1832 lines
65 KiB
Java
1832 lines
65 KiB
Java
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.util;
|
|
|
|
import java.util.function.Consumer;
|
|
import java.util.function.Predicate;
|
|
import java.util.function.UnaryOperator;
|
|
import jdk.internal.access.SharedSecrets;
|
|
import jdk.internal.util.ArraysSupport;
|
|
|
|
/**
|
|
* Resizable-array implementation of the {@code List} interface. Implements
|
|
* all optional list operations, and permits all elements, including
|
|
* {@code null}. In addition to implementing the {@code List} interface,
|
|
* this class provides methods to manipulate the size of the array that is
|
|
* used internally to store the list. (This class is roughly equivalent to
|
|
* {@code Vector}, except that it is unsynchronized.)
|
|
*
|
|
* <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
|
|
* {@code iterator}, and {@code listIterator} operations run in constant
|
|
* time. The {@code add} operation runs in <i>amortized constant time</i>,
|
|
* that is, adding n elements requires O(n) time. All of the other operations
|
|
* run in linear time (roughly speaking). The constant factor is low compared
|
|
* to that for the {@code LinkedList} implementation.
|
|
*
|
|
* <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
|
|
* the size of the array used to store the elements in the list. It is always
|
|
* at least as large as the list size. As elements are added to an ArrayList,
|
|
* its capacity grows automatically. The details of the growth policy are not
|
|
* specified beyond the fact that adding an element has constant amortized
|
|
* time cost.
|
|
*
|
|
* <p>An application can increase the capacity of an {@code ArrayList} instance
|
|
* before adding a large number of elements using the {@code ensureCapacity}
|
|
* operation. This may reduce the amount of incremental reallocation.
|
|
*
|
|
* <p><strong>Note that this implementation is not synchronized.</strong>
|
|
* If multiple threads access an {@code ArrayList} instance concurrently,
|
|
* and at least one of the threads modifies the list structurally, it
|
|
* <i>must</i> be synchronized externally. (A structural modification is
|
|
* any operation that adds or deletes one or more elements, or explicitly
|
|
* resizes the backing array; merely setting the value of an element is not
|
|
* a structural modification.) This is typically accomplished by
|
|
* synchronizing on some object that naturally encapsulates the list.
|
|
*
|
|
* If no such object exists, the list should be "wrapped" using the
|
|
* {@link Collections#synchronizedList Collections.synchronizedList}
|
|
* method. This is best done at creation time, to prevent accidental
|
|
* unsynchronized access to the list:<pre>
|
|
* List list = Collections.synchronizedList(new ArrayList(...));</pre>
|
|
*
|
|
* <p id="fail-fast">
|
|
* The iterators returned by this class's {@link #iterator() iterator} and
|
|
* {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
|
|
* if the list is structurally modified at any time after the iterator is
|
|
* created, in any way except through the iterator's own
|
|
* {@link ListIterator#remove() remove} or
|
|
* {@link ListIterator#add(Object) add} methods, the iterator will throw a
|
|
* {@link ConcurrentModificationException}. Thus, in the face of
|
|
* concurrent modification, the iterator fails quickly and cleanly, rather
|
|
* than risking arbitrary, non-deterministic behavior at an undetermined
|
|
* time in the future.
|
|
*
|
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
|
|
* as it is, generally speaking, impossible to make any hard guarantees in the
|
|
* presence of unsynchronized concurrent modification. Fail-fast iterators
|
|
* throw {@code ConcurrentModificationException} on a best-effort basis.
|
|
* Therefore, it would be wrong to write a program that depended on this
|
|
* exception for its correctness: <i>the fail-fast behavior of iterators
|
|
* should be used only to detect bugs.</i>
|
|
*
|
|
* <p>This class is a member of the
|
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
|
* Java Collections Framework</a>.
|
|
*
|
|
* @param <E> the type of elements in this list
|
|
*
|
|
* @author Josh Bloch
|
|
* @author Neal Gafter
|
|
* @see Collection
|
|
* @see List
|
|
* @see LinkedList
|
|
* @see Vector
|
|
* @since 1.2
|
|
*/
|
|
// Android-changed: CME in iterators;
|
|
/*
|
|
* - AOSP commit b10b2a3ab693cfd6156d06ffe4e00ce69b9c9194
|
|
* Fix ConcurrentModificationException in ArrayList iterators.
|
|
*/
|
|
public class ArrayList<E> extends AbstractList<E>
|
|
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 8683452581122892189L;
|
|
|
|
/**
|
|
* Default initial capacity.
|
|
*/
|
|
private static final int DEFAULT_CAPACITY = 10;
|
|
|
|
/**
|
|
* Shared empty array instance used for empty instances.
|
|
*/
|
|
private static final Object[] EMPTY_ELEMENTDATA = {};
|
|
|
|
/**
|
|
* Shared empty array instance used for default sized empty instances. We
|
|
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
|
|
* first element is added.
|
|
*/
|
|
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
|
|
|
|
/**
|
|
* The array buffer into which the elements of the ArrayList are stored.
|
|
* The capacity of the ArrayList is the length of this array buffer. Any
|
|
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
|
|
* will be expanded to DEFAULT_CAPACITY when the first element is added.
|
|
*/
|
|
// Android-note: Also accessed from java.util.Collections
|
|
transient Object[] elementData; // non-private to simplify nested class access
|
|
|
|
/**
|
|
* The size of the ArrayList (the number of elements it contains).
|
|
*
|
|
* @serial
|
|
*/
|
|
private int size;
|
|
|
|
/**
|
|
* Constructs an empty list with the specified initial capacity.
|
|
*
|
|
* @param initialCapacity the initial capacity of the list
|
|
* @throws IllegalArgumentException if the specified initial capacity
|
|
* is negative
|
|
*/
|
|
public ArrayList(int initialCapacity) {
|
|
if (initialCapacity > 0) {
|
|
this.elementData = new Object[initialCapacity];
|
|
} else if (initialCapacity == 0) {
|
|
this.elementData = EMPTY_ELEMENTDATA;
|
|
} else {
|
|
throw new IllegalArgumentException("Illegal Capacity: "+
|
|
initialCapacity);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs an empty list with an initial capacity of ten.
|
|
*/
|
|
public ArrayList() {
|
|
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
|
|
}
|
|
|
|
/**
|
|
* Constructs a list containing the elements of the specified
|
|
* collection, in the order they are returned by the collection's
|
|
* iterator.
|
|
*
|
|
* @param c the collection whose elements are to be placed into this list
|
|
* @throws NullPointerException if the specified collection is null
|
|
*/
|
|
public ArrayList(Collection<? extends E> c) {
|
|
Object[] a = c.toArray();
|
|
if ((size = a.length) != 0) {
|
|
if (c.getClass() == ArrayList.class) {
|
|
elementData = a;
|
|
} else {
|
|
elementData = Arrays.copyOf(a, size, Object[].class);
|
|
}
|
|
} else {
|
|
// replace with empty array.
