {
continue; // skip the empty string
}
int c = UTF16.charAt(s, 0);
if ((c & 0xFF) == v) {
return true;
}
}
}
return false;
}
/**
* Implementation of UnicodeMatcher.matches(). Always matches the
* longest possible multichar string.
*/
@Override
public int matches(Replaceable text,
int[] offset,
int limit,
boolean incremental) {
if (offset[0] == limit) {
if (contains(UnicodeMatcher.ETHER)) {
return incremental ? U_PARTIAL_MATCH : U_MATCH;
} else {
return U_MISMATCH;
}
} else {
if (hasStrings()) { // try strings first
// might separate forward and backward loops later
// for now they are combined
// TODO Improve efficiency of this, at least in the forward
// direction, if not in both. In the forward direction we
// can assume the strings are sorted.
boolean forward = offset[0] < limit;
// firstChar is the leftmost char to match in the
// forward direction or the rightmost char to match in
// the reverse direction.
char firstChar = text.charAt(offset[0]);
// If there are multiple strings that can match we
// return the longest match.
int highWaterLength = 0;
for (String trial : strings) {
if (trial.isEmpty()) {
continue; // skip the empty string
}
char c = trial.charAt(forward ? 0 : trial.length() - 1);
// Strings are sorted, so we can optimize in the
// forward direction.
if (forward && c > firstChar) break;
if (c != firstChar) continue;
int length = matchRest(text, offset[0], limit, trial);
if (incremental) {
int maxLen = forward ? limit-offset[0] : offset[0]-limit;
if (length == maxLen) {
// We have successfully matched but only up to limit.
return U_PARTIAL_MATCH;
}
}
if (length == trial.length()) {
// We have successfully matched the whole string.
if (length > highWaterLength) {
highWaterLength = length;
}
// In the forward direction we know strings
// are sorted so we can bail early.
if (forward && length < highWaterLength) {
break;
}
continue;
}
}
// We've checked all strings without a partial match.
// If we have full matches, return the longest one.
if (highWaterLength != 0) {
offset[0] += forward ? highWaterLength : -highWaterLength;
return U_MATCH;
}
}
return super.matches(text, offset, limit, incremental);
}
}
/**
* Returns the longest match for s in text at the given position.
* If limit > start then match forward from start+1 to limit
* matching all characters except s.charAt(0). If limit < start,
* go backward starting from start-1 matching all characters
* except s.charAt(s.length()-1). This method assumes that the
* first character, text.charAt(start), matches s, so it does not
* check it.
* @param text the text to match
* @param start the first character to match. In the forward
* direction, text.charAt(start) is matched against s.charAt(0).
* In the reverse direction, it is matched against
* s.charAt(s.length()-1).
* @param limit the limit offset for matching, either last+1 in
* the forward direction, or last-1 in the reverse direction,
* where last is the index of the last character to match.
* @return If part of s matches up to the limit, return |limit -
* start|. If all of s matches before reaching the limit, return
* s.length(). If there is a mismatch between s and text, return
* 0
*/
private static int matchRest (Replaceable text, int start, int limit, String s) {
int maxLen;
int slen = s.length();
if (start < limit) {
maxLen = limit - start;
if (maxLen > slen) maxLen = slen;
for (int i = 1; i < maxLen; ++i) {
if (text.charAt(start + i) != s.charAt(i)) return 0;
}
} else {
maxLen = start - limit;
if (maxLen > slen) maxLen = slen;
--slen; // <=> slen = s.length() - 1;
for (int i = 1; i < maxLen; ++i) {
if (text.charAt(start - i) != s.charAt(slen - i)) return 0;
}
}
return maxLen;
}
/**
* Tests whether the text matches at the offset. If so, returns the end of the longest substring that it matches. If not, returns -1.
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public int matchesAt(CharSequence text, int offset) {
int lastLen = -1;
strings:
if (hasStrings()) {
char firstChar = text.charAt(offset);
String trial = null;
// find the first string starting with firstChar
Iterator<String> it = strings.iterator();
while (it.hasNext()) {
trial = it.next();
char firstStringChar = trial.charAt(0);
if (firstStringChar < firstChar) continue;
if (firstStringChar > firstChar) break strings;
}
// now keep checking string until we get the longest one
for (;;) {
int tempLen = matchesAt(text, offset, trial);
if (lastLen > tempLen) break strings;
lastLen = tempLen;
if (!it.hasNext()) break;
trial = it.next();
}
}
if (lastLen < 2) {
int cp = UTF16.charAt(text, offset);
if (contains(cp)) lastLen = UTF16.getCharCount(cp);
}
return offset+lastLen;
}
/**
* Does one string contain another, starting at a specific offset?
* @param text text to match
* @param offsetInText offset within that text
* @param substring substring to match at offset in text
* @return -1 if match fails, otherwise other.length()
*/
// Note: This method was moved from CollectionUtilities
private static int matchesAt(CharSequence text, int offsetInText, CharSequence substring) {
int len = substring.length();
int textLength = text.length();
if (textLength + offsetInText > len) {
return -1;
}
int i = 0;
for (int j = offsetInText; i < len; ++i, ++j) {
char pc = substring.charAt(i);
char tc = text.charAt(j);
if (pc != tc) return -1;
}
return i;
}
/**
* Implementation of UnicodeMatcher API. Union the set of all
* characters that may be matched by this object into the given
* set.
* @param toUnionTo the set into which to union the source characters
*/
@Override
public void addMatchSetTo(UnicodeSet toUnionTo) {
toUnionTo.addAll(this);
}
/**
* Returns the index of the given character within this set, where
* the set is ordered by ascending code point. If the character
* is not in this set, return -1. The inverse of this method is
* <code>charAt()</code>.
* @return an index from 0..size()-1, or -1
*/
public int indexOf(int c) {
if (c < MIN_VALUE || c > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(c, 6));
}
int i = 0;
int n = 0;
for (;;) {
int start = list[i++];
if (c < start) {
return -1;
}
int limit = list[i++];
if (c < limit) {
return n + c - start;
}
n += limit - start;
}
}
/**
* Returns the character at the given index within this set, where
* the set is ordered by ascending code point. If the index is
* out of range, return -1. The inverse of this method is
* <code>indexOf()</code>.
* @param index an index from 0..size()-1
* @return the character at the given index, or -1.
*/
public int charAt(int index) {
if (index >= 0) {
// len2 is the largest even integer <= len, that is, it is len
// for even values and len-1 for odd values. With odd values
// the last entry is UNICODESET_HIGH.
int len2 = len & ~1;
for (int i=0; i < len2;) {
int start = list[i++];
int count = list[i++] - start;
if (index < count) {
return start + index;
}
index -= count;
}
}
return -1;
}
/**
* Adds the specified range to this set if it is not already
* present. If this set already contains the specified range,
* the call leaves this set unchanged. If <code>start &gt; end</code>
* then an empty range is added, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be added
* to this set.
* @param end last character, inclusive, of range to be added
* to this set.
*/
public UnicodeSet add(int start, int end) {
checkFrozen();
return add_unchecked(start, end);
}
/**
* Adds all characters in range (uses preferred naming convention).
* @param start The index of where to start on adding all characters.
* @param end The index of where to end on adding all characters.
* @return a reference to this object
*/
public UnicodeSet addAll(int start, int end) {
checkFrozen();
return add_unchecked(start, end);
}
// for internal use, after checkFrozen has been called
private UnicodeSet add_unchecked(int start, int end) {
if (start < MIN_VALUE || start > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(start, 6));
}
if (end < MIN_VALUE || end > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(end, 6));
}
if (start < end) {
int limit = end + 1;
// Fast path for adding a new range after the last one.
// Odd list length: [..., lastStart, lastLimit, HIGH]
if ((len & 1) != 0) {
// If the list is empty, set lastLimit low enough to not be adjacent to 0.
int lastLimit = len == 1 ? -2 : list[len - 2];
if (lastLimit <= start) {
checkFrozen();
if (lastLimit == start) {
// Extend the last range.
list[len - 2] = limit;
if (limit == HIGH) {
--len;
}
} else {
list[len - 1] = start;
if (limit < HIGH) {
ensureCapacity(len + 2);
list[len++] = limit;
list[len++] = HIGH;
} else { // limit == HIGH
ensureCapacity(len + 1);
list[len++] = HIGH;
}
}
pat = null;
return this;
}
}
// This is slow. Could be much faster using findCodePoint(start)
// and modifying the list, dealing with adjacent & overlapping ranges.
add(range(start, end), 2, 0);
} else if (start == end) {
add(start);
}
return this;
}
// /**
// * Format out the inversion list as a string, for debugging. Uncomment when
// * needed.
// */
// public final String dump() {
// StringBuffer buf = new StringBuffer("[");
// for (int i=0; i<len; ++i) {
// if (i != 0) buf.append(", ");
// int c = list[i];
// //if (c <= 0x7F && c != '\n' && c != '\r' && c != '\t' && c != ' ') {
// // buf.append((char) c);
// //} else {
// buf.append("U+").append(Utility.hex(c, (c<0x10000)?4:6));
// //}
// }
// buf.append("]");
// return buf.toString();
// }
/**
* Adds the specified character to this set if it is not already
* present. If this set already contains the specified character,
* the call leaves this set unchanged.
*/
public final UnicodeSet add(int c) {
checkFrozen();
return add_unchecked(c);
}
// for internal use only, after checkFrozen has been called
private final UnicodeSet add_unchecked(int c) {
if (c < MIN_VALUE || c > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(c, 6));
}
// find smallest i such that c < list[i]
// if odd, then it is IN the set
// if even, then it is OUT of the set
int i = findCodePoint(c);
// already in set?
if ((i & 1) != 0) return this;
// HIGH is 0x110000
// assert(list[len-1] == HIGH);
// empty = [HIGH]
// [start_0, limit_0, start_1, limit_1, HIGH]
// [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// i == 0 means c is before the first range
// TODO: Is the "list[i]-1" a typo? Even if you pass MAX_VALUE into
// add_unchecked, the maximum value that "c" will be compared to
// is "MAX_VALUE-1" meaning that "if (c == MAX_VALUE)" will
// never be reached according to this logic.
if (c == list[i]-1) {
// c is before start of next range
list[i] = c;
// if we touched the HIGH mark, then add a new one
if (c == MAX_VALUE) {
ensureCapacity(len+1);
list[len++] = HIGH;
}
if (i > 0 && c == list[i-1]) {
// collapse adjacent ranges
// [..., start_k-1, c, c, limit_k, ..., HIGH]
// ^
// list[i]
System.arraycopy(list, i+1, list, i-1, len-i-1);
len -= 2;
}
}
else if (i > 0 && c == list[i-1]) {
// c is after end of prior range
list[i-1]++;
// no need to check for collapse here
}
else {
// At this point we know the new char is not adjacent to
// any existing ranges, and it is not 10FFFF.
// [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// [..., start_k-1, limit_k-1, c, c+1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// Don't use ensureCapacity() to save on copying.
// NOTE: This has no measurable impact on performance,
// but it might help in some usage patterns.
if (len+2 > list.length) {
int[] temp = new int[nextCapacity(len + 2)];
if (i != 0) System.arraycopy(list, 0, temp, 0, i);
System.arraycopy(list, i, temp, i+2, len-i);
list = temp;
} else {
System.arraycopy(list, i, list, i+2, len-i);
}
list[i] = c;
list[i+1] = c+1;
len += 2;
}
pat = null;
return this;
}
/**
* Adds the specified multicharacter to this set if it is not already
* present. If this set already contains the multicharacter,
* the call leaves this set unchanged.
* Thus "ch" =&gt; {"ch"}
*
* @param s the source string
* @return this object, for chaining
*/
public final UnicodeSet add(CharSequence s) {
checkFrozen();
int cp = getSingleCP(s);
if (cp < 0) {
String str = s.toString();
if (!strings.contains(str)) {
addString(str);
pat = null;
}
} else {
add_unchecked(cp, cp);
}
return this;
}
private void addString(CharSequence s) {
if (strings == EMPTY_STRINGS) {
strings = new TreeSet<>();
}
strings.add(s.toString());
}
/**
* Utility for getting code point from single code point CharSequence.
* See the public UTF16.getSingleCodePoint() (which returns -1 for null rather than throwing NPE).
*
* @return a code point IF the string consists of a single one.
* otherwise returns -1.
* @param s to test
*/
private static int getSingleCP(CharSequence s) {
if (s.length() == 1) return s.charAt(0);
if (s.length() == 2) {
int cp = Character.codePointAt(s, 0);
if (cp > 0xFFFF) { // is surrogate pair
return cp;
}
}
return -1;
}
/**
* Adds each of the characters in this string to the set. Thus "ch" =&gt; {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param s the source string
* @return this object, for chaining
*/
public final UnicodeSet addAll(CharSequence s) {
checkFrozen();
int cp;
for (int i = 0; i < s.length(); i += UTF16.getCharCount(cp)) {
cp = UTF16.charAt(s, i);
add_unchecked(cp, cp);
}
return this;
}
/**
* Retains EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param s the source string
* @return this object, for chaining
*/
public final UnicodeSet retainAll(CharSequence s) {
return retainAll(fromAll(s));
}
/**
* Complement EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param s the source string
* @return this object, for chaining
*/
public final UnicodeSet complementAll(CharSequence s) {
return complementAll(fromAll(s));
}
/**
* Remove EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param s the source string
* @return this object, for chaining
*/
public final UnicodeSet removeAll(CharSequence s) {
return removeAll(fromAll(s));
}
/**
* Remove all strings from this UnicodeSet
* @return this object, for chaining
*/
public final UnicodeSet removeAllStrings() {
checkFrozen();
if (hasStrings()) {
strings.clear();
pat = null;
}
return this;
}
/**
* Makes a set from a multicharacter string. Thus "ch" =&gt; {"ch"}
*
* @param s the source string
* @return a newly created set containing the given string
*/
public static UnicodeSet from(CharSequence s) {
return new UnicodeSet().add(s);
}
/**
* Makes a set from each of the characters in the string. Thus "ch" =&gt; {"c", "h"}
* @param s the source string
* @return a newly created set containing the given characters
*/
public static UnicodeSet fromAll(CharSequence s) {
return new UnicodeSet().addAll(s);
}
/**
* Retain only the elements in this set that are contained in the
* specified range. If <code>start &gt; end</code> then an empty range is
* retained, leaving the set empty.
