6212 lines
239 KiB
Java
6212 lines
239 KiB
Java
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.util;
|
|
|
|
import java.io.IOException;
|
|
import java.io.ObjectInputStream;
|
|
import java.io.ObjectOutputStream;
|
|
import java.io.Serializable;
|
|
import java.lang.reflect.Array;
|
|
import java.util.function.BiConsumer;
|
|
import java.util.function.BiFunction;
|
|
import java.util.function.Consumer;
|
|
import java.util.function.Function;
|
|
import java.util.function.IntFunction;
|
|
import java.util.function.Predicate;
|
|
import java.util.function.UnaryOperator;
|
|
import java.util.random.RandomGenerator;
|
|
import java.util.stream.IntStream;
|
|
import java.util.stream.Stream;
|
|
import java.util.stream.StreamSupport;
|
|
import jdk.internal.access.SharedSecrets;
|
|
|
|
import dalvik.system.VMRuntime;
|
|
|
|
/**
|
|
* This class consists exclusively of static methods that operate on or return
|
|
* collections. It contains polymorphic algorithms that operate on
|
|
* collections, "wrappers", which return a new collection backed by a
|
|
* specified collection, and a few other odds and ends.
|
|
*
|
|
* <p>The methods of this class all throw a {@code NullPointerException}
|
|
* if the collections or class objects provided to them are null.
|
|
*
|
|
* <p>The documentation for the polymorphic algorithms contained in this class
|
|
* generally includes a brief description of the <i>implementation</i>. Such
|
|
* descriptions should be regarded as <i>implementation notes</i>, rather than
|
|
* parts of the <i>specification</i>. Implementors should feel free to
|
|
* substitute other algorithms, so long as the specification itself is adhered
|
|
* to. (For example, the algorithm used by {@code sort} does not have to be
|
|
* a mergesort, but it does have to be <i>stable</i>.)
|
|
*
|
|
* <p>The "destructive" algorithms contained in this class, that is, the
|
|
* algorithms that modify the collection on which they operate, are specified
|
|
* to throw {@code UnsupportedOperationException} if the collection does not
|
|
* support the appropriate mutation primitive(s), such as the {@code set}
|
|
* method. These algorithms may, but are not required to, throw this
|
|
* exception if an invocation would have no effect on the collection. For
|
|
* example, invoking the {@code sort} method on an unmodifiable list that is
|
|
* already sorted may or may not throw {@code UnsupportedOperationException}.
|
|
*
|
|
* <p>This class is a member of the
|
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
|
* Java Collections Framework</a>.
|
|
*
|
|
* @author Josh Bloch
|
|
* @author Neal Gafter
|
|
* @see Collection
|
|
* @see Set
|
|
* @see List
|
|
* @see Map
|
|
* @since 1.2
|
|
*/
|
|
|
|
public class Collections {
|
|
// Suppresses default constructor, ensuring non-instantiability.
|
|
private Collections() {
|
|
}
|
|
|
|
// Algorithms
|
|
|
|
/*
|
|
* Tuning parameters for algorithms - Many of the List algorithms have
|
|
* two implementations, one of which is appropriate for RandomAccess
|
|
* lists, the other for "sequential." Often, the random access variant
|
|
* yields better performance on small sequential access lists. The
|
|
* tuning parameters below determine the cutoff point for what constitutes
|
|
* a "small" sequential access list for each algorithm. The values below
|
|
* were empirically determined to work well for LinkedList. Hopefully
|
|
* they should be reasonable for other sequential access List
|
|
* implementations. Those doing performance work on this code would
|
|
* do well to validate the values of these parameters from time to time.
|
|
* (The first word of each tuning parameter name is the algorithm to which
|
|
* it applies.)
|
|
*/
|
|
private static final int BINARYSEARCH_THRESHOLD = 5000;
|
|
private static final int REVERSE_THRESHOLD = 18;
|
|
private static final int SHUFFLE_THRESHOLD = 5;
|
|
private static final int FILL_THRESHOLD = 25;
|
|
private static final int ROTATE_THRESHOLD = 100;
|
|
private static final int COPY_THRESHOLD = 10;
|
|
private static final int REPLACEALL_THRESHOLD = 11;
|
|
private static final int INDEXOFSUBLIST_THRESHOLD = 35;
|
|
|
|
// Android-added: List.sort() vs. Collections.sort() app compat.