|
|
elementData = EMPTY_ELEMENTDATA;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Trims the capacity of this {@code ArrayList} instance to be the
|
|
* list's current size. An application can use this operation to minimize
|
|
* the storage of an {@code ArrayList} instance.
|
|
*/
|
|
public void trimToSize() {
|
|
modCount++;
|
|
if (size < elementData.length) {
|
|
elementData = (size == 0)
|
|
? EMPTY_ELEMENTDATA
|
|
: Arrays.copyOf(elementData, size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Increases the capacity of this {@code ArrayList} instance, if
|
|
* necessary, to ensure that it can hold at least the number of elements
|
|
* specified by the minimum capacity argument.
|
|
*
|
|
* @param minCapacity the desired minimum capacity
|
|
*/
|
|
public void ensureCapacity(int minCapacity) {
|
|
if (minCapacity > elementData.length
|
|
&& !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
|
|
&& minCapacity <= DEFAULT_CAPACITY)) {
|
|
modCount++;
|
|
grow(minCapacity);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Increases the capacity to ensure that it can hold at least the
|
|
* number of elements specified by the minimum capacity argument.
|
|
*
|
|
* @param minCapacity the desired minimum capacity
|
|
* @throws OutOfMemoryError if minCapacity is less than zero
|
|
*/
|
|
private Object[] grow(int minCapacity) {
|
|
int oldCapacity = elementData.length;
|
|
if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
|
|
int newCapacity = ArraysSupport.newLength(oldCapacity,
|
|
minCapacity - oldCapacity, /* minimum growth */
|
|
oldCapacity >> 1 /* preferred growth */);
|
|
return elementData = Arrays.copyOf(elementData, newCapacity);
|
|
} else {
|
|
return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
|
|
}
|
|
}
|
|
|
|
private Object[] grow() {
|
|
return grow(size + 1);
|
|
}
|
|
|
|
/**
|
|
* Returns the number of elements in this list.
|
|
*
|
|
* @return the number of elements in this list
|
|
*/
|
|
public int size() {
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this list contains no elements.
|
|
*
|
|
* @return {@code true} if this list contains no elements
|
|
*/
|
|
public boolean isEmpty() {
|
|
return size == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this list contains the specified element.
|
|
* More formally, returns {@code true} if and only if this list contains
|
|
* at least one element {@code e} such that
|
|
* {@code Objects.equals(o, e)}.
|
|
*
|
|
* @param o element whose presence in this list is to be tested
|
|
* @return {@code true} if this list contains the specified element
|
|
*/
|
|
public boolean contains(Object o) {
|
|
return indexOf(o) >= 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the index of the first occurrence of the specified element
|
|
* in this list, or -1 if this list does not contain the element.
|
|
* More formally, returns the lowest index {@code i} such that
|
|
* {@code Objects.equals(o, get(i))},
|
|
* or -1 if there is no such index.
|
|
*/
|
|
public int indexOf(Object o) {
|
|
return indexOfRange(o, 0, size);
|
|
}
|
|
|
|
int indexOfRange(Object o, int start, int end) {
|
|
Object[] es = elementData;
|
|
if (o == null) {
|
|
for (int i = start; i < end; i++) {
|
|
if (es[i] == null) {
|
|
return i;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = start; i < end; i++) {
|
|
if (o.equals(es[i])) {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Returns the index of the last occurrence of the specified element
|
|
* in this list, or -1 if this list does not contain the element.
|
|
* More formally, returns the highest index {@code i} such that
|
|
* {@code Objects.equals(o, get(i))},
|
|
* or -1 if there is no such index.
|
|
*/
|
|
public int lastIndexOf(Object o) {
|
|
return lastIndexOfRange(o, 0, size);
|
|
}
|
|
|
|
int lastIndexOfRange(Object o, int start, int end) {
|
|
Object[] es = elementData;
|
|
if (o == null) {
|
|
for (int i = end - 1; i >= start; i--) {
|
|
if (es[i] == null) {
|
|
return i;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = end - 1; i >= start; i--) {
|
|
if (o.equals(es[i])) {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Returns a shallow copy of this {@code ArrayList} instance. (The
|
|
* elements themselves are not copied.)
|
|
*
|
|
* @return a clone of this {@code ArrayList} instance
|
|
*/
|
|
public Object clone() {
|
|
try {
|
|
ArrayList<?> v = (ArrayList<?>) super.clone();
|
|
v.elementData = Arrays.copyOf(elementData, size);
|
|
v.modCount = 0;
|
|
return v;
|
|
} catch (CloneNotSupportedException e) {
|
|
// this shouldn't happen, since we are Cloneable
|
|
throw new InternalError(e);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an array containing all of the elements in this list
|
|
* in proper sequence (from first to last element).
|
|
*
|
|
* <p>The returned array will be "safe" in that no references to it are
|
|
* maintained by this list. (In other words, this method must allocate
|
|
* a new array). The caller is thus free to modify the returned array.
|
|
*
|
|
* <p>This method acts as bridge between array-based and collection-based
|
|
* APIs.
|
|
*
|
|
* @return an array containing all of the elements in this list in
|
|
* proper sequence
|
|
*/
|
|
public Object[] toArray() {
|
|
return Arrays.copyOf(elementData, size);
|
|
}
|
|
|
|
/**
|
|
* Returns an array containing all of the elements in this list in proper
|
|
* sequence (from first to last element); the runtime type of the returned
|
|
* array is that of the specified array. If the list fits in the
|
|
* specified array, it is returned therein. Otherwise, a new array is
|
|
* allocated with the runtime type of the specified array and the size of
|
|
* this list.
|
|
*
|
|
* <p>If the list fits in the specified array with room to spare
|
|
* (i.e., the array has more elements than the list), the element in
|
|
* the array immediately following the end of the collection is set to
|
|
* {@code null}. (This is useful in determining the length of the
|
|
* list <i>only</i> if the caller knows that the list does not contain
|
|
* any null elements.)
|
|
*
|
|
* @param a the array into which the elements of the list are to
|
|
* be stored, if it is big enough; otherwise, a new array of the
|
|
* same runtime type is allocated for this purpose.