*
* @param start first character, inclusive, of range
* @param end last character, inclusive, of range
*/
public UnicodeSet retain(int start, int end) {
checkFrozen();
if (start < MIN_VALUE || start > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(start, 6));
}
if (end < MIN_VALUE || end > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(end, 6));
}
if (start <= end) {
retain(range(start, end), 2, 0);
} else {
clear();
}
return this;
}
/**
* Retain the specified character from this set if it is present.
* Upon return this set will be empty if it did not contain c, or
* will only contain c if it did contain c.
* @param c the character to be retained
* @return this object, for chaining
*/
public final UnicodeSet retain(int c) {
return retain(c, c);
}
/**
* Retain the specified string in this set if it is present.
* Upon return this set will be empty if it did not contain s, or
* will only contain s if it did contain s.
* @param cs the string to be retained
* @return this object, for chaining
*/
public final UnicodeSet retain(CharSequence cs) {
int cp = getSingleCP(cs);
if (cp < 0) {
checkFrozen();
String s = cs.toString();
boolean isIn = strings.contains(s);
// Check for getRangeCount() first to avoid somewhat-expensive size()
// when there are single code points.
if (isIn && getRangeCount() == 0 && size() == 1) {
return this;
}
clear();
if (isIn) {
addString(s);
}
pat = null;
} else {
retain(cp, cp);
}
return this;
}
/**
* Removes the specified range from this set if it is present.
* The set will not contain the specified range once the call
* returns. If <code>start &gt; end</code> then an empty range is
* removed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
public UnicodeSet remove(int start, int end) {
checkFrozen();
if (start < MIN_VALUE || start > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(start, 6));
}
if (end < MIN_VALUE || end > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(end, 6));
}
if (start <= end) {
retain(range(start, end), 2, 2);
}
return this;
}
/**
* Removes the specified character from this set if it is present.
* The set will not contain the specified character once the call
* returns.
* @param c the character to be removed
* @return this object, for chaining
*/
public final UnicodeSet remove(int c) {
return remove(c, c);
}
/**
* Removes the specified string from this set if it is present.
* The set will not contain the specified string once the call
* returns.
* @param s the string to be removed
* @return this object, for chaining
*/
public final UnicodeSet remove(CharSequence s) {
int cp = getSingleCP(s);
if (cp < 0) {
checkFrozen();
String str = s.toString();
if (strings.contains(str)) {
strings.remove(str);
pat = null;
}
} else {
remove(cp, cp);
}
return this;
}
/**
* Complements the specified range in this set. Any character in
* the range will be removed if it is in this set, or will be
* added if it is not in this set. If <code>start &gt; end</code>
* then an empty range is complemented, leaving the set unchanged.
*
* @param start first character, inclusive, of range
* @param end last character, inclusive, of range
*/
public UnicodeSet complement(int start, int end) {
checkFrozen();
if (start < MIN_VALUE || start > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(start, 6));
}
if (end < MIN_VALUE || end > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(end, 6));
}
if (start <= end) {
xor(range(start, end), 2, 0);
}
pat = null;
return this;
}
/**
* Complements the specified character in this set. The character
* will be removed if it is in this set, or will be added if it is
* not in this set.
*/
public final UnicodeSet complement(int c) {
return complement(c, c);
}
/**
* This is equivalent to
* <code>complement(MIN_VALUE, MAX_VALUE)</code>.
*
* <p><strong>Note:</strong> This performs a symmetric difference with all code points
* <em>and thus retains all multicharacter strings</em>.
* In order to achieve a “code point complement” (all code points minus this set),
* the easiest is to .{@link #complement()}.{@link #removeAllStrings()} .
*/
public UnicodeSet complement() {
checkFrozen();
if (list[0] == LOW) {
System.arraycopy(list, 1, list, 0, len-1);
--len;
} else {
ensureCapacity(len+1);
System.arraycopy(list, 0, list, 1, len);
list[0] = LOW;
++len;
}
pat = null;
return this;
}
/**
* Complement the specified string in this set.
* The set will not contain the specified string once the call
* returns.
*
* @param s the string to complement
* @return this object, for chaining
*/
public final UnicodeSet complement(CharSequence s) {
checkFrozen();
int cp = getSingleCP(s);
if (cp < 0) {
String s2 = s.toString();
if (strings.contains(s2)) {
strings.remove(s2);
} else {
addString(s2);
}
pat = null;
} else {
complement(cp, cp);
}
return this;
}
/**
* Returns true if this set contains the given character.
* @param c character to be checked for containment
* @return true if the test condition is met
*/
@Override
public boolean contains(int c) {
if (c < MIN_VALUE || c > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(c, 6));
}
if (bmpSet != null) {
return bmpSet.contains(c);
}
if (stringSpan != null) {
return stringSpan.contains(c);
}
/*
// Set i to the index of the start item greater than ch
// We know we will terminate without length test!
int i = -1;
while (true) {
if (c < list[++i]) break;
}
*/
int i = findCodePoint(c);
return ((i & 1) != 0); // return true if odd
}
/**
* Returns the smallest value i such that c < list[i]. Caller
* must ensure that c is a legal value or this method will enter
* an infinite loop. This method performs a binary search.
* @param c a character in the range MIN_VALUE..MAX_VALUE
* inclusive
* @return the smallest integer i in the range 0..len-1,
* inclusive, such that c < list[i]
*/
private final int findCodePoint(int c) {
/* Examples:
findCodePoint(c)
set list[] c=0 1 3 4 7 8
=== ============== ===========
[] [110000] 0 0 0 0 0 0
[\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2
[\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2
[:all:] [0, 110000] 1 1 1 1 1 1
*/
// Return the smallest i such that c < list[i]. Assume
// list[len - 1] == HIGH and that c is legal (0..HIGH-1).
if (c < list[0]) return 0;
// High runner test. c is often after the last range, so an
// initial check for this condition pays off.
if (len >= 2 && c >= list[len-2]) return len-1;
int lo = 0;
int hi = len - 1;
// invariant: c >= list[lo]
// invariant: c < list[hi]
for (;;) {
int i = (lo + hi) >>> 1;
if (i == lo) return hi;
if (c < list[i]) {
hi = i;
} else {
lo = i;
}
}
}
// //----------------------------------------------------------------
// // Unrolled binary search
// //----------------------------------------------------------------
//
// private int validLen = -1; // validated value of len
// private int topOfLow;
// private int topOfHigh;
// private int power;
// private int deltaStart;
//
// private void validate() {
// if (len <= 1) {
// throw new IllegalArgumentException("list.len==" + len + "; must be >1");
// }
//
// // find greatest power of 2 less than or equal to len
// for (power = exp2.length-1; power > 0 && exp2[power] > len; power--) {}
//
// // assert(exp2[power] <= len);
//
// // determine the starting points
// topOfLow = exp2[power] - 1;
// topOfHigh = len - 1;
// deltaStart = exp2[power-1];
// validLen = len;
// }
//
// private static final int exp2[] = {
// 0x1, 0x2, 0x4, 0x8,
// 0x10, 0x20, 0x40, 0x80,
// 0x100, 0x200, 0x400, 0x800,
// 0x1000, 0x2000, 0x4000, 0x8000,
// 0x10000, 0x20000, 0x40000, 0x80000,
// 0x100000, 0x200000, 0x400000, 0x800000,
// 0x1000000, 0x2000000, 0x4000000, 0x8000000,
// 0x10000000, 0x20000000 // , 0x40000000 // no unsigned int in Java
// };
//
// /**
// * Unrolled lowest index GT.
// */
// private final int leastIndexGT(int searchValue) {
//
// if (len != validLen) {
// if (len == 1) return 0;
// validate();
// }
// int temp;
//
// // set up initial range to search. Each subrange is a power of two in length
// int high = searchValue < list[topOfLow] ? topOfLow : topOfHigh;
//
// // Completely unrolled binary search, folhighing "Programming Pearls"
// // Each case deliberately falls through to the next
// // Logically, list[-1] < all_search_values && list[count] > all_search_values
// // although the values -1 and count are never actually touched.
//
// // The bounds at each point are low & high,
// // where low == high - delta*2
// // so high - delta is the midpoint
//
// // The invariant AFTER each line is that list[low] < searchValue <= list[high]
//
// switch (power) {
// //case 31: if (searchValue < list[temp = high-0x40000000]) high = temp; // no unsigned int in Java
// case 30: if (searchValue < list[temp = high-0x20000000]) high = temp;
// case 29: if (searchValue < list[temp = high-0x10000000]) high = temp;
//
// case 28: if (searchValue < list[temp = high- 0x8000000]) high = temp;
// case 27: if (searchValue < list[temp = high- 0x4000000]) high = temp;
// case 26: if (searchValue < list[temp = high- 0x2000000]) high = temp;
// case 25: if (searchValue < list[temp = high- 0x1000000]) high = temp;
//
// case 24: if (searchValue < list[temp = high- 0x800000]) high = temp;
// case 23: if (searchValue < list[temp = high- 0x400000]) high = temp;
// case 22: if (searchValue < list[temp = high- 0x200000]) high = temp;
// case 21: if (searchValue < list[temp = high- 0x100000]) high = temp;
//
// case 20: if (searchValue < list[temp = high- 0x80000]) high = temp;
// case 19: if (searchValue < list[temp = high- 0x40000]) high = temp;
// case 18: if (searchValue < list[temp = high- 0x20000]) high = temp;
// case 17: if (searchValue < list[temp = high- 0x10000]) high = temp;
//
// case 16: if (searchValue < list[temp = high- 0x8000]) high = temp;
// case 15: if (searchValue < list[temp = high- 0x4000]) high = temp;
// case 14: if (searchValue < list[temp = high- 0x2000]) high = temp;
// case 13: if (searchValue < list[temp = high- 0x1000]) high = temp;
//
// case 12: if (searchValue < list[temp = high- 0x800]) high = temp;
// case 11: if (searchValue < list[temp = high- 0x400]) high = temp;
// case 10: if (searchValue < list[temp = high- 0x200]) high = temp;
// case 9: if (searchValue < list[temp = high- 0x100]) high = temp;
//
// case 8: if (searchValue < list[temp = high- 0x80]) high = temp;
// case 7: if (searchValue < list[temp = high- 0x40]) high = temp;
// case 6: if (searchValue < list[temp = high- 0x20]) high = temp;
// case 5: if (searchValue < list[temp = high- 0x10]) high = temp;
//
// case 4: if (searchValue < list[temp = high- 0x8]) high = temp;
// case 3: if (searchValue < list[temp = high- 0x4]) high = temp;
// case 2: if (searchValue < list[temp = high- 0x2]) high = temp;
// case 1: if (searchValue < list[temp = high- 0x1]) high = temp;
// }
//
// return high;
// }
//
// // For debugging only
// public int len() {
// return len;
// }
//
// //----------------------------------------------------------------
// //----------------------------------------------------------------
/**
* Returns true if this set contains every character
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
public boolean contains(int start, int end) {
if (start < MIN_VALUE || start > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(start, 6));
}
if (end < MIN_VALUE || end > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(end, 6));
}
//int i = -1;
//while (true) {
// if (start < list[++i]) break;
//}
int i = findCodePoint(start);
return ((i & 1) != 0 && end < list[i]);
}
/**
* Returns <tt>true</tt> if this set contains the given
* multicharacter string.
* @param s string to be checked for containment
* @return <tt>true</tt> if this set contains the specified string
*/
public final boolean contains(CharSequence s) {
int cp = getSingleCP(s);
if (cp < 0) {
return strings.contains(s.toString());
} else {
return contains(cp);
}
}
/**
* Returns true if this set contains all the characters and strings
* of the given set.
* @param b set to be checked for containment
* @return true if the test condition is met
*/
public boolean containsAll(UnicodeSet b) {
// The specified set is a subset if all of its pairs are contained in
// this set. This implementation accesses the lists directly for speed.
// TODO: this could be faster if size() were cached. But that would affect building speed
// so it needs investigation.
int[] listB = b.list;
boolean needA = true;
boolean needB = true;
int aPtr = 0;
int bPtr = 0;
int aLen = len - 1;
int bLen = b.len - 1;
int startA = 0, startB = 0, limitA = 0, limitB = 0;
while (true) {
// double iterations are such a pain...
if (needA) {
if (aPtr >= aLen) {
// ran out of A. If B is also exhausted, then break;
if (needB && bPtr >= bLen) {
break;
}
return false;
}
startA = list[aPtr++];
limitA = list[aPtr++];
}
if (needB) {
if (bPtr >= bLen) {
// ran out of B. Since we got this far, we have an A and we are ok so far
break;
}
startB = listB[bPtr++];
limitB = listB[bPtr++];
}
// if B doesn't overlap and is greater than A, get new A
if (startB >= limitA) {
needA = true;
needB = false;
continue;
}
// if B is wholy contained in A, then get a new B
if (startB >= startA && limitB <= limitA) {
needA = false;
needB = true;
continue;
}
// all other combinations mean we fail
return false;
}
if (!strings.containsAll(b.strings)) return false;
return true;
}
// /**
// * Returns true if this set contains all the characters and strings
// * of the given set.
// * @param c set to be checked for containment
// * @return true if the test condition is met
// * @stable ICU 2.0
// */
// public boolean containsAllOld(UnicodeSet c) {
// // The specified set is a subset if all of its pairs are contained in
// // this set. It's possible to code this more efficiently in terms of
// // direct manipulation of the inversion lists if the need arises.
// int n = c.getRangeCount();
// for (int i=0; i<n; ++i) {
// if (!contains(c.getRangeStart(i), c.getRangeEnd(i))) {
// return false;
// }
// }
// if (!strings.containsAll(c.strings)) return false;
// return true;
// }
/**
* Returns true if there is a partition of the string such that this set contains each of the partitioned strings.