|
|
// Added a warning in the documentation.
|
|
// Collections.sort() calls List.sort() for apps targeting API version >= 26
|
|
// (Android Oreo) but the other way around for app targeting <= 25 (Nougat).
|
|
/**
|
|
* Sorts the specified list into ascending order, according to the
|
|
* {@linkplain Comparable natural ordering} of its elements.
|
|
* All elements in the list must implement the {@link Comparable}
|
|
* interface. Furthermore, all elements in the list must be
|
|
* <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
|
|
* must not throw a {@code ClassCastException} for any elements
|
|
* {@code e1} and {@code e2} in the list).
|
|
*
|
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will
|
|
* not be reordered as a result of the sort.
|
|
*
|
|
* <p>The specified list must be modifiable, but need not be resizable.
|
|
*
|
|
* @implNote
|
|
* This implementation defers to the {@link List#sort(Comparator)}
|
|
* method using the specified list and a {@code null} comparator.
|
|
* Do not call this method from {@code List.sort()} since that can lead
|
|
* to infinite recursion. Apps targeting APIs {@code <= 25} observe
|
|
* backwards compatibility behavior where this method was implemented
|
|
* on top of {@link List#toArray()}, {@link ListIterator#next()} and
|
|
* {@link ListIterator#set(Object)}.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list to be sorted.
|
|
* @throws ClassCastException if the list contains elements that are not
|
|
* <i>mutually comparable</i> (for example, strings and integers).
|
|
* @throws UnsupportedOperationException if the specified list's
|
|
* list-iterator does not support the {@code set} operation.
|
|
* @throws IllegalArgumentException (optional) if the implementation
|
|
* detects that the natural ordering of the list elements is
|
|
* found to violate the {@link Comparable} contract
|
|
* @see List#sort(Comparator)
|
|
*/
|
|
public static <T extends Comparable<? super T>> void sort(List<T> list) {
|
|
// Android-changed: List.sort() vs. Collections.sort() app compat.
|
|
// Call sort(list, null) here to be consistent with that method's
|
|
// (changed on Android) behavior.
|
|
// list.sort(null);
|
|
sort(list, null);
|
|
}
|
|
|
|
// Android-added: List.sort() vs. Collections.sort() app compat.
|
|
// Added a warning in the documentation.
|
|
// Collections.sort() calls List.sort() for apps targeting API version >= 26
|
|
// (Android Oreo) but the other way around for app targeting <= 25 (Nougat).
|
|
/**
|
|
* Sorts the specified list according to the order induced by the
|
|
* specified comparator. All elements in the list must be <i>mutually
|
|
* comparable</i> using the specified comparator (that is,
|
|
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
|
|
* for any elements {@code e1} and {@code e2} in the list).
|
|
*
|
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will
|
|
* not be reordered as a result of the sort.
|
|
*
|
|
* <p>The specified list must be modifiable, but need not be resizable.
|
|
*
|
|
* @implNote
|
|
* This implementation defers to the {@link List#sort(Comparator)}
|
|
* method using the specified list and comparator.
|
|
* Do not call this method from {@code List.sort()} since that can lead
|
|
* to infinite recursion. Apps targeting APIs {@code <= 25} observe
|
|
* backwards compatibility behavior where this method was implemented
|
|
* on top of {@link List#toArray()}, {@link ListIterator#next()} and
|
|
* {@link ListIterator#set(Object)}.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list to be sorted.
|
|
* @param c the comparator to determine the order of the list. A
|
|
* {@code null} value indicates that the elements' <i>natural
|
|
* ordering</i> should be used.
|
|
* @throws ClassCastException if the list contains elements that are not
|
|
* <i>mutually comparable</i> using the specified comparator.
|
|
* @throws UnsupportedOperationException if the specified list's
|
|
* list-iterator does not support the {@code set} operation.
|
|
* @throws IllegalArgumentException (optional) if the comparator is
|
|
* found to violate the {@link Comparator} contract
|
|
* @see List#sort(Comparator)
|
|
*/
|
|
public static <T> void sort(List<T> list, Comparator<? super T> c) {
|
|
// BEGIN Android-changed: List.sort() vs. Collections.sort() app compat.