|
|
* @return an array containing the elements of the list
|
|
* @throws ArrayStoreException if the runtime type of the specified array
|
|
* is not a supertype of the runtime type of every element in
|
|
* this list
|
|
* @throws NullPointerException if the specified array is null
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
if (a.length < size)
|
|
// Make a new array of a's runtime type, but my contents:
|
|
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
|
|
System.arraycopy(elementData, 0, a, 0, size);
|
|
if (a.length > size)
|
|
a[size] = null;
|
|
return a;
|
|
}
|
|
|
|
// Positional Access Operations
|
|
|
|
@SuppressWarnings("unchecked")
|
|
E elementData(int index) {
|
|
return (E) elementData[index];
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
static <E> E elementAt(Object[] es, int index) {
|
|
return (E) es[index];
|
|
}
|
|
|
|
/**
|
|
* Returns the element at the specified position in this list.
|
|
*
|
|
* @param index index of the element to return
|
|
* @return the element at the specified position in this list
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public E get(int index) {
|
|
Objects.checkIndex(index, size);
|
|
return elementData(index);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @throws NoSuchElementException {@inheritDoc}
|
|
* @since 21
|
|
*/
|
|
public E getFirst() {
|
|
if (size == 0) {
|
|
throw new NoSuchElementException();
|
|
} else {
|
|
return elementData(0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @throws NoSuchElementException {@inheritDoc}
|
|
* @since 21
|
|
*/
|
|
public E getLast() {
|
|
int last = size - 1;
|
|
if (last < 0) {
|
|
throw new NoSuchElementException();
|
|
} else {
|
|
return elementData(last);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Replaces the element at the specified position in this list with
|
|
* the specified element.
|
|
*
|
|
* @param index index of the element to replace
|
|
* @param element element to be stored at the specified position
|
|
* @return the element previously at the specified position
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public E set(int index, E element) {
|
|
Objects.checkIndex(index, size);
|
|
E oldValue = elementData(index);
|
|
elementData[index] = element;
|
|
return oldValue;
|
|
}
|
|
|
|
/**
|
|
* This helper method split out from add(E) to keep method
|
|
* bytecode size under 35 (the -XX:MaxInlineSize default value),
|
|
* which helps when add(E) is called in a C1-compiled loop.
|
|
*/
|
|
private void add(E e, Object[] elementData, int s) {
|
|
if (s == elementData.length)
|
|
elementData = grow();
|
|
elementData[s] = e;
|
|
size = s + 1;
|
|
}
|
|
|
|
/**
|
|
* Appends the specified element to the end of this list.
|
|
*
|
|
* @param e element to be appended to this list
|
|
* @return {@code true} (as specified by {@link Collection#add})
|
|
*/
|
|
public boolean add(E e) {
|
|
modCount++;
|
|
add(e, elementData, size);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified element at the specified position in this
|
|
* list. Shifts the element currently at that position (if any) and
|
|
* any subsequent elements to the right (adds one to their indices).
|
|
*
|
|
* @param index index at which the specified element is to be inserted
|
|
* @param element element to be inserted
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public void add(int index, E element) {
|
|
rangeCheckForAdd(index);
|
|
modCount++;
|
|
final int s;
|
|
Object[] elementData;
|
|
if ((s = size) == (elementData = this.elementData).length)
|
|
elementData = grow();
|
|
System.arraycopy(elementData, index,
|
|
elementData, index + 1,
|
|
s - index);
|
|
elementData[index] = element;
|
|
size = s + 1;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @since 21
|
|
*/
|
|
public void addFirst(E element) {
|
|
add(0, element);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @since 21
|
|
*/
|
|
public void addLast(E element) {
|
|
add(element);
|
|
}
|
|
|
|
/**
|
|
* Removes the element at the specified position in this list.
|
|
* Shifts any subsequent elements to the left (subtracts one from their
|
|
* indices).
|
|
*
|
|
* @param index the index of the element to be removed
|
|
* @return the element that was removed from the list
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public E remove(int index) {
|
|
Objects.checkIndex(index, size);
|
|
final Object[] es = elementData;
|
|
|
|
@SuppressWarnings("unchecked") E oldValue = (E) es[index];
|
|
fastRemove(es, index);
|
|
|
|
return oldValue;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @throws NoSuchElementException {@inheritDoc}
|
|
* @since 21
|
|
*/
|
|
public E removeFirst() {
|
|
if (size == 0) {
|
|
throw new NoSuchElementException();
|
|
} else {
|
|
Object[] es = elementData;
|
|
@SuppressWarnings("unchecked") E oldValue = (E) es[0];
|
|
fastRemove(es, 0);
|
|
return oldValue;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @throws NoSuchElementException {@inheritDoc}
|
|
* @since 21
|
|
*/
|
|
public E removeLast() {
|
|
int last = size - 1;
|
|
if (last < 0) {
|
|
throw new NoSuchElementException();
|
|
} else {
|
|
Object[] es = elementData;
|
|
@SuppressWarnings("unchecked") E oldValue = (E) es[last];
|
|
fastRemove(es, last);
|
|
return oldValue;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
public boolean equals(Object o) {
|
|
if (o == this) {
|
|
return true;
|
|
}
|
|
|
|
if (!(o instanceof List)) {
|
|
return false;
|
|
}
|
|
|
|
final int expectedModCount = modCount;
|
|
// ArrayList can be subclassed and given arbitrary behavior, but we can
|
|
// still deal with the common case where o is ArrayList precisely
|
|
boolean equal = (o.getClass() == ArrayList.class)
|
|
? equalsArrayList((ArrayList<?>) o)
|
|
: equalsRange((List<?>) o, 0, size);
|
|
|
|
checkForComodification(expectedModCount);
|
|
return equal;
|
|
}
|
|
|
|
boolean equalsRange(List<?> other, int from, int to) {
|
|
final Object[] es = elementData;
|
|
if (to > es.length) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
var oit = other.iterator();
|
|
for (; from < to; from++) {
|
|
if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
|
|
return false;
|
|
}
|
|
}
|
|
return !oit.hasNext();
|
|
}
|
|
|
|
private boolean equalsArrayList(ArrayList<?> other) {
|
|
final int otherModCount = other.modCount;
|
|
final int s = size;
|
|
boolean equal;
|
|
if (equal = (s == other.size)) {
|
|
final Object[] otherEs = other.elementData;
|
|
final Object[] es = elementData;
|
|
if (s > es.length || s > otherEs.length) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
for (int i = 0; i < s; i++) {
|
|
if (!Objects.equals(es[i], otherEs[i])) {
|
|
equal = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
other.checkForComodification(otherModCount);
|
|
return equal;
|
|
}
|
|
|
|
private void checkForComodification(final int expectedModCount) {
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
public int hashCode() {
|
|
int expectedModCount = modCount;
|
|
int hash = hashCodeRange(0, size);
|
|
checkForComodification(expectedModCount);
|
|
return hash;
|
|
}
|
|
|
|
int hashCodeRange(int from, int to) {
|
|
final Object[] es = elementData;
|
|
if (to > es.length) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
int hashCode = 1;
|
|
for (int i = from; i < to; i++) {
|
|
Object e = es[i];
|
|
hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
|
|
}
|
|
return hashCode;
|
|
}
|
|
|
|
/**
|
|
* Removes the first occurrence of the specified element from this list,
|
|
* if it is present. If the list does not contain the element, it is
|
|
* unchanged. More formally, removes the element with the lowest index
|
|
* {@code i} such that
|
|
* {@code Objects.equals(o, get(i))}
|
|
* (if such an element exists). Returns {@code true} if this list
|
|
* contained the specified element (or equivalently, if this list
|
|
* changed as a result of the call).