* For example, for the Unicode set [a{bc}{cd}]<br>
* containsAll is true for each of: "a", "bc", ""cdbca"<br>
* containsAll is false for each of: "acb", "bcda", "bcx"<br>
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
public boolean containsAll(String s) {
int cp;
for (int i = 0; i < s.length(); i += UTF16.getCharCount(cp)) {
cp = UTF16.charAt(s, i);
if (!contains(cp)) {
if (!hasStrings()) {
return false;
}
return containsAll(s, 0);
}
}
return true;
}
/**
* Recursive routine called if we fail to find a match in containsAll, and there are strings
* @param s source string
* @param i point to match to the end on
* @return true if ok
*/
private boolean containsAll(String s, int i) {
if (i >= s.length()) {
return true;
}
int cp= UTF16.charAt(s, i);
if (contains(cp) && containsAll(s, i+UTF16.getCharCount(cp))) {
return true;
}
for (String setStr : strings) {
if (!setStr.isEmpty() && // skip the empty string
s.startsWith(setStr, i) && containsAll(s, i+setStr.length())) {
return true;
}
}
return false;
}
/**
* Get the Regex equivalent for this UnicodeSet
* @return regex pattern equivalent to this UnicodeSet
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public String getRegexEquivalent() {
if (!hasStrings()) {
return toString();
}
StringBuilder result = new StringBuilder("(?:");
appendNewPattern(result, true, false);
for (String s : strings) {
result.append('|');
_appendToPat(result, s, true);
}
return result.append(")").toString();
}
/**
* Returns true if this set contains none of the characters
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
public boolean containsNone(int start, int end) {
if (start < MIN_VALUE || start > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(start, 6));
}
if (end < MIN_VALUE || end > MAX_VALUE) {
throw new IllegalArgumentException("Invalid code point U+" + Utility.hex(end, 6));
}
int i = -1;
while (true) {
if (start < list[++i]) break;
}
return ((i & 1) == 0 && end < list[i]);
}
/**
* Returns true if none of the characters or strings in this UnicodeSet appears in the string.
* For example, for the Unicode set [a{bc}{cd}]<br>
* containsNone is true for: "xy", "cb"<br>
* containsNone is false for: "a", "bc", "bcd"<br>
* @param b set to be checked for containment
* @return true if the test condition is met
*/
public boolean containsNone(UnicodeSet b) {
// The specified set is a subset if some of its pairs overlap with some of this set's pairs.
// This implementation accesses the lists directly for speed.
int[] listB = b.list;
boolean needA = true;
boolean needB = true;
int aPtr = 0;
int bPtr = 0;
int aLen = len - 1;
int bLen = b.len - 1;
int startA = 0, startB = 0, limitA = 0, limitB = 0;
while (true) {
// double iterations are such a pain...
if (needA) {
if (aPtr >= aLen) {
// ran out of A: break so we test strings
break;
}
startA = list[aPtr++];
limitA = list[aPtr++];
}
if (needB) {
if (bPtr >= bLen) {
// ran out of B: break so we test strings
break;
}
startB = listB[bPtr++];
limitB = listB[bPtr++];
}
// if B is higher than any part of A, get new A
if (startB >= limitA) {
needA = true;
needB = false;
continue;
}
// if A is higher than any part of B, get new B
if (startA >= limitB) {
needA = false;
needB = true;
continue;
}
// all other combinations mean we fail
return false;
}
if (!SortedSetRelation.hasRelation(strings, SortedSetRelation.DISJOINT, b.strings)) return false;
return true;
}
// /**
// * Returns true if none of the characters or strings in this UnicodeSet appears in the string.
// * For example, for the Unicode set [a{bc}{cd}]<br>
// * containsNone is true for: "xy", "cb"<br>
// * containsNone is false for: "a", "bc", "bcd"<br>
// * @param c set to be checked for containment
// * @return true if the test condition is met
// * @stable ICU 2.0
// */
// public boolean containsNoneOld(UnicodeSet c) {
// // The specified set is a subset if all of its pairs are contained in
// // this set. It's possible to code this more efficiently in terms of
// // direct manipulation of the inversion lists if the need arises.
// int n = c.getRangeCount();
// for (int i=0; i<n; ++i) {
// if (!containsNone(c.getRangeStart(i), c.getRangeEnd(i))) {
// return false;
// }
// }
// if (!SortedSetRelation.hasRelation(strings, SortedSetRelation.DISJOINT, c.strings)) return false;
// return true;
// }
/**
* Returns true if this set contains none of the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
public boolean containsNone(CharSequence s) {
return span(s, SpanCondition.NOT_CONTAINED) == s.length();
}
/**
* Returns true if this set contains one or more of the characters
* in the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the condition is met
*/
public final boolean containsSome(int start, int end) {
return !containsNone(start, end);
}
/**
* Returns true if this set contains one or more of the characters
* and strings of the given set.
* @param s set to be checked for containment
* @return true if the condition is met
*/
public final boolean containsSome(UnicodeSet s) {
return !containsNone(s);
}
/**
* Returns true if this set contains one or more of the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the condition is met
*/
public final boolean containsSome(CharSequence s) {
return !containsNone(s);
}
/**
* Adds all of the elements in the specified set to this set if
* they're not already present. This operation effectively
* modifies this set so that its value is the <i>union</i> of the two
* sets. The behavior of this operation is unspecified if the specified
* collection is modified while the operation is in progress.
*
* @param c set whose elements are to be added to this set.
*/
public UnicodeSet addAll(UnicodeSet c) {
checkFrozen();
add(c.list, c.len, 0);
if (c.hasStrings()) {
if (strings == EMPTY_STRINGS) {
strings = new TreeSet<>(c.strings);
} else {
strings.addAll(c.strings);
}
}
return this;
}
/**
* Retains only the elements in this set that are contained in the
* specified set. In other words, removes from this set all of
* its elements that are not contained in the specified set. This
* operation effectively modifies this set so that its value is
* the <i>intersection</i> of the two sets.
*
* @param c set that defines which elements this set will retain.
*/
public UnicodeSet retainAll(UnicodeSet c) {
checkFrozen();
retain(c.list, c.len, 0);
if (hasStrings()) {
if (!c.hasStrings()) {
strings.clear();
} else {
strings.retainAll(c.strings);
}
}
return this;
}
/**
* Removes from this set all of its elements that are contained in the
* specified set. This operation effectively modifies this
* set so that its value is the <i>asymmetric set difference</i> of
* the two sets.
*
* @param c set that defines which elements will be removed from
* this set.
*/
public UnicodeSet removeAll(UnicodeSet c) {
checkFrozen();
retain(c.list, c.len, 2);
if (hasStrings() && c.hasStrings()) {
strings.removeAll(c.strings);
}
return this;
}
/**
* Complements in this set all elements contained in the specified
* set. Any character in the other set will be removed if it is
* in this set, or will be added if it is not in this set.
*
* @param c set that defines which elements will be complemented from
* this set.
*/
public UnicodeSet complementAll(UnicodeSet c) {
checkFrozen();
xor(c.list, c.len, 0);
if (c.hasStrings()) {
if (strings == EMPTY_STRINGS) {
strings = new TreeSet<>(c.strings);
} else {
SortedSetRelation.doOperation(strings, SortedSetRelation.COMPLEMENTALL, c.strings);
}
}
return this;
}
/**
* Removes all of the elements from this set. This set will be
* empty after this call returns.
*/
public UnicodeSet clear() {
checkFrozen();
list[0] = HIGH;
len = 1;
pat = null;
if (hasStrings()) {
strings.clear();
}
return this;
}
/**
* Iteration method that returns the number of ranges contained in
* this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
public int getRangeCount() {
return len/2;
}
/**
* Iteration method that returns the first character in the
* specified range of this set.
* @exception ArrayIndexOutOfBoundsException if index is outside
* the range <code>0..getRangeCount()-1</code>
* @see #getRangeCount
* @see #getRangeEnd
*/
public int getRangeStart(int index) {
return list[index*2];
}
/**
* Iteration method that returns the last character in the
* specified range of this set.
* @exception ArrayIndexOutOfBoundsException if index is outside
* the range <code>0..getRangeCount()-1</code>
* @see #getRangeStart
* @see #getRangeEnd
*/
public int getRangeEnd(int index) {
return (list[index*2 + 1] - 1);
}
/**
* Reallocate this objects internal structures to take up the least
* possible space, without changing this object's value.
*/
public UnicodeSet compact() {
checkFrozen();
if ((len + 7) < list.length) {
// If we have more than a little unused capacity, shrink it to len.
list = Arrays.copyOf(list, len);
}
rangeList = null;
buffer = null;
if (strings != EMPTY_STRINGS && strings.isEmpty()) {
strings = EMPTY_STRINGS;
}
return this;
}
/**
* Compares the specified object with this set for equality. Returns
* <tt>true</tt> if the specified object is also a set, the two sets
* have the same size, and every member of the specified set is
* contained in this set (or equivalently, every member of this set is
* contained in the specified set).
*
* @param o Object to be compared for equality with this set.
* @return <tt>true</tt> if the specified Object is equal to this set.
*/
@Override
public boolean equals(Object o) {
if (o == null) {
return false;
}
if (this == o) {
return true;
}
try {
UnicodeSet that = (UnicodeSet) o;
if (len != that.len) return false;
for (int i = 0; i < len; ++i) {
if (list[i] != that.list[i]) return false;
}
if (!strings.equals(that.strings)) return false;
} catch (Exception e) {
return false;
}
return true;
}
/**
* Returns the hash code value for this set.
*
* @return the hash code value for this set.
* @see java.lang.Object#hashCode()
*/
@Override
public int hashCode() {
int result = len;
for (int i = 0; i < len; ++i) {
result *= 1000003;
result += list[i];
}
return result;
}
/**
* Return a programmer-readable string representation of this object.
*/
@Override
public String toString() {
return toPattern(true);
}
//----------------------------------------------------------------
// Implementation: Pattern parsing
//----------------------------------------------------------------
/**
* Parses the given pattern, starting at the given position. The character
* at pattern.charAt(pos.getIndex()) must be '[', or the parse fails.
* Parsing continues until the corresponding closing ']'. If a syntax error
* is encountered between the opening and closing brace, the parse fails.
* Upon return from a successful parse, the ParsePosition is updated to
* point to the character following the closing ']', and an inversion
* list for the parsed pattern is returned. This method
* calls itself recursively to parse embedded subpatterns.
*
* @param pattern the string containing the pattern to be parsed. The
* portion of the string from pos.getIndex(), which must be a '[', to the
* corresponding closing ']', is parsed.
* @param pos upon entry, the position at which to being parsing. The
* character at pattern.charAt(pos.getIndex()) must be a '['. Upon return
* from a successful parse, pos.getIndex() is either the character after the
* closing ']' of the parsed pattern, or pattern.length() if the closing ']'
* is the last character of the pattern string.
* @return an inversion list for the parsed substring
* of <code>pattern</code>
* @exception java.lang.IllegalArgumentException if the parse fails.
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public UnicodeSet applyPattern(String pattern,
ParsePosition pos,
SymbolTable symbols,
int options) {
// Need to build the pattern in a temporary string because
// _applyPattern calls add() etc., which set pat to empty.
boolean parsePositionWasNull = pos == null;
if (parsePositionWasNull) {
pos = new ParsePosition(0);
}
StringBuilder rebuiltPat = new StringBuilder();
RuleCharacterIterator chars =
new RuleCharacterIterator(pattern, symbols, pos);
applyPattern(chars, symbols, rebuiltPat, options, 0);
if (chars.inVariable()) {
syntaxError(chars, "Extra chars in variable value");
}
pat = rebuiltPat.toString();
if (parsePositionWasNull) {
int i = pos.getIndex();
// Skip over trailing whitespace
if ((options & IGNORE_SPACE) != 0) {
i = PatternProps.skipWhiteSpace(pattern, i);
}
if (i != pattern.length()) {
throw new IllegalArgumentException("Parse of \"" + pattern +
"\" failed at " + i);
}
}
return this;
}
// Add constants to make the applyPattern() code easier to follow.
private static final int LAST0_START = 0,
LAST1_RANGE = 1,
LAST2_SET = 2;
private static final int MODE0_NONE = 0,
MODE1_INBRACKET = 1,
MODE2_OUTBRACKET = 2;
private static final int SETMODE0_NONE = 0,
SETMODE1_UNICODESET = 1,
SETMODE2_PROPERTYPAT = 2,
SETMODE3_PREPARSED = 3;
private static final int MAX_DEPTH = 100;
/**
* Parse the pattern from the given RuleCharacterIterator. The
* iterator is advanced over the parsed pattern.
* @param chars iterator over the pattern characters. Upon return
* it will be advanced to the first character after the parsed
* pattern, or the end of the iteration if all characters are
* parsed.
* @param symbols symbol table to use to parse and dereference
* variables, or null if none.
* @param rebuiltPat the pattern that was parsed, rebuilt or
* copied from the input pattern, as appropriate.
* @param options a bit mask.
* Valid options are {@link #IGNORE_SPACE} and
* at most one of {@link #CASE_INSENSITIVE}, {@link #ADD_CASE_MAPPINGS},
* {@link #SIMPLE_CASE_INSENSITIVE}. These case options are mutually exclusive.
*/
private void applyPattern(RuleCharacterIterator chars, SymbolTable symbols,
Appendable rebuiltPat, int options, int depth) {
if (depth > MAX_DEPTH) {
syntaxError(chars, "Pattern nested too deeply");
}
// Syntax characters: [ ] ^ - & { }
// Recognized special forms for chars, sets: c-c s-s s&s
int opts = RuleCharacterIterator.PARSE_VARIABLES |
RuleCharacterIterator.PARSE_ESCAPES;
if ((options & IGNORE_SPACE) != 0) {
opts |= RuleCharacterIterator.SKIP_WHITESPACE;
}
StringBuilder patBuf = new StringBuilder(), buf = null;
boolean usePat = false;
UnicodeSet scratch = null;
RuleCharacterIterator.Position backup = null;
// mode: 0=before [, 1=between [...], 2=after ]
// lastItem: 0=none, 1=char, 2=set
int lastItem = LAST0_START, lastChar = 0, mode = MODE0_NONE;
char op = 0;
boolean invert = false;
clear();
String lastString = null;
while (mode != MODE2_OUTBRACKET && !chars.atEnd()) {
//Eclipse stated the following is "dead code"
/*
if (false) {
// Debugging assertion
if (!((lastItem == 0 && op == 0) ||
(lastItem == 1 && (op == 0 || op == '-')) ||
(lastItem == 2 && (op == 0 || op == '-' || op == '&')))) {
throw new IllegalArgumentException();
}
}*/
int c = 0;
boolean literal = false;
UnicodeSet nested = null;
// -------- Check for property pattern
// setMode: 0=none, 1=unicodeset, 2=propertypat, 3=preparsed
int setMode = SETMODE0_NONE;
if (resemblesPropertyPattern(chars, opts)) {
setMode = SETMODE2_PROPERTYPAT;
}
// -------- Parse '[' of opening delimiter OR nested set.