|
|
// list.sort(c);
|
|
int targetSdkVersion = VMRuntime.getRuntime().getTargetSdkVersion();
|
|
if (targetSdkVersion > 25) {
|
|
list.sort(c);
|
|
} else {
|
|
// Compatibility behavior for API <= 25. http://b/33482884
|
|
if (list.getClass() == ArrayList.class) {
|
|
Arrays.sort((T[]) ((ArrayList) list).elementData, 0, list.size(), c);
|
|
return;
|
|
}
|
|
|
|
Object[] a = list.toArray();
|
|
Arrays.sort(a, (Comparator) c);
|
|
ListIterator<T> i = list.listIterator();
|
|
for (int j = 0; j < a.length; j++) {
|
|
i.next();
|
|
i.set((T) a[j]);
|
|
}
|
|
}
|
|
// END Android-changed: List.sort() vs. Collections.sort() app compat.
|
|
}
|
|
|
|
|
|
/**
|
|
* Searches the specified list for the specified object using the binary
|
|
* search algorithm. The list must be sorted into ascending order
|
|
* according to the {@linkplain Comparable natural ordering} of its
|
|
* elements (as by the {@link #sort(List)} method) prior to making this
|
|
* call. If it is not sorted, the results are undefined. If the list
|
|
* contains multiple elements equal to the specified object, there is no
|
|
* guarantee which one will be found.
|
|
*
|
|
* <p>This method runs in log(n) time for a "random access" list (which
|
|
* provides near-constant-time positional access). If the specified list
|
|
* does not implement the {@link RandomAccess} interface and is large,
|
|
* this method will do an iterator-based binary search that performs
|
|
* O(n) link traversals and O(log n) element comparisons.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list to be searched.
|
|
* @param key the key to be searched for.
|
|
* @return the index of the search key, if it is contained in the list;
|
|
* otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The
|
|
* <i>insertion point</i> is defined as the point at which the
|
|
* key would be inserted into the list: the index of the first
|
|
* element greater than the key, or {@code list.size()} if all
|
|
* elements in the list are less than the specified key. Note
|
|
* that this guarantees that the return value will be >= 0 if
|
|
* and only if the key is found.
|
|
* @throws ClassCastException if the list contains elements that are not
|
|
* <i>mutually comparable</i> (for example, strings and
|
|
* integers), or the search key is not mutually comparable
|
|
* with the elements of the list.
|
|
*/
|
|
public static <T>
|
|
int binarySearch(List<? extends Comparable<? super T>> list, T key) {
|
|
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
|
|
return Collections.indexedBinarySearch(list, key);
|
|
else
|
|
return Collections.iteratorBinarySearch(list, key);
|
|
}
|
|
|
|
private static <T>
|
|
int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) {
|
|
int low = 0;
|
|
int high = list.size()-1;
|
|
|
|
while (low <= high) {
|
|
int mid = (low + high) >>> 1;
|
|
Comparable<? super T> midVal = list.get(mid);
|
|
int cmp = midVal.compareTo(key);
|
|
|
|
if (cmp < 0)
|
|
low = mid + 1;
|
|
else if (cmp > 0)
|
|
high = mid - 1;
|
|
else
|
|
return mid; // key found
|
|
}
|
|
return -(low + 1); // key not found
|
|
}
|
|
|
|
private static <T>
|
|
int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
|
|
{
|
|
int low = 0;
|
|
int high = list.size()-1;
|
|
ListIterator<? extends Comparable<? super T>> i = list.listIterator();
|
|
|
|
while (low <= high) {
|
|
int mid = (low + high) >>> 1;
|
|
Comparable<? super T> midVal = get(i, mid);
|
|
int cmp = midVal.compareTo(key);
|
|
|
|
if (cmp < 0)
|
|
low = mid + 1;
|
|
else if (cmp > 0)
|
|
high = mid - 1;
|
|
else
|
|
return mid; // key found
|
|
}
|
|
return -(low + 1); // key not found
|
|
}
|
|
|
|
/**
|
|
* Gets the ith element from the given list by repositioning the specified
|
|
* list listIterator.