|
|
*
|
|
* @param o element to be removed from this list, if present
|
|
* @return {@code true} if this list contained the specified element
|
|
*/
|
|
public boolean remove(Object o) {
|
|
final Object[] es = elementData;
|
|
final int size = this.size;
|
|
int i = 0;
|
|
found: {
|
|
if (o == null) {
|
|
for (; i < size; i++)
|
|
if (es[i] == null)
|
|
break found;
|
|
} else {
|
|
for (; i < size; i++)
|
|
if (o.equals(es[i]))
|
|
break found;
|
|
}
|
|
return false;
|
|
}
|
|
fastRemove(es, i);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Private remove method that skips bounds checking and does not
|
|
* return the value removed.
|
|
*/
|
|
private void fastRemove(Object[] es, int i) {
|
|
modCount++;
|
|
final int newSize;
|
|
if ((newSize = size - 1) > i)
|
|
System.arraycopy(es, i + 1, es, i, newSize - i);
|
|
es[size = newSize] = null;
|
|
}
|
|
|
|
/**
|
|
* Removes all of the elements from this list. The list will
|
|
* be empty after this call returns.
|
|
*/
|
|
public void clear() {
|
|
modCount++;
|
|
final Object[] es = elementData;
|
|
for (int to = size, i = size = 0; i < to; i++)
|
|
es[i] = null;
|
|
}
|
|
|
|
/**
|
|
* Appends all of the elements in the specified collection to the end of
|
|
* this list, in the order that they are returned by the
|
|
* specified collection's Iterator. The behavior of this operation is
|
|
* undefined if the specified collection is modified while the operation
|
|
* is in progress. (This implies that the behavior of this call is
|
|
* undefined if the specified collection is this list, and this
|
|
* list is nonempty.)
|
|
*
|
|
* @param c collection containing elements to be added to this list
|
|
* @return {@code true} if this list changed as a result of the call
|
|
* @throws NullPointerException if the specified collection is null
|
|
*/
|
|
public boolean addAll(Collection<? extends E> c) {
|
|
Object[] a = c.toArray();
|
|
modCount++;
|
|
int numNew = a.length;
|
|
if (numNew == 0)
|
|
return false;
|
|
Object[] elementData;
|
|
final int s;
|
|
if (numNew > (elementData = this.elementData).length - (s = size))
|
|
elementData = grow(s + numNew);
|
|
System.arraycopy(a, 0, elementData, s, numNew);
|
|
size = s + numNew;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Inserts all of the elements in the specified collection into this
|
|
* list, starting at the specified position. Shifts the element
|
|
* currently at that position (if any) and any subsequent elements to
|
|
* the right (increases their indices). The new elements will appear
|
|
* in the list in the order that they are returned by the
|
|
* specified collection's iterator.
|
|
*
|
|
* @param index index at which to insert the first element from the
|
|
* specified collection
|
|
* @param c collection containing elements to be added to this list
|
|
* @return {@code true} if this list changed as a result of the call
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
* @throws NullPointerException if the specified collection is null
|
|
*/
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
rangeCheckForAdd(index);
|
|
|
|
Object[] a = c.toArray();
|
|
modCount++;
|
|
int numNew = a.length;
|
|
if (numNew == 0)
|
|
return false;
|
|
Object[] elementData;
|
|
final int s;
|
|
if (numNew > (elementData = this.elementData).length - (s = size))
|
|
elementData = grow(s + numNew);
|
|
|
|
int numMoved = s - index;
|
|
if (numMoved > 0)
|
|
System.arraycopy(elementData, index,
|
|
elementData, index + numNew,
|
|
numMoved);
|
|
System.arraycopy(a, 0, elementData, index, numNew);
|
|
size = s + numNew;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Removes from this list all of the elements whose index is between
|
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
|
|
* Shifts any succeeding elements to the left (reduces their index).
|
|
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
|
|
* (If {@code toIndex==fromIndex}, this operation has no effect.)
|
|
*
|
|
* @throws IndexOutOfBoundsException if {@code fromIndex} or
|
|
* {@code toIndex} is out of range
|
|
* ({@code fromIndex < 0 ||
|
|
* toIndex > size() ||
|
|
* toIndex < fromIndex})
|
|
*/
|
|
protected void removeRange(int fromIndex, int toIndex) {
|
|
if (fromIndex > toIndex) {
|
|
throw new IndexOutOfBoundsException(
|
|
outOfBoundsMsg(fromIndex, toIndex));
|
|
}
|
|
modCount++;
|
|
shiftTailOverGap(elementData, fromIndex, toIndex);
|
|
}
|
|
|
|
/** Erases the gap from lo to hi, by sliding down following elements. */
|
|
private void shiftTailOverGap(Object[] es, int lo, int hi) {
|
|
System.arraycopy(es, hi, es, lo, size - hi);
|
|
for (int to = size, i = (size -= hi - lo); i < to; i++)
|
|
es[i] = null;
|
|
}
|
|
|
|
/**
|
|
* A version of rangeCheck used by add and addAll.
|
|
*/
|
|
private void rangeCheckForAdd(int index) {
|
|
if (index > size || index < 0)
|
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
|
|
}
|
|
|
|
/**
|
|
* Constructs an IndexOutOfBoundsException detail message.
|
|
* Of the many possible refactorings of the error handling code,
|
|
* this "outlining" performs best with both server and client VMs.
|
|
*/
|
|
private String outOfBoundsMsg(int index) {
|
|
return "Index: "+index+", Size: "+size;
|
|
}
|
|
|
|
/**
|
|
* A version used in checking (fromIndex > toIndex) condition
|
|
*/
|
|
private static String outOfBoundsMsg(int fromIndex, int toIndex) {
|
|
return "From Index: " + fromIndex + " > To Index: " + toIndex;
|
|
}
|
|
|
|
/**
|
|
* Removes from this list all of its elements that are contained in the
|
|
* specified collection.