// If there is a nested set, use `setMode' to define how
// the set should be parsed. If the '[' is part of the
// opening delimiter for this pattern, parse special
// strings "[", "[^", "[-", and "[^-". Check for stand-in
// characters representing a nested set in the symbol
// table.
else {
// Prepare to backup if necessary
backup = chars.getPos(backup);
c = chars.next(opts);
literal = chars.isEscaped();
if (c == '[' && !literal) {
if (mode == MODE1_INBRACKET) {
chars.setPos(backup); // backup
setMode = SETMODE1_UNICODESET;
} else {
// Handle opening '[' delimiter
mode = MODE1_INBRACKET;
patBuf.append('[');
backup = chars.getPos(backup); // prepare to backup
c = chars.next(opts);
literal = chars.isEscaped();
if (c == '^' && !literal) {
invert = true;
patBuf.append('^');
backup = chars.getPos(backup); // prepare to backup
c = chars.next(opts);
literal = chars.isEscaped();
}
// Fall through to handle special leading '-';
// otherwise restart loop for nested [], \p{}, etc.
if (c == '-') {
literal = true;
// Fall through to handle literal '-' below
} else {
chars.setPos(backup); // backup
continue;
}
}
} else if (symbols != null) {
UnicodeMatcher m = symbols.lookupMatcher(c); // may be null
if (m != null) {
try {
nested = (UnicodeSet) m;
setMode = SETMODE3_PREPARSED;
} catch (ClassCastException e) {
syntaxError(chars, "Syntax error");
}
}
}
}
// -------- Handle a nested set. This either is inline in
// the pattern or represented by a stand-in that has
// previously been parsed and was looked up in the symbol
// table.
if (setMode != SETMODE0_NONE) {
if (lastItem == LAST1_RANGE) {
if (op != 0) {
syntaxError(chars, "Char expected after operator");
}
add_unchecked(lastChar, lastChar);
_appendToPat(patBuf, lastChar, false);
lastItem = LAST0_START;
op = 0;
}
if (op == '-' || op == '&') {
patBuf.append(op);
}
if (nested == null) {
if (scratch == null) scratch = new UnicodeSet();
nested = scratch;
}
switch (setMode) {
case SETMODE1_UNICODESET:
nested.applyPattern(chars, symbols, patBuf, options, depth + 1);
break;
case SETMODE2_PROPERTYPAT:
chars.skipIgnored(opts);
nested.applyPropertyPattern(chars, patBuf, symbols);
break;
case SETMODE3_PREPARSED: // `nested' already parsed
nested._toPattern(patBuf, false);
break;
}
usePat = true;
if (mode == MODE0_NONE) {
// Entire pattern is a category; leave parse loop
set(nested);
mode = MODE2_OUTBRACKET;
break;
}
switch (op) {
case '-':
removeAll(nested);
break;
case '&':
retainAll(nested);
break;
case 0:
addAll(nested);
break;
}
op = 0;
lastItem = LAST2_SET;
continue;
}
if (mode == MODE0_NONE) {
syntaxError(chars, "Missing '['");
}
// -------- Parse special (syntax) characters. If the
// current character is not special, or if it is escaped,
// then fall through and handle it below.
if (!literal) {
switch (c) {
case ']':
if (lastItem == LAST1_RANGE) {
add_unchecked(lastChar, lastChar);
_appendToPat(patBuf, lastChar, false);
}
// Treat final trailing '-' as a literal
if (op == '-') {
add_unchecked(op, op);
patBuf.append(op);
} else if (op == '&') {
syntaxError(chars, "Trailing '&'");
}
patBuf.append(']');
mode = MODE2_OUTBRACKET;
continue;
case '-':
if (op == 0) {
if (lastItem != LAST0_START) {
op = (char) c;
continue;
} else if (lastString != null) {
op = (char) c;
continue;
} else {
// Treat final trailing '-' as a literal
add_unchecked(c, c);
c = chars.next(opts);
literal = chars.isEscaped();
if (c == ']' && !literal) {
patBuf.append("-]");
mode = MODE2_OUTBRACKET;
continue;
}
}
}
syntaxError(chars, "'-' not after char, string, or set");
break;
case '&':
if (lastItem == LAST2_SET && op == 0) {
op = (char) c;
continue;
}
syntaxError(chars, "'&' not after set");
break;
case '^':
syntaxError(chars, "'^' not after '['");
break;
case '{':
if (op != 0 && op != '-') {
syntaxError(chars, "Missing operand after operator");
}
if (lastItem == LAST1_RANGE) {
add_unchecked(lastChar, lastChar);
_appendToPat(patBuf, lastChar, false);
}
lastItem = LAST0_START;
if (buf == null) {
buf = new StringBuilder();
} else {
buf.setLength(0);
}
boolean ok = false;
while (!chars.atEnd()) {
c = chars.next(opts);
literal = chars.isEscaped();
if (c == '}' && !literal) {
ok = true;
break;
}
appendCodePoint(buf, c);
}
if (!ok) {
syntaxError(chars, "Invalid multicharacter string");
}
// We have new string. Add it to set and continue;
// we don't need to drop through to the further
// processing
String curString = buf.toString();
if (op == '-') {
int lastSingle = CharSequences.getSingleCodePoint(lastString == null ? "" : lastString);
int curSingle = CharSequences.getSingleCodePoint(curString);
if (lastSingle != Integer.MAX_VALUE && curSingle != Integer.MAX_VALUE) {
add(lastSingle,curSingle);
} else {
if (strings == EMPTY_STRINGS) {
strings = new TreeSet<>();
}
try {
StringRange.expand(lastString, curString, true, strings);
} catch (Exception e) {
syntaxError(chars, e.getMessage());
}
}
lastString = null;
op = 0;
} else {
add(curString);
lastString = curString;
}
patBuf.append('{');
_appendToPat(patBuf, curString, false);
patBuf.append('}');
continue;
case SymbolTable.SYMBOL_REF:
// symbols nosymbols
// [a-$] error error (ambiguous)
// [a$] anchor anchor
// [a-$x] var "x"* literal '$'
// [a-$.] error literal '$'
// *We won't get here in the case of var "x"
backup = chars.getPos(backup);
c = chars.next(opts);
literal = chars.isEscaped();
boolean anchor = (c == ']' && !literal);
if (symbols == null && !anchor) {
c = SymbolTable.SYMBOL_REF;
chars.setPos(backup);
break; // literal '$'
}
if (anchor && op == 0) {
if (lastItem == LAST1_RANGE) {
add_unchecked(lastChar, lastChar);
_appendToPat(patBuf, lastChar, false);
}
add_unchecked(UnicodeMatcher.ETHER);
usePat = true;
patBuf.append(SymbolTable.SYMBOL_REF).append(']');
mode = MODE2_OUTBRACKET;
continue;
}
syntaxError(chars, "Unquoted '$'");
break;
default:
break;
}
}
// -------- Parse literal characters. This includes both
// escaped chars ("\u4E01") and non-syntax characters
// ("a").
switch (lastItem) {
case LAST0_START:
if (op == '-' && lastString != null) {
syntaxError(chars, "Invalid range");
}
lastItem = LAST1_RANGE;
lastChar = c;
lastString = null;
break;
case LAST1_RANGE:
if (op == '-') {
if (lastString != null) {
syntaxError(chars, "Invalid range");
}
if (lastChar >= c) {
// Don't allow redundant (a-a) or empty (b-a) ranges;
// these are most likely typos.
syntaxError(chars, "Invalid range");
}
add_unchecked(lastChar, c);
_appendToPat(patBuf, lastChar, false);
patBuf.append(op);
_appendToPat(patBuf, c, false);
lastItem = LAST0_START;
op = 0;
} else {
add_unchecked(lastChar, lastChar);
_appendToPat(patBuf, lastChar, false);
lastChar = c;
}
break;
case LAST2_SET:
if (op != 0) {
syntaxError(chars, "Set expected after operator");
}
lastChar = c;
lastItem = LAST1_RANGE;
break;
}
}
if (mode != MODE2_OUTBRACKET) {
syntaxError(chars, "Missing ']'");
}
chars.skipIgnored(opts);
/**
* Handle global flags (invert, case insensitivity). If this
* pattern should be compiled case-insensitive, then we need
* to close over case BEFORE COMPLEMENTING. This makes
* patterns like /[^abc]/i work.
*/
if ((options & CASE_MASK) != 0) {
closeOver(options);
}
if (invert) {
complement().removeAllStrings(); // code point complement
}
// Use the rebuilt pattern (pat) only if necessary. Prefer the
// generated pattern.
if (usePat) {
append(rebuiltPat, patBuf.toString());
} else {
appendNewPattern(rebuiltPat, false, true);
}
}
private static void syntaxError(RuleCharacterIterator chars, String msg) {
throw new IllegalArgumentException("Error: " + msg + " at \"" +
Utility.escape(chars.toString()) +
'"');
}
/**
* Add the contents of the UnicodeSet (as strings) into a collection.
* @param target collection to add into
*/
public <T extends Collection<String>> T addAllTo(T target) {
return addAllTo(this, target);
}
/**
* Add the contents of the UnicodeSet (as strings) into a collection.
* @param target collection to add into
* @hide unsupported on Android
*/
public String[] addAllTo(String[] target) {
return addAllTo(this, target);
}
/**
* Add the contents of the UnicodeSet (as strings) into an array.
* @hide unsupported on Android
*/
public static String[] toArray(UnicodeSet set) {
return addAllTo(set, new String[set.size()]);
}
/**
* Add the contents of the collection (as strings) into this UnicodeSet.
* The collection must not contain null.
* @param source the collection to add
* @return a reference to this object
*/
public UnicodeSet add(Iterable<?> source) {
return addAll(source);
}
/**
* Add a collection (as strings) into this UnicodeSet.
* Uses standard naming convention.
* @param source collection to add into
* @return a reference to this object
*/
public UnicodeSet addAll(Iterable<?> source) {
checkFrozen();
for (Object o : source) {
add(o.toString());
}
return this;
}
//----------------------------------------------------------------
// Implementation: Utility methods
//----------------------------------------------------------------
private int nextCapacity(int minCapacity) {
// Grow exponentially to reduce the frequency of allocations.
if (minCapacity < INITIAL_CAPACITY) {
return minCapacity + INITIAL_CAPACITY;
} else if (minCapacity <= 2500) {
return 5 * minCapacity;
} else {
int newCapacity = 2 * minCapacity;
if (newCapacity > MAX_LENGTH) {
newCapacity = MAX_LENGTH;
}
return newCapacity;
}
}
private void ensureCapacity(int newLen) {
if (newLen > MAX_LENGTH) {
newLen = MAX_LENGTH;
}
if (newLen <= list.length) return;
int newCapacity = nextCapacity(newLen);
int[] temp = new int[newCapacity];
// Copy only the actual contents.
System.arraycopy(list, 0, temp, 0, len);
list = temp;
}
private void ensureBufferCapacity(int newLen) {
if (newLen > MAX_LENGTH) {
newLen = MAX_LENGTH;
}
if (buffer != null && newLen <= buffer.length) return;
int newCapacity = nextCapacity(newLen);
buffer = new int[newCapacity];
// The buffer has no contents to be copied.
// It is always filled from scratch after this call.
}
/**
* Assumes start <= end.
*/
private int[] range(int start, int end) {
if (rangeList == null) {
rangeList = new int[] { start, end+1, HIGH };
} else {
rangeList[0] = start;
rangeList[1] = end+1;
}
return rangeList;
}
//----------------------------------------------------------------
// Implementation: Fundamental operations
//----------------------------------------------------------------
// polarity = 0, 3 is normal: x xor y
// polarity = 1, 2: x xor ~y == x === y
private UnicodeSet xor(int[] other, int otherLen, int polarity) {
ensureBufferCapacity(len + otherLen);
int i = 0, j = 0, k = 0;
int a = list[i++];
int b;
// TODO: Based on the call hierarchy, polarity of 1 or 2 is never used
// so the following if statement will not be called.
///CLOVER:OFF
if (polarity == 1 || polarity == 2) {
b = LOW;
if (other[j] == LOW) { // skip base if already LOW
++j;
b = other[j];
}
///CLOVER:ON
} else {
b = other[j++];
}
// simplest of all the routines
// sort the values, discarding identicals!
while (true) {
if (a < b) {
buffer[k++] = a;
a = list[i++];
} else if (b < a) {
buffer[k++] = b;
b = other[j++];
} else if (a != HIGH) { // at this point, a == b
// discard both values!
a = list[i++];
b = other[j++];
} else { // DONE!
buffer[k++] = HIGH;
len = k;
break;
}
}
// swap list and buffer
int[] temp = list;
list = buffer;
buffer = temp;
pat = null;
return this;
}
// polarity = 0 is normal: x union y
// polarity = 2: x union ~y
// polarity = 1: ~x union y
// polarity = 3: ~x union ~y
private UnicodeSet add(int[] other, int otherLen, int polarity) {
ensureBufferCapacity(len + otherLen);
int i = 0, j = 0, k = 0;
int a = list[i++];
int b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
main:
while (true) {
switch (polarity) {
case 0: // both first; take lower if unequal
if (a < b) { // take a
// Back up over overlapping ranges in buffer[]
if (k > 0 && a <= buffer[k-1]) {
// Pick latter end value in buffer[] vs. list[]
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++; // Common if/else code factored out
polarity ^= 1;
} else if (b < a) { // take b
if (k > 0 && b <= buffer[k-1]) {
b = max(other[j], buffer[--k]);
} else {
buffer[k++] = b;
b = other[j];
}
j++;
polarity ^= 2;
} else { // a == b, take a, drop b
if (a == HIGH) break main;
// This is symmetrical; it doesn't matter if
// we backtrack with a or b. - liu
if (k > 0 && a <= buffer[k-1]) {
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++;
polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
case 3: // both second; take higher if unequal, and drop other
if (b <= a) { // take a
if (a == HIGH) break main;
buffer[k++] = a;
} else { // take b
if (b == HIGH) break main;
buffer[k++] = b;
}
a = list[i++]; polarity ^= 1; // factored common code
b = other[j++]; polarity ^= 2;
break;
case 1: // a second, b first; if b < a, overlap
if (a < b) { // no overlap, take a
buffer[k++] = a; a = list[i++]; polarity ^= 1;
} else if (b < a) { // OVERLAP, drop b
b = other[j++]; polarity ^= 2;
} else { // a == b, drop both!
if (a == HIGH) break main;
a = list[i++]; polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, take b
buffer[k++] = b; b = other[j++]; polarity ^= 2;
} else if (a < b) { // OVERLAP, drop a
a = list[i++]; polarity ^= 1;
} else { // a == b, drop both!