|
|
*/
|
|
private static <T> T get(ListIterator<? extends T> i, int index) {
|
|
T obj;
|
|
int pos = i.nextIndex();
|
|
if (pos <= index) {
|
|
do {
|
|
obj = i.next();
|
|
} while (pos++ < index);
|
|
} else {
|
|
do {
|
|
obj = i.previous();
|
|
} while (--pos > index);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
/**
|
|
* Searches the specified list for the specified object using the binary
|
|
* search algorithm. The list must be sorted into ascending order
|
|
* according to the specified comparator (as by the
|
|
* {@link #sort(List, Comparator) sort(List, Comparator)}
|
|
* method), prior to making this call. If it is
|
|
* not sorted, the results are undefined. If the list contains multiple
|
|
* elements equal to the specified object, there is no guarantee which one
|
|
* will be found.
|
|
*
|
|
* <p>This method runs in log(n) time for a "random access" list (which
|
|
* provides near-constant-time positional access). If the specified list
|
|
* does not implement the {@link RandomAccess} interface and is large,
|
|
* this method will do an iterator-based binary search that performs
|
|
* O(n) link traversals and O(log n) element comparisons.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list to be searched.
|
|
* @param key the key to be searched for.
|
|
* @param c the comparator by which the list is ordered.
|
|
* A {@code null} value indicates that the elements'
|
|
* {@linkplain Comparable natural ordering} should be used.
|
|
* @return the index of the search key, if it is contained in the list;
|
|
* otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The
|
|
* <i>insertion point</i> is defined as the point at which the
|
|
* key would be inserted into the list: the index of the first
|
|
* element greater than the key, or {@code list.size()} if all
|
|
* elements in the list are less than the specified key. Note
|
|
* that this guarantees that the return value will be >= 0 if
|
|
* and only if the key is found.
|
|
* @throws ClassCastException if the list contains elements that are not
|
|
* <i>mutually comparable</i> using the specified comparator,
|
|
* or the search key is not mutually comparable with the
|
|
* elements of the list using this comparator.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
|
|
if (c==null)
|
|
return binarySearch((List<? extends Comparable<? super T>>) list, key);
|
|
|
|
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
|
|
return Collections.indexedBinarySearch(list, key, c);
|
|
else
|
|
return Collections.iteratorBinarySearch(list, key, c);
|
|
}
|
|
|
|
private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
|
|
int low = 0;
|
|
int high = l.size()-1;
|
|
|
|
while (low <= high) {
|
|
int mid = (low + high) >>> 1;
|
|
T midVal = l.get(mid);
|
|
int cmp = c.compare(midVal, key);
|
|
|
|
if (cmp < 0)
|
|
low = mid + 1;
|
|
else if (cmp > 0)
|
|
high = mid - 1;
|
|
else
|
|
return mid; // key found
|
|
}
|
|
return -(low + 1); // key not found
|
|
}
|
|
|
|
private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
|
|
int low = 0;
|
|
int high = l.size()-1;
|
|
ListIterator<? extends T> i = l.listIterator();
|
|
|
|
while (low <= high) {
|
|
int mid = (low + high) >>> 1;
|
|
T midVal = get(i, mid);
|
|
int cmp = c.compare(midVal, key);
|
|
|
|
if (cmp < 0)
|
|
low = mid + 1;
|
|
else if (cmp > 0)
|
|
high = mid - 1;
|
|
else
|
|
return mid; // key found
|
|
}
|
|
return -(low + 1); // key not found
|
|
}
|
|
|
|
/**
|
|
* Reverses the order of the elements in the specified list.<p>
|
|
*
|
|
* This method runs in linear time.
|
|
*
|
|
* @apiNote
|
|
* This method mutates the specified list in-place. To obtain a
|
|
* reverse-ordered view of a list without mutating it, use the
|
|
* {@link List#reversed List.reversed} method.
|
|
*
|
|
* @param list the list whose elements are to be reversed.
|
|
* @throws UnsupportedOperationException if the specified list or
|
|
* its list-iterator does not support the {@code set} operation.
|
|
* @see List#reversed List.reversed
|
|
*/
|
|
@SuppressWarnings({"rawtypes", "unchecked"})
|
|
public static void reverse(List<?> list) {
|
|
int size = list.size();
|
|
if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
|
|
for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
|
|
swap(list, i, j);
|
|
} else {
|
|
// instead of using a raw type here, it's possible to capture
|
|
// the wildcard but it will require a call to a supplementary
|
|
// private method
|
|
ListIterator fwd = list.listIterator();
|
|
ListIterator rev = list.listIterator(size);
|
|
for (int i=0, mid=list.size()>>1; i<mid; i++) {
|
|
Object tmp = fwd.next();
|
|
fwd.set(rev.previous());
|
|
rev.set(tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Randomly permutes the specified list using a default source of
|
|
* randomness. All permutations occur with approximately equal
|
|
* likelihood.