|
|
*
|
|
* @param c collection containing elements to be removed from this list
|
|
* @return {@code true} if this list changed as a result of the call
|
|
* @throws ClassCastException if the class of an element of this list
|
|
* is incompatible with the specified collection
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>)
|
|
* @throws NullPointerException if this list contains a null element and the
|
|
* specified collection does not permit null elements
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>),
|
|
* or if the specified collection is null
|
|
* @see Collection#contains(Object)
|
|
*/
|
|
public boolean removeAll(Collection<?> c) {
|
|
return batchRemove(c, false, 0, size);
|
|
}
|
|
|
|
/**
|
|
* Retains only the elements in this list that are contained in the
|
|
* specified collection. In other words, removes from this list all
|
|
* of its elements that are not contained in the specified collection.
|
|
*
|
|
* @param c collection containing elements to be retained in this list
|
|
* @return {@code true} if this list changed as a result of the call
|
|
* @throws ClassCastException if the class of an element of this list
|
|
* is incompatible with the specified collection
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>)
|
|
* @throws NullPointerException if this list contains a null element and the
|
|
* specified collection does not permit null elements
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>),
|
|
* or if the specified collection is null
|
|
* @see Collection#contains(Object)
|
|
*/
|
|
public boolean retainAll(Collection<?> c) {
|
|
return batchRemove(c, true, 0, size);
|
|
}
|
|
|
|
boolean batchRemove(Collection<?> c, boolean complement,
|
|
final int from, final int end) {
|
|
Objects.requireNonNull(c);
|
|
final Object[] es = elementData;
|
|
int r;
|
|
// Optimize for initial run of survivors
|
|
for (r = from;; r++) {
|
|
if (r == end)
|
|
return false;
|
|
if (c.contains(es[r]) != complement)
|
|
break;
|
|
}
|
|
int w = r++;
|
|
try {
|
|
for (Object e; r < end; r++)
|
|
if (c.contains(e = es[r]) == complement)
|
|
es[w++] = e;
|
|
} catch (Throwable ex) {
|
|
// Preserve behavioral compatibility with AbstractCollection,
|
|
// even if c.contains() throws.
|
|
System.arraycopy(es, r, es, w, end - r);
|
|
w += end - r;
|
|
throw ex;
|
|
} finally {
|
|
modCount += end - w;
|
|
shiftTailOverGap(es, w, end);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Saves the state of the {@code ArrayList} instance to a stream
|
|
* (that is, serializes it).
|
|
*
|
|
* @param s the stream
|
|
* @throws java.io.IOException if an I/O error occurs
|
|
* @serialData The length of the array backing the {@code ArrayList}
|
|
* instance is emitted (int), followed by all of its elements
|
|
* (each an {@code Object}) in the proper order.
|
|
*/
|
|
@java.io.Serial
|
|
private void writeObject(java.io.ObjectOutputStream s)
|
|
throws java.io.IOException {
|
|
// Write out element count, and any hidden stuff
|
|
int expectedModCount = modCount;
|
|
s.defaultWriteObject();
|
|
|
|
// Write out size as capacity for behavioral compatibility with clone()
|
|
s.writeInt(size);
|
|
|
|
// Write out all elements in the proper order.
|
|
for (int i=0; i<size; i++) {
|
|
s.writeObject(elementData[i]);
|
|
}
|
|
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reconstitutes the {@code ArrayList} instance from a stream (that is,
|
|
* deserializes it).
|
|
* @param s the stream
|
|
* @throws ClassNotFoundException if the class of a serialized object
|
|
* could not be found
|
|
* @throws java.io.IOException if an I/O error occurs
|
|
*/
|
|
@java.io.Serial
|
|
private void readObject(java.io.ObjectInputStream s)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
|
|
// Read in size, and any hidden stuff
|
|
s.defaultReadObject();
|
|
|
|
// Read in capacity
|
|
s.readInt(); // ignored
|
|
|
|
if (size > 0) {
|
|
// like clone(), allocate array based upon size not capacity
|
|
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
|
|
Object[] elements = new Object[size];
|
|
|
|
// Read in all elements in the proper order.
|
|
for (int i = 0; i < size; i++) {
|
|
elements[i] = s.readObject();
|
|
}
|
|
|
|
elementData = elements;
|
|
} else if (size == 0) {
|
|
elementData = EMPTY_ELEMENTDATA;
|
|
} else {
|
|
throw new java.io.InvalidObjectException("Invalid size: " + size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a list iterator over the elements in this list (in proper
|
|
* sequence), starting at the specified position in the list.
|
|
* The specified index indicates the first element that would be
|
|
* returned by an initial call to {@link ListIterator#next next}.
|
|
* An initial call to {@link ListIterator#previous previous} would
|
|
* return the element with the specified index minus one.
|
|
*
|
|
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
|
|
*
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public ListIterator<E> listIterator(int index) {
|
|
rangeCheckForAdd(index);
|
|
return new ListItr(index);
|
|
}
|
|
|
|
/**
|
|
* Returns a list iterator over the elements in this list (in proper
|
|
* sequence).
|
|
*
|
|
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
|
|
*
|
|
* @see #listIterator(int)
|
|
*/
|
|
public ListIterator<E> listIterator() {
|
|
return new ListItr(0);
|
|
}
|
|
|
|
/**
|
|
* Returns an iterator over the elements in this list in proper sequence.
|
|
*
|
|
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
|
|
*
|
|
* @return an iterator over the elements in this list in proper sequence
|
|
*/
|
|
public Iterator<E> iterator() {
|
|
return new Itr();
|
|
}
|
|
|
|
/**
|
|
* An optimized version of AbstractList.Itr
|
|
*/
|
|
private class Itr implements Iterator<E> {
|
|
// Android-changed: Add "limit" field to detect end of iteration.
|
|
// The "limit" of this iterator. This is the size of the list at the time the
|
|
// iterator was created. Adding & removing elements will invalidate the iteration
|
|
// anyway (and cause next() to throw) so saving this value will guarantee that the
|
|
// value of hasNext() remains stable and won't flap between true and false when elements
|
|
// are added and removed from the list.