if (a == HIGH) break main;
a = list[i++]; polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
}
}
buffer[k++] = HIGH; // terminate
len = k;
// swap list and buffer
int[] temp = list;
list = buffer;
buffer = temp;
pat = null;
return this;
}
// polarity = 0 is normal: x intersect y
// polarity = 2: x intersect ~y == set-minus
// polarity = 1: ~x intersect y
// polarity = 3: ~x intersect ~y
private UnicodeSet retain(int[] other, int otherLen, int polarity) {
ensureBufferCapacity(len + otherLen);
int i = 0, j = 0, k = 0;
int a = list[i++];
int b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
main:
while (true) {
switch (polarity) {
case 0: // both first; drop the smaller
if (a < b) { // drop a
a = list[i++]; polarity ^= 1;
} else if (b < a) { // drop b
b = other[j++]; polarity ^= 2;
} else { // a == b, take one, drop other
if (a == HIGH) break main;
buffer[k++] = a; a = list[i++]; polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
case 3: // both second; take lower if unequal
if (a < b) { // take a
buffer[k++] = a; a = list[i++]; polarity ^= 1;
} else if (b < a) { // take b
buffer[k++] = b; b = other[j++]; polarity ^= 2;
} else { // a == b, take one, drop other
if (a == HIGH) break main;
buffer[k++] = a; a = list[i++]; polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
case 1: // a second, b first;
if (a < b) { // NO OVERLAP, drop a
a = list[i++]; polarity ^= 1;
} else if (b < a) { // OVERLAP, take b
buffer[k++] = b; b = other[j++]; polarity ^= 2;
} else { // a == b, drop both!
if (a == HIGH) break main;
a = list[i++]; polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, drop b
b = other[j++]; polarity ^= 2;
} else if (a < b) { // OVERLAP, take a
buffer[k++] = a; a = list[i++]; polarity ^= 1;
} else { // a == b, drop both!
if (a == HIGH) break main;
a = list[i++]; polarity ^= 1;
b = other[j++]; polarity ^= 2;
}
break;
}
}
buffer[k++] = HIGH; // terminate
len = k;
// swap list and buffer
int[] temp = list;
list = buffer;
buffer = temp;
pat = null;
return this;
}
private static final int max(int a, int b) {
return (a > b) ? a : b;
}
//----------------------------------------------------------------
// Generic filter-based scanning code
//----------------------------------------------------------------
private static interface Filter {
boolean contains(int codePoint);
}
private static final class NumericValueFilter implements Filter {
double value;
NumericValueFilter(double value) { this.value = value; }
@Override
public boolean contains(int ch) {
return UCharacter.getUnicodeNumericValue(ch) == value;
}
}
private static final class GeneralCategoryMaskFilter implements Filter {
int mask;
GeneralCategoryMaskFilter(int mask) { this.mask = mask; }
@Override
public boolean contains(int ch) {
return ((1 << UCharacter.getType(ch)) & mask) != 0;
}
}
private static final class IntPropertyFilter implements Filter {
int prop;
int value;
IntPropertyFilter(int prop, int value) {
this.prop = prop;
this.value = value;
}
@Override
public boolean contains(int ch) {
return UCharacter.getIntPropertyValue(ch, prop) == value;
}
}
private static final class ScriptExtensionsFilter implements Filter {
int script;
ScriptExtensionsFilter(int script) { this.script = script; }
@Override
public boolean contains(int c) {
return UScript.hasScript(c, script);
}
}
private static final class IdentifierTypeFilter implements Filter {
int idType;
IdentifierTypeFilter(int idType) { this.idType = idType; }
@Override
public boolean contains(int c) {
return UCharacterProperty.INSTANCE.hasIDType(c, idType);
}
}
// VersionInfo for unassigned characters
private static final VersionInfo NO_VERSION = VersionInfo.getInstance(0, 0, 0, 0);
private static final class VersionFilter implements Filter {
VersionInfo version;
VersionFilter(VersionInfo version) { this.version = version; }
@Override
public boolean contains(int ch) {
VersionInfo v = UCharacter.getAge(ch);
// Reference comparison ok; VersionInfo caches and reuses
// unique objects.
return !Utility.sameObjects(v, NO_VERSION) &&
v.compareTo(version) <= 0;
}
}
/**
* Generic filter-based scanning code for UCD property UnicodeSets.
*/
private void applyFilter(Filter filter, UnicodeSet inclusions) {
// Logically, walk through all Unicode characters, noting the start
// and end of each range for which filter.contain(c) is
// true. Add each range to a set.
//
// To improve performance, use an inclusions set which
// encodes information about character ranges that are known
// to have identical properties.
// inclusions contains the first characters of
// same-value ranges for the given property.
clear();
int startHasProperty = -1;
int limitRange = inclusions.getRangeCount();
for (int j=0; j<limitRange; ++j) {
// get current range
int start = inclusions.getRangeStart(j);
int end = inclusions.getRangeEnd(j);
// for all the code points in the range, process
for (int ch = start; ch <= end; ++ch) {
// only add to the unicodeset on inflection points --
// where the hasProperty value changes to false
if (filter.contains(ch)) {
if (startHasProperty < 0) {
startHasProperty = ch;
}
} else if (startHasProperty >= 0) {
add_unchecked(startHasProperty, ch-1);
startHasProperty = -1;
}
}
}
if (startHasProperty >= 0) {
add_unchecked(startHasProperty, 0x10FFFF);
}
}
/**
* Remove leading and trailing Pattern_White_Space and compress
* internal Pattern_White_Space to a single space character.
*/
private static String mungeCharName(String source) {
source = PatternProps.trimWhiteSpace(source);
StringBuilder buf = null;
for (int i=0; i<source.length(); ++i) {
char ch = source.charAt(i);
if (PatternProps.isWhiteSpace(ch)) {
if (buf == null) {
buf = new StringBuilder().append(source, 0, i);
} else if (buf.charAt(buf.length() - 1) == ' ') {
continue;
}
ch = ' '; // convert to ' '
}
if (buf != null) {
buf.append(ch);
}
}
return buf == null ? source : buf.toString();
}
//----------------------------------------------------------------
// Property set API
//----------------------------------------------------------------
/**
* Modifies this set to contain those code points which have the
* given value for the given binary or enumerated property, as
* returned by UCharacter.getIntPropertyValue. Prior contents of
* this set are lost.
*
* @param prop a property in the range
* UProperty.BIN_START..UProperty.BIN_LIMIT-1 or
* UProperty.INT_START..UProperty.INT_LIMIT-1 or.
* UProperty.MASK_START..UProperty.MASK_LIMIT-1.
*
* @param value a value in the range
* UCharacter.getIntPropertyMinValue(prop)..
* UCharacter.getIntPropertyMaxValue(prop), with one exception.
* If prop is UProperty.GENERAL_CATEGORY_MASK, then value should not be
* a UCharacter.getType() result, but rather a mask value produced
* by logically ORing (1 &lt;&lt; UCharacter.getType()) values together.
* This allows grouped categories such as [:L:] to be represented.
*
* @return a reference to this set
*/
public UnicodeSet applyIntPropertyValue(int prop, int value) {
// All of the following include checkFrozen() before modifying this set.
if (prop == UProperty.GENERAL_CATEGORY_MASK) {
UnicodeSet inclusions = CharacterPropertiesImpl.getInclusionsForProperty(prop);
applyFilter(new GeneralCategoryMaskFilter(value), inclusions);
} else if (prop == UProperty.SCRIPT_EXTENSIONS) {
UnicodeSet inclusions = CharacterPropertiesImpl.getInclusionsForProperty(prop);
applyFilter(new ScriptExtensionsFilter(value), inclusions);
} else if (prop == UProperty.IDENTIFIER_TYPE) {
UnicodeSet inclusions = CharacterPropertiesImpl.getInclusionsForProperty(prop);
applyFilter(new IdentifierTypeFilter(value), inclusions);
} else if (0 <= prop && prop < UProperty.BINARY_LIMIT) {
if (value == 0 || value == 1) {
set(CharacterProperties.getBinaryPropertySet(prop));
if (value == 0) {
complement().removeAllStrings(); // code point complement
}
} else {
clear();
}
} else if (UProperty.INT_START <= prop && prop < UProperty.INT_LIMIT) {
UnicodeSet inclusions = CharacterPropertiesImpl.getInclusionsForProperty(prop);
applyFilter(new IntPropertyFilter(prop, value), inclusions);
} else {
throw new IllegalArgumentException("unsupported property " + prop);
}
return this;
}
/**
* Modifies this set to contain those code points which have the
* given value for the given property. Prior contents of this
* set are lost.
*
* @param propertyAlias a property alias, either short or long.
* The name is matched loosely. See PropertyAliases.txt for names
* and a description of loose matching. If the value string is
* empty, then this string is interpreted as either a
* General_Category value alias, a Script value alias, a binary
* property alias, or a special ID. Special IDs are matched
* loosely and correspond to the following sets:
*
* "ANY" = [\\u0000-\\U0010FFFF],
* "ASCII" = [\\u0000-\\u007F].
*
* @param valueAlias a value alias, either short or long. The
* name is matched loosely. See PropertyValueAliases.txt for
* names and a description of loose matching. In addition to
* aliases listed, numeric values and canonical combining classes
* may be expressed numerically, e.g., ("nv", "0.5") or ("ccc",
* "220"). The value string may also be empty.
*
* @return a reference to this set
*/
public UnicodeSet applyPropertyAlias(String propertyAlias, String valueAlias) {
return applyPropertyAlias(propertyAlias, valueAlias, null);
}
/**
* Modifies this set to contain those code points which have the
* given value for the given property. Prior contents of this
* set are lost.
* @param propertyAlias A string of the property alias.
* @param valueAlias A string of the value alias.
* @param symbols if not null, then symbols are first called to see if a property
* is available. If true, then everything else is skipped.
* @return this set
*/
public UnicodeSet applyPropertyAlias(String propertyAlias,
String valueAlias, SymbolTable symbols) {
checkFrozen();
int p;
int v;
boolean invert = false;
if (symbols != null
&& (symbols instanceof XSymbolTable)
&& ((XSymbolTable)symbols).applyPropertyAlias(propertyAlias, valueAlias, this)) {
return this;
}
if (XSYMBOL_TABLE != null) {
if (XSYMBOL_TABLE.applyPropertyAlias(propertyAlias, valueAlias, this)) {
return this;
}
}
if (valueAlias.length() > 0) {
p = UCharacter.getPropertyEnum(propertyAlias);
// Treat gc as gcm
if (p == UProperty.GENERAL_CATEGORY) {
p = UProperty.GENERAL_CATEGORY_MASK;
}
if ((p >= UProperty.BINARY_START && p < UProperty.BINARY_LIMIT) ||
(p >= UProperty.INT_START && p < UProperty.INT_LIMIT) ||
(p >= UProperty.MASK_START && p < UProperty.MASK_LIMIT)) {
try {
v = UCharacter.getPropertyValueEnum(p, valueAlias);
} catch (IllegalArgumentException e) {
// Handle numeric CCC
if (p == UProperty.CANONICAL_COMBINING_CLASS ||
p == UProperty.LEAD_CANONICAL_COMBINING_CLASS ||
p == UProperty.TRAIL_CANONICAL_COMBINING_CLASS) {
v = Integer.parseInt(PatternProps.trimWhiteSpace(valueAlias));
// Anything between 0 and 255 is valid even if unused.
if (v < 0 || v > 255) throw e;
} else {
throw e;
}
}
}
else {
switch (p) {
case UProperty.NUMERIC_VALUE:
{
double value = Double.parseDouble(PatternProps.trimWhiteSpace(valueAlias));
applyFilter(new NumericValueFilter(value),
CharacterPropertiesImpl.getInclusionsForProperty(p));
return this;
}
case UProperty.NAME:
{
// Must munge name, since
// UCharacter.charFromName() does not do
// 'loose' matching.
String buf = mungeCharName(valueAlias);
int ch = UCharacter.getCharFromExtendedName(buf);
if (ch == -1) {
throw new IllegalArgumentException("Invalid character name");
}
clear();
add_unchecked(ch);
return this;
}
case UProperty.UNICODE_1_NAME:
// ICU 49 deprecates the Unicode_1_Name property APIs.
throw new IllegalArgumentException("Unicode_1_Name (na1) not supported");
case UProperty.AGE:
{
// Must munge name, since
// VersionInfo.getInstance() does not do
// 'loose' matching.
VersionInfo version = VersionInfo.getInstance(mungeCharName(valueAlias));
applyFilter(new VersionFilter(version),
CharacterPropertiesImpl.getInclusionsForProperty(p));
return this;
}
case UProperty.SCRIPT_EXTENSIONS:
v = UCharacter.getPropertyValueEnum(UProperty.SCRIPT, valueAlias);
// fall through to calling applyIntPropertyValue()
break;
case UProperty.IDENTIFIER_TYPE:
v = UCharacter.getPropertyValueEnum(p, valueAlias);
// fall through to calling applyIntPropertyValue()
break;
default:
// p is a non-binary, non-enumerated property that we
// don't support (yet).
throw new IllegalArgumentException("Unsupported property");
}
}
}
else {
// valueAlias is empty. Interpret as General Category, Script,
// Binary property, or ANY or ASCII. Upon success, p and v will
// be set.
UPropertyAliases pnames = UPropertyAliases.INSTANCE;
p = UProperty.GENERAL_CATEGORY_MASK;
v = pnames.getPropertyValueEnum(p, propertyAlias);
if (v == UProperty.UNDEFINED) {
p = UProperty.SCRIPT;
v = pnames.getPropertyValueEnum(p, propertyAlias);
if (v == UProperty.UNDEFINED) {
p = pnames.getPropertyEnum(propertyAlias);
if (p == UProperty.UNDEFINED) {
p = -1;
}
if (p >= UProperty.BINARY_START && p < UProperty.BINARY_LIMIT) {
v = 1;
} else if (p == -1) {
if (0 == UPropertyAliases.compare(ANY_ID, propertyAlias)) {
set(MIN_VALUE, MAX_VALUE);
return this;
} else if (0 == UPropertyAliases.compare(ASCII_ID, propertyAlias)) {
set(0, 0x7F);
return this;
} else if (0 == UPropertyAliases.compare(ASSIGNED, propertyAlias)) {
// [:Assigned:]=[:^Cn:]
p = UProperty.GENERAL_CATEGORY_MASK;
v = (1<<UCharacter.UNASSIGNED);
invert = true;
} else {
// Property name was never matched.
throw new IllegalArgumentException("Invalid property alias: " + propertyAlias + "=" + valueAlias);
}
} else {
// Valid property name, but it isn't binary, so the value
// must be supplied.
throw new IllegalArgumentException("Missing property value");
}
}
}
}
applyIntPropertyValue(p, v);
if(invert) {
complement().removeAllStrings(); // code point complement
}
return this;
}
//----------------------------------------------------------------
// Property set patterns
//----------------------------------------------------------------
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a property set pattern.