|
|
protected int limit = ArrayList.this.size;
|
|
|
|
int cursor; // index of next element to return
|
|
int lastRet = -1; // index of last element returned; -1 if no such
|
|
int expectedModCount = modCount;
|
|
|
|
// prevent creating a synthetic constructor
|
|
Itr() {}
|
|
|
|
public boolean hasNext() {
|
|
return cursor < limit;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E next() {
|
|
checkForComodification();
|
|
int i = cursor;
|
|
if (i >= limit)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = ArrayList.this.elementData;
|
|
if (i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i + 1;
|
|
return (E) elementData[lastRet = i];
|
|
}
|
|
|
|
public void remove() {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
ArrayList.this.remove(lastRet);
|
|
cursor = lastRet;
|
|
lastRet = -1;
|
|
expectedModCount = modCount;
|
|
limit--;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
final int size = ArrayList.this.size;
|
|
int i = cursor;
|
|
if (i < size) {
|
|
final Object[] es = elementData;
|
|
if (i >= es.length)
|
|
throw new ConcurrentModificationException();
|
|
for (; i < size && modCount == expectedModCount; i++)
|
|
action.accept(elementAt(es, i));
|
|
// update once at end to reduce heap write traffic
|
|
cursor = i;
|
|
lastRet = i - 1;
|
|
checkForComodification();
|
|
}
|
|
}
|
|
|
|
final void checkForComodification() {
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* An optimized version of AbstractList.ListItr
|
|
*/
|
|
private class ListItr extends Itr implements ListIterator<E> {
|
|
ListItr(int index) {
|
|
super();
|
|
cursor = index;
|
|
}
|
|
|
|
public boolean hasPrevious() {
|
|
return cursor != 0;
|
|
}
|
|
|
|
public int nextIndex() {
|
|
return cursor;
|
|
}
|
|
|
|
public int previousIndex() {
|
|
return cursor - 1;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E previous() {
|
|
checkForComodification();
|
|
int i = cursor - 1;
|
|
if (i < 0)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = ArrayList.this.elementData;
|
|
if (i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i;
|
|
return (E) elementData[lastRet = i];
|
|
}
|
|
|
|
public void set(E e) {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
ArrayList.this.set(lastRet, e);
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public void add(E e) {
|
|
checkForComodification();
|
|
|
|
try {
|
|
int i = cursor;
|
|
ArrayList.this.add(i, e);
|
|
cursor = i + 1;
|
|
lastRet = -1;
|
|
expectedModCount = modCount;
|
|
limit++;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a view of the portion of this list between the specified
|
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
|
|
* {@code fromIndex} and {@code toIndex} are equal, the returned list is
|
|
* empty.) The returned list is backed by this list, so non-structural
|
|
* changes in the returned list are reflected in this list, and vice-versa.
|
|
* The returned list supports all of the optional list operations.
|
|
*
|
|
* <p>This method eliminates the need for explicit range operations (of
|
|
* the sort that commonly exist for arrays). Any operation that expects
|
|
* a list can be used as a range operation by passing a subList view
|
|
* instead of a whole list. For example, the following idiom
|
|
* removes a range of elements from a list:
|
|
* <pre>
|
|
* list.subList(from, to).clear();
|
|
* </pre>
|
|
* Similar idioms may be constructed for {@link #indexOf(Object)} and
|
|
* {@link #lastIndexOf(Object)}, and all of the algorithms in the
|
|
* {@link Collections} class can be applied to a subList.
|
|
*
|
|
* <p>The semantics of the list returned by this method become undefined if
|
|
* the backing list (i.e., this list) is <i>structurally modified</i> in
|
|
* any way other than via the returned list. (Structural modifications are
|
|
* those that change the size of this list, or otherwise perturb it in such
|
|
* a fashion that iterations in progress may yield incorrect results.)
|
|
*
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
subListRangeCheck(fromIndex, toIndex, size);
|
|
return new SubList<>(this, fromIndex, toIndex);
|
|
}
|
|
|
|
private static class SubList<E> extends AbstractList<E> implements RandomAccess {
|
|
private final ArrayList<E> root;
|
|
private final SubList<E> parent;
|
|
private final int offset;
|
|
private int size;
|
|
|
|
/**
|
|
* Constructs a sublist of an arbitrary ArrayList.
|
|
*/
|
|
public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
|
|
this.root = root;
|
|
this.parent = null;
|
|
this.offset = fromIndex;
|
|
this.size = toIndex - fromIndex;
|
|
this.modCount = root.modCount;
|
|
}
|
|
|
|
/**
|
|
* Constructs a sublist of another SubList.
|
|
*/
|
|
private SubList(SubList<E> parent, int fromIndex, int toIndex) {
|
|
this.root = parent.root;
|
|
this.parent = parent;
|
|
this.offset = parent.offset + fromIndex;
|
|
this.size = toIndex - fromIndex;
|
|
this.modCount = parent.modCount;
|
|
}
|
|
|
|
public E set(int index, E element) {
|
|
Objects.checkIndex(index, size);
|
|
checkForComodification();
|
|
E oldValue = root.elementData(offset + index);
|
|
root.elementData[offset + index] = element;
|
|
return oldValue;
|
|
}
|
|
|
|
public E get(int index) {
|
|
Objects.checkIndex(index, size);
|
|
checkForComodification();
|
|
return root.elementData(offset + index);
|
|
}
|
|
|
|
public int size() {
|
|
checkForComodification();
|
|
return size;
|
|
}
|
|
|
|
public void add(int index, E element) {
|
|
rangeCheckForAdd(index);
|
|
checkForComodification();
|
|
root.add(offset + index, element);
|
|
updateSizeAndModCount(1);
|
|
}
|
|
|
|
public E remove(int index) {
|
|
Objects.checkIndex(index, size);
|
|
checkForComodification();
|
|
E result = root.remove(offset + index);
|
|
updateSizeAndModCount(-1);
|
|
return result;
|
|
}
|
|
|
|
protected void removeRange(int fromIndex, int toIndex) {
|
|
checkForComodification();
|
|
root.removeRange(offset + fromIndex, offset + toIndex);
|
|
updateSizeAndModCount(fromIndex - toIndex);
|
|
}
|
|
|
|
public boolean addAll(Collection<? extends E> c) {
|
|
return addAll(this.size, c);
|
|
}
|
|
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
rangeCheckForAdd(index);
|
|
int cSize = c.size();
|
|
if (cSize==0)
|
|
return false;
|
|
checkForComodification();
|
|
root.addAll(offset + index, c);
|
|
updateSizeAndModCount(cSize);
|
|
return true;
|
|
}
|
|
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
root.replaceAllRange(operator, offset, offset + size);
|
|
}
|
|
|
|
public boolean removeAll(Collection<?> c) {
|
|
return batchRemove(c, false);
|
|
}
|
|
|
|
public boolean retainAll(Collection<?> c) {
|
|
return batchRemove(c, true);
|
|
}
|
|
|
|
private boolean batchRemove(Collection<?> c, boolean complement) {
|
|
checkForComodification();
|
|
int oldSize = root.size;
|
|
boolean modified =
|
|
root.batchRemove(c, complement, offset, offset + size);
|
|
if (modified)
|
|
updateSizeAndModCount(root.size - oldSize);
|
|
return modified;
|
|
}
|
|
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
checkForComodification();
|
|
int oldSize = root.size;
|
|
boolean modified = root.removeIf(filter, offset, offset + size);