*/
private static boolean resemblesPropertyPattern(String pattern, int pos) {
// Patterns are at least 5 characters long
if ((pos+5) > pattern.length()) {
return false;
}
// Look for an opening [:, [:^, \p, or \P
return pattern.regionMatches(pos, "[:", 0, 2) ||
pattern.regionMatches(true, pos, "\\p", 0, 2) ||
pattern.regionMatches(pos, "\\N", 0, 2);
}
/**
* Return true if the given iterator appears to point at a
* property pattern. Regardless of the result, return with the
* iterator unchanged.
* @param chars iterator over the pattern characters. Upon return
* it will be unchanged.
* @param iterOpts RuleCharacterIterator options
*/
private static boolean resemblesPropertyPattern(RuleCharacterIterator chars,
int iterOpts) {
boolean result = false;
iterOpts &= ~RuleCharacterIterator.PARSE_ESCAPES;
RuleCharacterIterator.Position pos = chars.getPos(null);
int c = chars.next(iterOpts);
if (c == '[' || c == '\\') {
int d = chars.next(iterOpts & ~RuleCharacterIterator.SKIP_WHITESPACE);
result = (c == '[') ? (d == ':') :
(d == 'N' || d == 'p' || d == 'P');
}
chars.setPos(pos);
return result;
}
/**
* Parse the given property pattern at the given parse position.
* @param symbols TODO
*/
private UnicodeSet applyPropertyPattern(String pattern, ParsePosition ppos, SymbolTable symbols) {
int pos = ppos.getIndex();
// On entry, ppos should point to one of the following locations:
// Minimum length is 5 characters, e.g. \p{L}
if ((pos+5) > pattern.length()) {
return null;
}
boolean posix = false; // true for [:pat:], false for \p{pat} \P{pat} \N{pat}
boolean isName = false; // true for \N{pat}, o/w false
boolean invert = false;
// Look for an opening [:, [:^, \p, or \P
if (pattern.regionMatches(pos, "[:", 0, 2)) {
posix = true;
pos = PatternProps.skipWhiteSpace(pattern, (pos+2));
if (pos < pattern.length() && pattern.charAt(pos) == '^') {
++pos;
invert = true;
}
} else if (pattern.regionMatches(true, pos, "\\p", 0, 2) ||
pattern.regionMatches(pos, "\\N", 0, 2)) {
char c = pattern.charAt(pos+1);
invert = (c == 'P');
isName = (c == 'N');
pos = PatternProps.skipWhiteSpace(pattern, (pos+2));
if (pos == pattern.length() || pattern.charAt(pos++) != '{') {
// Syntax error; "\p" or "\P" not followed by "{"
return null;
}
} else {
// Open delimiter not seen
return null;
}
// Look for the matching close delimiter, either :] or }
int close = pattern.indexOf(posix ? ":]" : "}", pos);
if (close < 0) {
// Syntax error; close delimiter missing
return null;
}
// Look for an '=' sign. If this is present, we will parse a
// medium \p{gc=Cf} or long \p{GeneralCategory=Format}
// pattern.
int equals = pattern.indexOf('=', pos);
String propName, valueName;
if (equals >= 0 && equals < close && !isName) {
// Equals seen; parse medium/long pattern
propName = pattern.substring(pos, equals);
valueName = pattern.substring(equals+1, close);
}
else {
// Handle case where no '=' is seen, and \N{}
propName = pattern.substring(pos, close);
valueName = "";
// Handle \N{name}
if (isName) {
// This is a little inefficient since it means we have to
// parse "na" back to UProperty.NAME even though we already
// know it's UProperty.NAME. If we refactor the API to
// support args of (int, String) then we can remove
// "na" and make this a little more efficient.
valueName = propName;
propName = "na";
}
}
applyPropertyAlias(propName, valueName, symbols);
if (invert) {
complement().removeAllStrings(); // code point complement
}
// Move to the limit position after the close delimiter
ppos.setIndex(close + (posix ? 2 : 1));
return this;
}
/**
* Parse a property pattern.
* @param chars iterator over the pattern characters. Upon return
* it will be advanced to the first character after the parsed
* pattern, or the end of the iteration if all characters are
* parsed.
* @param rebuiltPat the pattern that was parsed, rebuilt or
* copied from the input pattern, as appropriate.
* @param symbols TODO
*/
private void applyPropertyPattern(RuleCharacterIterator chars,
Appendable rebuiltPat, SymbolTable symbols) {
String patStr = chars.getCurrentBuffer();
int start = chars.getCurrentBufferPos();
ParsePosition pos = new ParsePosition(start);
applyPropertyPattern(patStr, pos, symbols);
int length = pos.getIndex() - start;
if (length == 0) {
syntaxError(chars, "Invalid property pattern");
}
chars.jumpahead(length);
append(rebuiltPat, patStr.substring(start, pos.getIndex()));
}
//----------------------------------------------------------------
// Case folding API
//----------------------------------------------------------------
/**
* Bitmask for constructor and applyPattern() indicating that
* white space should be ignored. If set, ignore Unicode Pattern_White_Space characters,
* unless they are quoted or escaped. This may be ORed together
* with other selectors.
*/
public static final int IGNORE_SPACE = 1;
/**
* Alias for {@link #CASE_INSENSITIVE}.
*
* @deprecated ICU 73 Use {@link #CASE_INSENSITIVE} instead.
*/
@Deprecated
public static final int CASE = 2;
/**
* Enable case insensitive matching. E.g., "[ab]" with this flag
* will match 'a', 'A', 'b', and 'B'. "[^ab]" with this flag will
* match all except 'a', 'A', 'b', and 'B'. This performs a full
* closure over case mappings, e.g. 'ſ' (U+017F long s) for 's'.
*
* <p>This value is an options bit set value for some
* constructors, applyPattern(), and closeOver().
* It can be ORed together with other, unrelated options.
*
* <p>The resulting set is a superset of the input for the code points but
* not for the strings.
* It performs a case mapping closure of the code points and adds
* full case folding strings for the code points, and reduces strings of
* the original set to their full case folding equivalents.
*
* <p>This is designed for case-insensitive matches, for example
* in regular expressions. The full code point case closure allows checking of
* an input character directly against the closure set.
* Strings are matched by comparing the case-folded form from the closure
* set with an incremental case folding of the string in question.
*
* <p>The closure set will also contain single code points if the original
* set contained case-equivalent strings (like U+00DF for "ss" or "Ss" etc.).
* This is not necessary (that is, redundant) for the above matching method
* but results in the same closure sets regardless of whether the original
* set contained the code point or a string.
*/
public static final int CASE_INSENSITIVE = 2;
/**
* Adds all case mappings for each element in the set.
* This adds the full lower-, title-, and uppercase mappings as well as the full case folding
* of each existing element in the set.
*
* <p>This value is an options bit set value for some
* constructors, applyPattern(), and closeOver().
* It can be ORed together with other, unrelated options.
*
* <p>Unlike the “case insensitive” options, this does not perform a closure.
* For example, it does not add 'ſ' (U+017F long s) for 's',
* 'K' (U+212A Kelvin sign) for 'k', or replace set strings by their case-folded versions.
*/
public static final int ADD_CASE_MAPPINGS = 4;
/**
* Enable case insensitive matching.
* Same as {@link #CASE_INSENSITIVE} but using only Simple_Case_Folding (scf) mappings,
* which map each code point to one code point,
* not full Case_Folding (cf) mappings, which map some code points to multiple code points.
*
* <p>This is designed for case-insensitive matches, for example in certain
* regular expression implementations where only Simple_Case_Folding mappings are used,
* such as in ECMAScript (JavaScript) regular expressions.
*
* <p>This value is an options bit set value for some
* constructors, applyPattern(), and closeOver().
* It can be ORed together with other, unrelated options.
*
* @hide unsupported on Android
*/
public static final int SIMPLE_CASE_INSENSITIVE = 6;
private static final int CASE_MASK = CASE_INSENSITIVE | ADD_CASE_MAPPINGS;
// add the result of a full case mapping to the set
// use str as a temporary string to avoid constructing one
private static final void addCaseMapping(UnicodeSet set, int result, StringBuilder full) {
if(result >= 0) {
if(result > UCaseProps.MAX_STRING_LENGTH) {
// add a single-code point case mapping
set.add(result);
} else {
// add a string case mapping from full with length result
set.add(full.toString());
full.setLength(0);
}
}
// result < 0: the code point mapped to itself, no need to add it
// see UCaseProps
}
/** For case closure on a large set, look only at code points with relevant properties. */
UnicodeSet maybeOnlyCaseSensitive(UnicodeSet src) {
if (src.size() < 30) {
return src;
}
// Return the intersection of the src code points with Case_Sensitive ones.
UnicodeSet sensitive = CharacterProperties.getBinaryPropertySet(UProperty.CASE_SENSITIVE);
// Start by cloning the "smaller" set. Try not to copy the strings, if there are any in src.
if (src.hasStrings() || src.getRangeCount() > sensitive.getRangeCount()) {
return sensitive.cloneAsThawed().retainAll(src);
} else {
return ((UnicodeSet) src.clone()).retainAll(sensitive);
}
}
// Per-character scf = Simple_Case_Folding of a string.
// (Normally when we case-fold a string we use full case foldings.)
private static final boolean scfString(CharSequence s, StringBuilder scf) {
int length = s.length();
// Loop while not needing modification.
for (int i = 0; i < length;) {
int c = Character.codePointAt(s, i);
int scfChar = UCharacter.foldCase(c, UCharacter.FOLD_CASE_DEFAULT);
if (scfChar != c) {
// Copy the characters before c.
scf.setLength(0);
scf.append(s, 0, i);
// Loop over the rest of the string and keep case-folding.
for (;;) {
scf.appendCodePoint(scfChar);
i += Character.charCount(c);
if (i == length) {
return true;
}
c = Character.codePointAt(s, i);
scfChar = UCharacter.foldCase(c, UCharacter.FOLD_CASE_DEFAULT);
}
}
i += Character.charCount(c);
}
return false;
}
/**
* Close this set over the given attribute. For the attribute
* {@link #CASE_INSENSITIVE}, the result is to modify this set so that:
*
* <ol>
* <li>For each character or string 'a' in this set, all strings
* 'b' such that foldCase(a) == foldCase(b) are added to this set.
* (For most 'a' that are single characters, 'b' will have
* b.length() == 1.)
*
* <li>For each string 'e' in the resulting set, if e !=
* foldCase(e), 'e' will be removed.
* </ol>
*
* <p>Example: [aq\u00DF{Bc}{bC}{Fi}] =&gt; [aAqQ\u00DF\uFB01{ss}{bc}{fi}]
*
* <p>(Here foldCase(x) refers to the operation
* UCharacter.foldCase(x, true), and a == b actually denotes
* a.equals(b), not pointer comparison.)
*
* @param attribute bitmask for attributes to close over.
* Valid options:
* At most one of {@link #CASE_INSENSITIVE}, {@link #ADD_CASE_MAPPINGS},
* {@link #SIMPLE_CASE_INSENSITIVE}. These case options are mutually exclusive.
* Unrelated options bits are ignored.
* @return a reference to this set.
*/
public UnicodeSet closeOver(int attribute) {
checkFrozen();
switch (attribute & CASE_MASK) {
case 0:
break;
case CASE_INSENSITIVE:
closeOverCaseInsensitive(/* simple= */ false);
break;
case ADD_CASE_MAPPINGS:
closeOverAddCaseMappings();
break;
case SIMPLE_CASE_INSENSITIVE:
closeOverCaseInsensitive(/* simple= */ true);
break;
default:
// bad option (unreachable)
break;
}
return this;
}
private void closeOverCaseInsensitive(boolean simple) {
UCaseProps csp = UCaseProps.INSTANCE;
// Start with input set to guarantee inclusion.
UnicodeSet foldSet = new UnicodeSet(this);
// Full case mappings closure:
// Remove strings because the strings will actually be reduced (folded);
// therefore, start with no strings and add only those needed.
// Do this before processing code points, because they may add strings.
if (!simple && foldSet.hasStrings()) {
foldSet.strings.clear();
}
UnicodeSet codePoints = maybeOnlyCaseSensitive(this);
// Iterate over the ranges of single code points. Nested loop for each code point.
int n = codePoints.getRangeCount();
for (int i=0; i<n; ++i) {
int start = codePoints.getRangeStart(i);
int end = codePoints.getRangeEnd(i);
if (simple) {
for (int cp=start; cp<=end; ++cp) {
csp.addSimpleCaseClosure(cp, foldSet);
}
} else {
for (int cp=start; cp<=end; ++cp) {
csp.addCaseClosure(cp, foldSet);
}
}
}
if (hasStrings()) {
StringBuilder sb = simple ? new StringBuilder() : null;
for (String s : strings) {
if (simple) {
if (scfString(s, sb)) {
foldSet.remove(s).add(sb);
}
} else {
String str = UCharacter.foldCase(s, 0);
if(!csp.addStringCaseClosure(str, foldSet)) {
foldSet.add(str); // does not map to code points: add the folded string itself
}
}
}
}
set(foldSet);
}
private void closeOverAddCaseMappings() {
UCaseProps csp = UCaseProps.INSTANCE;
// Start with input set to guarantee inclusion.
UnicodeSet foldSet = new UnicodeSet(this);
UnicodeSet codePoints = maybeOnlyCaseSensitive(this);
// Iterate over the ranges of single code points. Nested loop for each code point.
int n = codePoints.getRangeCount();
int result;
StringBuilder full = new StringBuilder();
for (int i=0; i<n; ++i) {
int start = codePoints.getRangeStart(i);
int end = codePoints.getRangeEnd(i);
// add case mappings
// (does not add long s for regular s, or Kelvin for k, for example)
for (int cp=start; cp<=end; ++cp) {
result = csp.toFullLower(cp, null, full, UCaseProps.LOC_ROOT);
addCaseMapping(foldSet, result, full);
result = csp.toFullTitle(cp, null, full, UCaseProps.LOC_ROOT);
addCaseMapping(foldSet, result, full);
result = csp.toFullUpper(cp, null, full, UCaseProps.LOC_ROOT);
addCaseMapping(foldSet, result, full);
result = csp.toFullFolding(cp, full, 0);
addCaseMapping(foldSet, result, full);
}
}
if (hasStrings()) {
ULocale root = ULocale.ROOT;
BreakIterator bi = BreakIterator.getWordInstance(root);
for (String str : strings) {
// TODO: call lower-level functions
foldSet.add(UCharacter.toLowerCase(root, str));
foldSet.add(UCharacter.toTitleCase(root, str, bi));
foldSet.add(UCharacter.toUpperCase(root, str));
foldSet.add(UCharacter.foldCase(str, 0));
}
}
set(foldSet);
}
/**
* Internal class for customizing UnicodeSet parsing of properties.