|
|
if (modified)
|
|
updateSizeAndModCount(root.size - oldSize);
|
|
return modified;
|
|
}
|
|
|
|
public Object[] toArray() {
|
|
checkForComodification();
|
|
return Arrays.copyOfRange(root.elementData, offset, offset + size);
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
checkForComodification();
|
|
if (a.length < size)
|
|
return (T[]) Arrays.copyOfRange(
|
|
root.elementData, offset, offset + size, a.getClass());
|
|
System.arraycopy(root.elementData, offset, a, 0, size);
|
|
if (a.length > size)
|
|
a[size] = null;
|
|
return a;
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
if (o == this) {
|
|
return true;
|
|
}
|
|
|
|
if (!(o instanceof List)) {
|
|
return false;
|
|
}
|
|
|
|
boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
|
|
checkForComodification();
|
|
return equal;
|
|
}
|
|
|
|
public int hashCode() {
|
|
int hash = root.hashCodeRange(offset, offset + size);
|
|
checkForComodification();
|
|
return hash;
|
|
}
|
|
|
|
public int indexOf(Object o) {
|
|
int index = root.indexOfRange(o, offset, offset + size);
|
|
checkForComodification();
|
|
return index >= 0 ? index - offset : -1;
|
|
}
|
|
|
|
public int lastIndexOf(Object o) {
|
|
int index = root.lastIndexOfRange(o, offset, offset + size);
|
|
checkForComodification();
|
|
return index >= 0 ? index - offset : -1;
|
|
}
|
|
|
|
public boolean contains(Object o) {
|
|
return indexOf(o) >= 0;
|
|
}
|
|
|
|
public Iterator<E> iterator() {
|
|
return listIterator();
|
|
}
|
|
|
|
public ListIterator<E> listIterator(int index) {
|
|
checkForComodification();
|
|
rangeCheckForAdd(index);
|
|
|
|
return new ListIterator<E>() {
|
|
int cursor = index;
|
|
int lastRet = -1;
|
|
int expectedModCount = SubList.this.modCount;
|
|
|
|
public boolean hasNext() {
|
|
return cursor != SubList.this.size;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E next() {
|
|
checkForComodification();
|
|
int i = cursor;
|
|
if (i >= SubList.this.size)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = root.elementData;
|
|
if (offset + i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i + 1;
|
|
return (E) elementData[offset + (lastRet = i)];
|
|
}
|
|
|
|
public boolean hasPrevious() {
|
|
return cursor != 0;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E previous() {
|
|
checkForComodification();
|
|
int i = cursor - 1;
|
|
if (i < 0)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = root.elementData;
|
|
if (offset + i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i;
|
|
return (E) elementData[offset + (lastRet = i)];
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
final int size = SubList.this.size;
|
|
int i = cursor;
|
|
if (i < size) {
|
|
final Object[] es = root.elementData;
|
|
if (offset + i >= es.length)
|
|
throw new ConcurrentModificationException();
|
|
for (; i < size && root.modCount == expectedModCount; i++)
|
|
action.accept(elementAt(es, offset + i));
|
|
// update once at end to reduce heap write traffic
|
|
cursor = i;
|
|
lastRet = i - 1;
|
|
checkForComodification();
|
|
}
|
|
}
|
|
|
|
public int nextIndex() {
|
|
return cursor;
|
|
}
|
|
|
|
public int previousIndex() {
|
|
return cursor - 1;
|
|
}
|
|
|
|
public void remove() {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
SubList.this.remove(lastRet);
|
|
cursor = lastRet;
|
|
lastRet = -1;
|
|
expectedModCount = SubList.this.modCount;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public void set(E e) {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
root.set(offset + lastRet, e);
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public void add(E e) {
|
|
checkForComodification();
|
|
|
|
try {
|
|
int i = cursor;
|
|
SubList.this.add(i, e);
|
|
cursor = i + 1;
|
|
lastRet = -1;
|
|
expectedModCount = SubList.this.modCount;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
final void checkForComodification() {
|
|
if (root.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
};
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
subListRangeCheck(fromIndex, toIndex, size);
|
|
return new SubList<>(this, fromIndex, toIndex);
|
|
}
|
|
|
|
private void rangeCheckForAdd(int index) {
|
|
if (index < 0 || index > this.size)
|
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
|
|
}
|
|
|
|
private String outOfBoundsMsg(int index) {
|
|
return "Index: "+index+", Size: "+this.size;
|
|
}
|
|
|
|
private void checkForComodification() {
|
|
if (root.modCount != modCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
private void updateSizeAndModCount(int sizeChange) {
|
|
SubList<E> slist = this;
|
|
do {
|
|
slist.size += sizeChange;
|
|
slist.modCount = root.modCount;
|
|
slist = slist.parent;
|
|
} while (slist != null);
|
|
}
|
|
|
|
public Spliterator<E> spliterator() {
|
|
checkForComodification();
|
|
|
|
// This Spliterator needs to late-bind to the subList, not the outer
|
|
// ArrayList. Note that it is legal for structural changes to be made
|
|
// to a subList after spliterator() is called but before any spliterator
|
|
// operations that would causing binding are performed.
|
|
return new Spliterator<E>() {
|
|
private int index = offset; // current index, modified on advance/split
|
|
private int fence = -1; // -1 until used; then one past last index
|
|
private int expectedModCount; // initialized when fence set
|
|
|
|
private int getFence() { // initialize fence to size on first use
|
|
int hi; // (a specialized variant appears in method forEach)
|
|
if ((hi = fence) < 0) {
|
|
expectedModCount = modCount;
|
|
hi = fence = offset + size;
|
|
}
|
|
return hi;
|
|
}
|
|
|
|
public ArrayList<E>.ArrayListSpliterator trySplit() {
|
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
|
|
// ArrayListSpliterator can be used here as the source is already bound
|
|
return (lo >= mid) ? null : // divide range in half unless too small
|
|
root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
int hi = getFence(), i = index;
|
|
if (i < hi) {
|
|
index = i + 1;
|
|
@SuppressWarnings("unchecked") E e = (E)root.elementData[i];
|
|
action.accept(e);
|
|
if (root.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
int i, hi, mc; // hoist accesses and checks from loop
|
|
ArrayList<E> lst = root;
|
|
Object[] a;
|
|
if ((a = lst.elementData) != null) {
|
|
if ((hi = fence) < 0) {
|
|
mc = modCount;
|
|
hi = offset + size;
|
|
}
|
|
else
|
|
mc = expectedModCount;
|
|
if ((i = index) >= 0 && (index = hi) <= a.length) {
|
|
for (; i < hi; ++i) {
|
|
@SuppressWarnings("unchecked") E e = (E) a[i];
|
|
action.accept(e);
|
|
}
|
|
if (lst.modCount == mc)
|
|
return;
|
|
}
|
|
}
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
public long estimateSize() {
|
|
return getFence() - index;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
final int expectedModCount = modCount;
|
|
final Object[] es = elementData;
|
|
final int size = this.size;
|
|
for (int i = 0; modCount == expectedModCount && i < size; i++)
|
|
action.accept(elementAt(es, i));
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
/**
|
|
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
|
|
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
|
|
* list.