* TODO: extend to allow customizing of codepoint ranges
* @author medavis
* @hide Only a subset of ICU is exposed in Android
* @hide draft / provisional / internal are hidden on Android
*/
abstract public static class XSymbolTable implements SymbolTable {
/**
* Default constructor
* @hide draft / provisional / internal are hidden on Android
*/
public XSymbolTable(){}
/**
* Supplies default implementation for SymbolTable (no action).
* @hide draft / provisional / internal are hidden on Android
*/
@Override
public UnicodeMatcher lookupMatcher(int i) {
return null;
}
/**
* Override the interpretation of the sequence [:propertyName=propertyValue:] (and its negated and Perl-style
* variant). The propertyName and propertyValue may be existing Unicode aliases, or may not be.
* <p>
* This routine will be called whenever the parsing of a UnicodeSet pattern finds such a
* propertyName+propertyValue combination.
*
* @param propertyName
* the name of the property
* @param propertyValue
* the name of the property value
* @param result UnicodeSet value to change
* a set to which the characters having the propertyName+propertyValue are to be added.
* @return returns true if the propertyName+propertyValue combination is to be overridden, and the characters
* with that property have been added to the UnicodeSet, and returns false if the
* propertyName+propertyValue combination is not recognized (in which case result is unaltered).
* @hide draft / provisional / internal are hidden on Android
*/
public boolean applyPropertyAlias(String propertyName, String propertyValue, UnicodeSet result) {
return false;
}
/**
* Supplies default implementation for SymbolTable (no action).
* @hide draft / provisional / internal are hidden on Android
*/
@Override
public char[] lookup(String s) {
return null;
}
/**
* Supplies default implementation for SymbolTable (no action).
* @hide draft / provisional / internal are hidden on Android
*/
@Override
public String parseReference(String text, ParsePosition pos, int limit) {
return null;
}
}
/**
* Is this frozen, according to the Freezable interface?
*
* @return value
*/
@Override
public boolean isFrozen() {
return (bmpSet != null || stringSpan != null);
}
/**
* Freeze this class, according to the Freezable interface.
*
* @return this
*/
@Override
public UnicodeSet freeze() {
if (!isFrozen()) {
compact();
// Optimize contains() and span() and similar functions.
if (hasStrings()) {
stringSpan = new UnicodeSetStringSpan(this, new ArrayList<>(strings), UnicodeSetStringSpan.ALL);
}
if (stringSpan == null || !stringSpan.needsStringSpanUTF16()) {
// Optimize for code point spans.
// There are no strings, or
// all strings are irrelevant for span() etc. because
// all of each string's code points are contained in this set.
// However, fully contained strings are relevant for spanAndCount(),
// so we create both objects.
bmpSet = new BMPSet(list, len);
}
}
return this;
}
/**
* Span a string using this UnicodeSet.
* <p>To replace, count elements, or delete spans, see {@link android.icu.text.UnicodeSetSpanner UnicodeSetSpanner}.
* @param s The string to be spanned
* @param spanCondition The span condition
* @return the length of the span
*/
public int span(CharSequence s, SpanCondition spanCondition) {
return span(s, 0, spanCondition);
}
/**
* Span a string using this UnicodeSet.
* If the start index is less than 0, span will start from 0.
* If the start index is greater than the string length, span returns the string length.
* <p>To replace, count elements, or delete spans, see {@link android.icu.text.UnicodeSetSpanner UnicodeSetSpanner}.
* @param s The string to be spanned
* @param start The start index that the span begins
* @param spanCondition The span condition
* @return the string index which ends the span (i.e. exclusive)
*/
public int span(CharSequence s, int start, SpanCondition spanCondition) {
int end = s.length();
if (start < 0) {
start = 0;
} else if (start >= end) {
return end;
}
if (bmpSet != null) {
// Frozen set without strings, or no string is relevant for span().
return bmpSet.span(s, start, spanCondition, null);
}
if (stringSpan != null) {
return stringSpan.span(s, start, spanCondition);
} else if (hasStrings()) {
int which = spanCondition == SpanCondition.NOT_CONTAINED ? UnicodeSetStringSpan.FWD_UTF16_NOT_CONTAINED
: UnicodeSetStringSpan.FWD_UTF16_CONTAINED;
UnicodeSetStringSpan strSpan = new UnicodeSetStringSpan(this, new ArrayList<>(strings), which);
if (strSpan.needsStringSpanUTF16()) {
return strSpan.span(s, start, spanCondition);
}
}
return spanCodePointsAndCount(s, start, spanCondition, null);
}
/**
* Same as span() but also counts the smallest number of set elements on any path across the span.
* <p>To replace, count elements, or delete spans, see {@link android.icu.text.UnicodeSetSpanner UnicodeSetSpanner}.
* @param outCount An output-only object (must not be null) for returning the count.
* @return the limit (exclusive end) of the span
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public int spanAndCount(CharSequence s, int start, SpanCondition spanCondition, OutputInt outCount) {
if (outCount == null) {
throw new IllegalArgumentException("outCount must not be null");
}
int end = s.length();
if (start < 0) {
start = 0;
} else if (start >= end) {
return end;
}
if (stringSpan != null) {
// We might also have bmpSet != null,
// but fully-contained strings are relevant for counting elements.
return stringSpan.spanAndCount(s, start, spanCondition, outCount);
} else if (bmpSet != null) {
return bmpSet.span(s, start, spanCondition, outCount);
} else if (hasStrings()) {
int which = spanCondition == SpanCondition.NOT_CONTAINED ? UnicodeSetStringSpan.FWD_UTF16_NOT_CONTAINED
: UnicodeSetStringSpan.FWD_UTF16_CONTAINED;
which |= UnicodeSetStringSpan.WITH_COUNT;
UnicodeSetStringSpan strSpan = new UnicodeSetStringSpan(this, new ArrayList<>(strings), which);
return strSpan.spanAndCount(s, start, spanCondition, outCount);
}
return spanCodePointsAndCount(s, start, spanCondition, outCount);
}
private int spanCodePointsAndCount(CharSequence s, int start,
SpanCondition spanCondition, OutputInt outCount) {
// Pin to 0/1 values.
boolean spanContained = (spanCondition != SpanCondition.NOT_CONTAINED);
int c;
int next = start;
int length = s.length();
int count = 0;
do {
c = Character.codePointAt(s, next);
if (spanContained != contains(c)) {
break;
}
++count;
next += Character.charCount(c);
} while (next < length);
if (outCount != null) { outCount.value = count; }
return next;
}
/**
* Span a string backwards (from the end) using this UnicodeSet.
* <p>To replace, count elements, or delete spans, see {@link android.icu.text.UnicodeSetSpanner UnicodeSetSpanner}.
* @param s The string to be spanned
* @param spanCondition The span condition
* @return The string index which starts the span (i.e. inclusive).
*/
public int spanBack(CharSequence s, SpanCondition spanCondition) {
return spanBack(s, s.length(), spanCondition);
}
/**
* Span a string backwards (from the fromIndex) using this UnicodeSet.
* If the fromIndex is less than 0, spanBack will return 0.
* If fromIndex is greater than the string length, spanBack will start from the string length.
* <p>To replace, count elements, or delete spans, see {@link android.icu.text.UnicodeSetSpanner UnicodeSetSpanner}.
* @param s The string to be spanned
* @param fromIndex The index of the char (exclusive) that the string should be spanned backwards
* @param spanCondition The span condition
* @return The string index which starts the span (i.e. inclusive).
*/
public int spanBack(CharSequence s, int fromIndex, SpanCondition spanCondition) {
if (fromIndex <= 0) {
return 0;
}
if (fromIndex > s.length()) {
fromIndex = s.length();
}
if (bmpSet != null) {
// Frozen set without strings, or no string is relevant for spanBack().
return bmpSet.spanBack(s, fromIndex, spanCondition);
}
if (stringSpan != null) {
return stringSpan.spanBack(s, fromIndex, spanCondition);
} else if (hasStrings()) {
int which = (spanCondition == SpanCondition.NOT_CONTAINED)
? UnicodeSetStringSpan.BACK_UTF16_NOT_CONTAINED
: UnicodeSetStringSpan.BACK_UTF16_CONTAINED;
UnicodeSetStringSpan strSpan = new UnicodeSetStringSpan(this, new ArrayList<>(strings), which);
if (strSpan.needsStringSpanUTF16()) {
return strSpan.spanBack(s, fromIndex, spanCondition);
}
}
// Pin to 0/1 values.
boolean spanContained = (spanCondition != SpanCondition.NOT_CONTAINED);
int c;
int prev = fromIndex;
do {
c = Character.codePointBefore(s, prev);
if (spanContained != contains(c)) {
break;
}
prev -= Character.charCount(c);
} while (prev > 0);
return prev;
}
/**
* Clone a thawed version of this class, according to the Freezable interface.
* @return the clone, not frozen
*/
@Override
public UnicodeSet cloneAsThawed() {
UnicodeSet result = new UnicodeSet(this);
assert !result.isFrozen();
return result;
}
// internal function
private void checkFrozen() {
if (isFrozen()) {
throw new UnsupportedOperationException("Attempt to modify frozen object");
}
}
// ************************
// Additional methods for integration with Generics and Collections
// ************************
/**
* A struct-like class used for iteration through ranges, for faster iteration than by String.
* Read about the restrictions on usage in {@link UnicodeSet#ranges()}.
*/
public static class EntryRange {
/**
* The starting code point of the range.
*/
public int codepoint;
/**
* The ending code point of the range
*/
public int codepointEnd;
EntryRange() {
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
StringBuilder b = new StringBuilder();
return (
codepoint == codepointEnd ? _appendToPat(b, codepoint, false)
: _appendToPat(_appendToPat(b, codepoint, false).append('-'), codepointEnd, false))
.toString();
}
}
/**
* Provide for faster iteration than by String. Returns an Iterable/Iterator over ranges of code points.
* The UnicodeSet must not be altered during the iteration.
* The EntryRange instance is the same each time; the contents are just reset.
*
* <p><b>Warning: </b>To iterate over the full contents, you have to also iterate over the strings.
*
* <p><b>Warning: </b>For speed, UnicodeSet iteration does not check for concurrent modification.
* Do not alter the UnicodeSet while iterating.
*
* <pre>
* // Sample code
* for (EntryRange range : us1.ranges()) {
* // do something with code points between range.codepoint and range.codepointEnd;
* }
* for (String s : us1.strings()) {
* // do something with each string;
* }
* </pre>
*/
public Iterable<EntryRange> ranges() {
return new EntryRangeIterable();
}
private class EntryRangeIterable implements Iterable<EntryRange> {
@Override
public Iterator<EntryRange> iterator() {
return new EntryRangeIterator();
}
}
private class EntryRangeIterator implements Iterator<EntryRange> {
int pos;
EntryRange result = new EntryRange();
@Override
public boolean hasNext() {
return pos < len-1;
}
@Override
public EntryRange next() {
if (pos < len-1) {
result.codepoint = list[pos++];
result.codepointEnd = list[pos++]-1;
} else {
throw new NoSuchElementException();
}
return result;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
}
/**
* Returns a string iterator. Uses the same order of iteration as {@link UnicodeSetIterator}.
* <p><b>Warning: </b>For speed, UnicodeSet iteration does not check for concurrent modification.
* Do not alter the UnicodeSet while iterating.
* @see java.util.Set#iterator()
*/
@Override
public Iterator<String> iterator() {
return new UnicodeSetIterator2(this);
}
// Cover for string iteration.
private static class UnicodeSetIterator2 implements Iterator<String> {
// Invariants:
// sourceList != null then sourceList[item] is a valid character
// sourceList == null then delegates to stringIterator
private int[] sourceList;
private int len;
private int item;
private int current;
private int limit;
private SortedSet<String> sourceStrings;
private Iterator<String> stringIterator;
private char[] buffer;
UnicodeSetIterator2(UnicodeSet source) {
// set according to invariants
len = source.len - 1;
if (len > 0) {
sourceStrings = source.strings;
sourceList = source.list;
current = sourceList[item++];
limit = sourceList[item++];
} else {
stringIterator = source.strings.iterator();
sourceList = null;
}
}
/* (non-Javadoc)
* @see java.util.Iterator#hasNext()
*/
@Override
public boolean hasNext() {
return sourceList != null || stringIterator.hasNext();
}
/* (non-Javadoc)
* @see java.util.Iterator#next()
*/
@Override
public String next() {
if (sourceList == null) {
return stringIterator.next();
}
int codepoint = current++;
// we have the codepoint we need, but we may need to adjust the state
if (current >= limit) {
if (item >= len) {
stringIterator = sourceStrings.iterator();
sourceList = null;
} else {
current = sourceList[item++];
limit = sourceList[item++];
}
}
// Now return. Single code point is easy
if (codepoint <= 0xFFFF) {
return String.valueOf((char)codepoint);
}
// But Java lacks a valueOfCodePoint, so we handle ourselves for speed
// allocate a buffer the first time, to make conversion faster.
if (buffer == null) {
buffer = new char[2];
}
// compute ourselves, to save tests and calls
int offset = codepoint - Character.MIN_SUPPLEMENTARY_CODE_POINT;
buffer[0] = (char)((offset >>> 10) + Character.MIN_HIGH_SURROGATE);
buffer[1] = (char)((offset & 0x3ff) + Character.MIN_LOW_SURROGATE);
return String.valueOf(buffer);
}
/* (non-Javadoc)
* @see java.util.Iterator#remove()
*/
@Override
public void remove() {
throw new UnsupportedOperationException();
}
}
/**
* @see #containsAll(android.icu.text.UnicodeSet)
*/
public <T extends CharSequence> boolean containsAll(Iterable<T> collection) {
for (T o : collection) {
if (!contains(o)) {
return false;
}
}
return true;
}
/**
* @see #containsNone(android.icu.text.UnicodeSet)
*/
public <T extends CharSequence> boolean containsNone(Iterable<T> collection) {
for (T o : collection) {
if (contains(o)) {
return false;
}
}
return true;
}
/**
* @see #containsAll(android.icu.text.UnicodeSet)
*/
public final <T extends CharSequence> boolean containsSome(Iterable<T> collection) {
return !containsNone(collection);
}
/**
* @see #addAll(android.icu.text.UnicodeSet)
*/
@SuppressWarnings("unchecked") // See ticket #11395, this is safe.
public <T extends CharSequence> UnicodeSet addAll(T... collection) {
checkFrozen();
for (T str : collection) {
add(str);
}
return this;
}
/**
* @see #removeAll(android.icu.text.UnicodeSet)
*/
public <T extends CharSequence> UnicodeSet removeAll(Iterable<T> collection) {
checkFrozen();
for (T o : collection) {
remove(o);
}
return this;
}
/**
* @see #retainAll(android.icu.text.UnicodeSet)
*/
public <T extends CharSequence> UnicodeSet retainAll(Iterable<T> collection) {
checkFrozen();
// TODO optimize
UnicodeSet toRetain = new UnicodeSet();
toRetain.addAll(collection);
retainAll(toRetain);
return this;
}
/**
* Comparison style enums used by {@link UnicodeSet#compareTo(UnicodeSet, ComparisonStyle)}.