|
|
*
|
|
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
|
|
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
|
|
* Overriding implementations should document the reporting of additional
|
|
* characteristic values.
|
|
*
|
|
* @return a {@code Spliterator} over the elements in this list
|
|
* @since 1.8
|
|
*/
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return new ArrayListSpliterator(0, -1, 0);
|
|
}
|
|
|
|
/** Index-based split-by-two, lazily initialized Spliterator */
|
|
final class ArrayListSpliterator implements Spliterator<E> {
|
|
|
|
/*
|
|
* If ArrayLists were immutable, or structurally immutable (no
|
|
* adds, removes, etc), we could implement their spliterators
|
|
* with Arrays.spliterator. Instead we detect as much
|
|
* interference during traversal as practical without
|
|
* sacrificing much performance. We rely primarily on
|
|
* modCounts. These are not guaranteed to detect concurrency
|
|
* violations, and are sometimes overly conservative about
|
|
* within-thread interference, but detect enough problems to
|
|
* be worthwhile in practice. To carry this out, we (1) lazily
|
|
* initialize fence and expectedModCount until the latest
|
|
* point that we need to commit to the state we are checking
|
|
* against; thus improving precision. (2) We perform only a single
|
|
* ConcurrentModificationException check at the end of forEach
|
|
* (the most performance-sensitive method). When using forEach
|
|
* (as opposed to iterators), we can normally only detect
|
|
* interference after actions, not before. Further
|
|
* CME-triggering checks apply to all other possible
|
|
* violations of assumptions for example null or too-small
|
|
* elementData array given its size(), that could only have
|
|
* occurred due to interference. This allows the inner loop
|
|
* of forEach to run without any further checks, and
|
|
* simplifies lambda-resolution. While this does entail a
|
|
* number of checks, note that in the common case of
|
|
* list.stream().forEach(a), no checks or other computation
|
|
* occur anywhere other than inside forEach itself. The other
|
|
* less-often-used methods cannot take advantage of most of
|
|
* these streamlinings.
|
|
*/
|
|
|
|
private int index; // current index, modified on advance/split
|
|
private int fence; // -1 until used; then one past last index
|
|
private int expectedModCount; // initialized when fence set
|
|
|
|
/** Creates new spliterator covering the given range. */
|
|
ArrayListSpliterator(int origin, int fence, int expectedModCount) {
|
|
this.index = origin;
|
|
this.fence = fence;
|
|
this.expectedModCount = expectedModCount;
|
|
}
|
|
|
|
private int getFence() { // initialize fence to size on first use
|
|
int hi; // (a specialized variant appears in method forEach)
|
|
if ((hi = fence) < 0) {
|
|
expectedModCount = modCount;
|
|
hi = fence = size;
|
|
}
|
|
return hi;
|
|
}
|
|
|
|
public ArrayListSpliterator trySplit() {
|
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
|
|
return (lo >= mid) ? null : // divide range in half unless too small
|
|
new ArrayListSpliterator(lo, index = mid, expectedModCount);
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super E> action) {
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
int hi = getFence(), i = index;
|
|
if (i < hi) {
|
|
index = i + 1;
|
|
@SuppressWarnings("unchecked") E e = (E)elementData[i];
|
|
action.accept(e);
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
int i, hi, mc; // hoist accesses and checks from loop
|
|
Object[] a;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if ((a = elementData) != null) {
|
|
if ((hi = fence) < 0) {
|
|
mc = modCount;
|
|
hi = size;
|
|
}
|
|
else
|
|
mc = expectedModCount;
|
|
if ((i = index) >= 0 && (index = hi) <= a.length) {
|
|
for (; i < hi; ++i) {
|
|
@SuppressWarnings("unchecked") E e = (E) a[i];
|
|
action.accept(e);
|
|
}
|
|
if (modCount == mc)
|
|
return;
|
|
}
|
|
}
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
public long estimateSize() {
|
|
return getFence() - index;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
|
|
}
|
|
}
|
|
|
|
// A tiny bit set implementation
|
|
|
|
private static long[] nBits(int n) {
|
|
return new long[((n - 1) >> 6) + 1];
|
|
}
|
|
private static void setBit(long[] bits, int i) {
|
|
bits[i >> 6] |= 1L << i;
|
|
}
|
|
private static boolean isClear(long[] bits, int i) {
|
|
return (bits[i >> 6] & (1L << i)) == 0;
|
|
}
|
|
|
|
/**
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
return removeIf(filter, 0, size);
|
|
}
|
|
|
|
/**
|
|
* Removes all elements satisfying the given predicate, from index
|
|
* i (inclusive) to index end (exclusive).
|
|
*/
|
|
boolean removeIf(Predicate<? super E> filter, int i, final int end) {
|
|
Objects.requireNonNull(filter);
|
|
int expectedModCount = modCount;
|
|
final Object[] es = elementData;
|
|
// Optimize for initial run of survivors
|
|
for (; i < end && !filter.test(elementAt(es, i)); i++)
|
|
;
|
|
// Tolerate predicates that reentrantly access the collection for
|
|
// read (but writers still get CME), so traverse once to find
|
|
// elements to delete, a second pass to physically expunge.
|
|
if (i < end) {
|
|
final int beg = i;
|
|
final long[] deathRow = nBits(end - beg);
|
|
deathRow[0] = 1L; // set bit 0
|
|
for (i = beg + 1; i < end; i++)
|
|
if (filter.test(elementAt(es, i)))
|
|
setBit(deathRow, i - beg);
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
modCount++;
|
|
int w = beg;
|
|
for (i = beg; i < end; i++)
|
|
if (isClear(deathRow, i - beg))
|
|
es[w++] = es[i];
|
|
shiftTailOverGap(es, w, end);
|
|
return true;
|
|
} else {
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
replaceAllRange(operator, 0, size);
|
|
// TODO(8203662): remove increment of modCount from ...
|
|
modCount++;
|
|
}
|
|
|
|
private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
|
|
Objects.requireNonNull(operator);
|
|
final int expectedModCount = modCount;
|
|
final Object[] es = elementData;
|
|
for (; modCount == expectedModCount && i < end; i++)
|
|
es[i] = operator.apply(elementAt(es, i));
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
@Override
|
|
@SuppressWarnings("unchecked")
|
|
public void sort(Comparator<? super E> c) {
|
|
final int expectedModCount = modCount;
|
|
Arrays.sort((E[]) elementData, 0, size, c);
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
modCount++;
|
|
}
|
|
|
|
void checkInvariants() {
|
|
// assert size >= 0;
|
|
// assert size == elementData.length || elementData[size] == null;
|
|
}
|
|
}
|