*/
public enum ComparisonStyle {
/**
*/
SHORTER_FIRST,
/**
*/
LEXICOGRAPHIC,
/**
*/
LONGER_FIRST
}
/**
* Compares UnicodeSets, where shorter come first, and otherwise lexicographically
* (according to the comparison of the first characters that differ).
* @see java.lang.Comparable#compareTo(java.lang.Object)
*/
@Override
public int compareTo(UnicodeSet o) {
return compareTo(o, ComparisonStyle.SHORTER_FIRST);
}
/**
* Compares UnicodeSets, in three different ways.
* @see java.lang.Comparable#compareTo(java.lang.Object)
*/
public int compareTo(UnicodeSet o, ComparisonStyle style) {
if (style != ComparisonStyle.LEXICOGRAPHIC) {
int diff = size() - o.size();
if (diff != 0) {
return (diff < 0) == (style == ComparisonStyle.SHORTER_FIRST) ? -1 : 1;
}
}
int result;
for (int i = 0; ; ++i) {
if (0 != (result = list[i] - o.list[i])) {
// if either list ran out, compare to the last string
if (list[i] == HIGH) {
if (!hasStrings()) return 1;
String item = strings.first();
return compare(item, o.list[i]);
}
if (o.list[i] == HIGH) {
if (!o.hasStrings()) return -1;
String item = o.strings.first();
int compareResult = compare(item, list[i]);
return compareResult > 0 ? -1 : compareResult < 0 ? 1 : 0; // Reverse the order.
}
// otherwise return the result if even index, or the reversal if not
return (i & 1) == 0 ? result : -result;
}
if (list[i] == HIGH) {
break;
}
}
return compare(strings, o.strings);
}
/**
*/
public int compareTo(Iterable<String> other) {
return compare(this, other);
}
/**
* Utility to compare a string to a code point.
* Same results as turning the code point into a string (with the [ugly] new StringBuilder().appendCodePoint(codepoint).toString())
* and comparing, but much faster (no object creation).
* Actually, there is one difference; a null compares as less.
* Note that this (=String) order is UTF-16 order -- <i>not</i> code point order.
* @hide unsupported on Android
*/
public static int compare(CharSequence string, int codePoint) {
return CharSequences.compare(string, codePoint);
}
/**
* Utility to compare a string to a code point.
* Same results as turning the code point into a string and comparing, but much faster (no object creation).
* Actually, there is one difference; a null compares as less.
* Note that this (=String) order is UTF-16 order -- <i>not</i> code point order.
* @hide unsupported on Android
*/
public static int compare(int codePoint, CharSequence string) {
return -CharSequences.compare(string, codePoint);
}
/**
* Utility to compare two iterables. Warning: the ordering in iterables is important. For Collections that are ordered,
* like Lists, that is expected. However, Sets in Java violate Leibniz's law when it comes to iteration.
* That means that sets can't be compared directly with this method, unless they are TreeSets without
* (or with the same) comparator. Unfortunately, it is impossible to reliably detect in Java whether subclass of
* Collection satisfies the right criteria, so it is left to the user to avoid those circumstances.
* @hide unsupported on Android
*/
public static <T extends Comparable<T>> int compare(Iterable<T> collection1, Iterable<T> collection2) {
return compare(collection1.iterator(), collection2.iterator());
}
/**
* Utility to compare two iterators. Warning: the ordering in iterables is important. For Collections that are ordered,
* like Lists, that is expected. However, Sets in Java violate Leibniz's law when it comes to iteration.
* That means that sets can't be compared directly with this method, unless they are TreeSets without
* (or with the same) comparator. Unfortunately, it is impossible to reliably detect in Java whether subclass of
* Collection satisfies the right criteria, so it is left to the user to avoid those circumstances.
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public static <T extends Comparable<T>> int compare(Iterator<T> first, Iterator<T> other) {
while (true) {
if (!first.hasNext()) {
return other.hasNext() ? -1 : 0;
} else if (!other.hasNext()) {
return 1;
}
T item1 = first.next();
T item2 = other.next();
int result = item1.compareTo(item2);
if (result != 0) {
return result;
}
}
}
/**
* Utility to compare two collections, optionally by size, and then lexicographically.
* @hide unsupported on Android
*/
public static <T extends Comparable<T>> int compare(Collection<T> collection1, Collection<T> collection2, ComparisonStyle style) {
if (style != ComparisonStyle.LEXICOGRAPHIC) {
int diff = collection1.size() - collection2.size();
if (diff != 0) {
return (diff < 0) == (style == ComparisonStyle.SHORTER_FIRST) ? -1 : 1;
}
}
return compare(collection1, collection2);
}
/**
* Utility for adding the contents of an iterable to a collection.
* @hide unsupported on Android
*/
public static <T, U extends Collection<T>> U addAllTo(Iterable<T> source, U target) {
for (T item : source) {
target.add(item);
}
return target;
}
/**
* Utility for adding the contents of an iterable to a collection.
* @hide unsupported on Android
*/
public static <T> T[] addAllTo(Iterable<T> source, T[] target) {
int i = 0;
for (T item : source) {
target[i++] = item;
}
return target;
}
/**
* For iterating through the strings in the set. Example:
* <pre>
* for (String key : myUnicodeSet.strings()) {
* doSomethingWith(key);
* }
* </pre>
*/
public Collection<String> strings() {
if (hasStrings()) {
return Collections.unmodifiableSortedSet(strings);
} else {
return EMPTY_STRINGS;
}
}
/**
* Return the value of the first code point, if the string is exactly one code point. Otherwise return Integer.MAX_VALUE.
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public static int getSingleCodePoint(CharSequence s) {
return CharSequences.getSingleCodePoint(s);
}
/**
* Simplify the ranges in a Unicode set by merging any ranges that are only separated by characters in the dontCare set.
* For example, the ranges: \\u2E80-\\u2E99\\u2E9B-\\u2EF3\\u2F00-\\u2FD5\\u2FF0-\\u2FFB\\u3000-\\u303E change to \\u2E80-\\u303E
* if the dontCare set includes unassigned characters (for a particular version of Unicode).
* @param dontCare Set with the don't-care characters for spanning
* @return the input set, modified
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public UnicodeSet addBridges(UnicodeSet dontCare) {
UnicodeSet notInInput = new UnicodeSet(this).complement().removeAllStrings();
for (UnicodeSetIterator it = new UnicodeSetIterator(notInInput); it.nextRange();) {
if (it.codepoint != 0 && it.codepointEnd != 0x10FFFF &&
dontCare.contains(it.codepoint, it.codepointEnd)) {
add(it.codepoint,it.codepointEnd);
}
}
return this;
}
/**
* Find the first index at or after fromIndex where the UnicodeSet matches at that index.
* If findNot is true, then reverse the sense of the match: find the first place where the UnicodeSet doesn't match.
* If there is no match, length is returned.
* @deprecated This API is ICU internal only. Use span instead.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public int findIn(CharSequence value, int fromIndex, boolean findNot) {
//TODO add strings, optimize, using ICU4C algorithms
int cp;
for (; fromIndex < value.length(); fromIndex += UTF16.getCharCount(cp)) {
cp = UTF16.charAt(value, fromIndex);
if (contains(cp) != findNot) {
break;
}
}
return fromIndex;
}
/**
* Find the last index before fromIndex where the UnicodeSet matches at that index.
* If findNot is true, then reverse the sense of the match: find the last place where the UnicodeSet doesn't match.
* If there is no match, -1 is returned.
* BEFORE index is not in the UnicodeSet.
* @deprecated This API is ICU internal only. Use spanBack instead.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public int findLastIn(CharSequence value, int fromIndex, boolean findNot) {
//TODO add strings, optimize, using ICU4C algorithms
int cp;
fromIndex -= 1;
for (; fromIndex >= 0; fromIndex -= UTF16.getCharCount(cp)) {
cp = UTF16.charAt(value, fromIndex);
if (contains(cp) != findNot) {
break;
}
}
return fromIndex < 0 ? -1 : fromIndex;
}
/**
* Strips code points from source. If matches is true, script all that match <i>this</i>. If matches is false, then strip all that <i>don't</i> match.
* @param source The source of the CharSequence to strip from.
* @param matches A boolean to either strip all that matches or don't match with the current UnicodeSet object.
* @return The string after it has been stripped.
* @deprecated This API is ICU internal only. Use replaceFrom.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public String stripFrom(CharSequence source, boolean matches) {
StringBuilder result = new StringBuilder();
for (int pos = 0; pos < source.length();) {
int inside = findIn(source, pos, !matches);
result.append(source.subSequence(pos, inside));
pos = findIn(source, inside, matches); // get next start
}
return result.toString();
}
/**
* Argument values for whether span() and similar functions continue while the current character is contained vs.
* not contained in the set.
* <p>
* The functionality is straightforward for sets with only single code points, without strings (which is the common
* case):
* <ul>
* <li>CONTAINED and SIMPLE work the same.
* <li>CONTAINED and SIMPLE are inverses of NOT_CONTAINED.
* <li>span() and spanBack() partition any string the
* same way when alternating between span(NOT_CONTAINED) and span(either "contained" condition).
* <li>Using a
* complemented (inverted) set and the opposite span conditions yields the same results.
* </ul>
* When a set contains multi-code point strings, then these statements may not be true, depending on the strings in
* the set (for example, whether they overlap with each other) and the string that is processed. For a set with
* strings:
* <ul>
* <li>The complement of the set contains the opposite set of code points, but the same set of strings.
* Therefore, complementing both the set and the span conditions may yield different results.
* <li>When starting spans
* at different positions in a string (span(s, ...) vs. span(s+1, ...)) the ends of the spans may be different
* because a set string may start before the later position.
* <li>span(SIMPLE) may be shorter than
* span(CONTAINED) because it will not recursively try all possible paths. For example, with a set which
* contains the three strings "xy", "xya" and "ax", span("xyax", CONTAINED) will return 4 but span("xyax",
* SIMPLE) will return 3. span(SIMPLE) will never be longer than span(CONTAINED).
* <li>With either "contained" condition, span() and spanBack() may partition a string in different ways. For example,
* with a set which contains the two strings "ab" and "ba", and when processing the string "aba", span() will yield
* contained/not-contained boundaries of { 0, 2, 3 } while spanBack() will yield boundaries of { 0, 1, 3 }.
* </ul>
* Note: If it is important to get the same boundaries whether iterating forward or backward through a string, then
* either only span() should be used and the boundaries cached for backward operation, or an ICU BreakIterator could
* be used.
* <p>
* Note: Unpaired surrogates are treated like surrogate code points. Similarly, set strings match only on code point
* boundaries, never in the middle of a surrogate pair.
*/
public enum SpanCondition {
/**
* Continues a span() while there is no set element at the current position.
* Increments by one code point at a time.
* Stops before the first set element (character or string).
* (For code points only, this is like while contains(current)==false).
* <p>
* When span() returns, the substring between where it started and the position it returned consists only of
* characters that are not in the set, and none of its strings overlap with the span.
*/
NOT_CONTAINED,
/**
* Spans the longest substring that is a concatenation of set elements (characters or strings).
* (For characters only, this is like while contains(current)==true).
* <p>
* When span() returns, the substring between where it started and the position it returned consists only of set
* elements (characters or strings) that are in the set.
* <p>
* If a set contains strings, then the span will be the longest substring for which there
* exists at least one non-overlapping concatenation of set elements (characters or strings).
* This is equivalent to a POSIX regular expression for <code>(OR of each set element)*</code>.
* (Java/ICU/Perl regex stops at the first match of an OR.)
*/
CONTAINED,
/**
* Continues a span() while there is a set element at the current position.
* Increments by the longest matching element at each position.
* (For characters only, this is like while contains(current)==true).
* <p>
* When span() returns, the substring between where it started and the position it returned consists only of set
* elements (characters or strings) that are in the set.
* <p>
* If a set only contains single characters, then this is the same as CONTAINED.
* <p>
* If a set contains strings, then the span will be the longest substring with a match at each position with the
* longest single set element (character or string).
* <p>
* Use this span condition together with other longest-match algorithms, such as ICU converters
* (ucnv_getUnicodeSet()).
*/
SIMPLE,
/**
* One more than the last span condition.
*/
CONDITION_COUNT
}
/**
* Get the default symbol table. Null means ordinary processing. For internal use only.
* @return the symbol table
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public static XSymbolTable getDefaultXSymbolTable() {
return XSYMBOL_TABLE;
}
/**
* Set the default symbol table. Null means ordinary processing. For internal use only. Will affect all subsequent parsing
* of UnicodeSets.
* <p>
* WARNING: If this function is used with a UnicodeProperty, and the
* Unassigned characters (gc=Cn) are different than in ICU, you MUST call
* {@code UnicodeProperty.ResetCacheProperties} afterwards. If you then call {@code UnicodeSet.setDefaultXSymbolTable}
* with null to clear the value, you MUST also call {@code UnicodeProperty.ResetCacheProperties}.
*
* @param xSymbolTable the new default symbol table.
* @deprecated This API is ICU internal only.
* @hide original deprecated declaration
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public static void setDefaultXSymbolTable(XSymbolTable xSymbolTable) {
// If the properties override inclusions, these have to be regenerated.
// TODO: Check if the Unicode Tools or Unicode Utilities really need this.
CharacterPropertiesImpl.clear();
XSYMBOL_TABLE = xSymbolTable;
}
}
//eof