|
|
*
|
|
* <p>The hedge "approximately" is used in the foregoing description because
|
|
* default source of randomness is only approximately an unbiased source
|
|
* of independently chosen bits. If it were a perfect source of randomly
|
|
* chosen bits, then the algorithm would choose permutations with perfect
|
|
* uniformity.
|
|
*
|
|
* <p>This implementation traverses the list backwards, from the last
|
|
* element up to the second, repeatedly swapping a randomly selected element
|
|
* into the "current position". Elements are randomly selected from the
|
|
* portion of the list that runs from the first element to the current
|
|
* position, inclusive.
|
|
*
|
|
* @implSpec This method runs in linear time. If the specified list does
|
|
* not implement the {@link RandomAccess} interface and is large, this
|
|
* implementation dumps the specified list into an array before shuffling
|
|
* it, and dumps the shuffled array back into the list. This avoids the
|
|
* quadratic behavior that would result from shuffling a "sequential
|
|
* access" list in place.
|
|
*
|
|
* @param list the list to be shuffled.
|
|
* @throws UnsupportedOperationException if the specified list or
|
|
* its list-iterator does not support the {@code set} operation.
|
|
*/
|
|
public static void shuffle(List<?> list) {
|
|
Random rnd = r;
|
|
if (rnd == null)
|
|
r = rnd = new Random(); // harmless race.
|
|
shuffle(list, rnd);
|
|
}
|
|
|
|
private static Random r;
|
|
|
|
/**
|
|
* Randomly permute the specified list using the specified source of
|
|
* randomness.<p>
|
|
*
|
|
* This method is equivalent to {@link #shuffle(List, RandomGenerator)}
|
|
* and exists for backward compatibility. The {@link #shuffle(List, RandomGenerator)}
|
|
* method is preferred, as it is not limited to random generators
|
|
* that extend the {@link Random} class.
|
|
*
|
|
* @param list the list to be shuffled.
|
|
* @param rnd the source of randomness to use to shuffle the list.
|
|
* @throws UnsupportedOperationException if the specified list or its
|
|
* list-iterator does not support the {@code set} operation.
|
|
*/
|
|
public static void shuffle(List<?> list, Random rnd) {
|
|
shuffle(list, (RandomGenerator) rnd);
|
|
}
|
|
|
|
/**
|
|
* Randomly permute the specified list using the specified source of
|
|
* randomness. All permutations occur with equal likelihood
|
|
* assuming that the source of randomness is fair.<p>
|
|
*
|
|
* This implementation traverses the list backwards, from the last element
|
|
* up to the second, repeatedly swapping a randomly selected element into
|
|
* the "current position". Elements are randomly selected from the
|
|
* portion of the list that runs from the first element to the current
|
|
* position, inclusive.
|
|
*
|
|
* @implSpec This method runs in linear time. If the specified list does
|
|
* not implement the {@link RandomAccess} interface and is large, this
|
|
* implementation dumps the specified list into an array before shuffling
|
|
* it, and dumps the shuffled array back into the list. This avoids the
|
|
* quadratic behavior that would result from shuffling a "sequential
|
|
* access" list in place.
|
|
*
|
|
* @param list the list to be shuffled.
|
|
* @param rnd the source of randomness to use to shuffle the list.
|
|
* @throws UnsupportedOperationException if the specified list or its
|
|
* list-iterator does not support the {@code set} operation.
|
|
* @since 21
|
|
*/
|
|
@SuppressWarnings({"rawtypes", "unchecked"})
|
|
public static void shuffle(List<?> list, RandomGenerator rnd) {
|
|
int size = list.size();
|
|
if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
|
|
for (int i=size; i>1; i--)
|
|
swap(list, i-1, rnd.nextInt(i));
|
|
} else {
|
|
Object[] arr = list.toArray();
|
|
|
|
// Shuffle array
|
|
for (int i=size; i>1; i--)
|
|
swap(arr, i-1, rnd.nextInt(i));
|
|
|
|
// Dump array back into list
|
|
// instead of using a raw type here, it's possible to capture
|
|
// the wildcard but it will require a call to a supplementary
|
|
// private method
|
|
ListIterator it = list.listIterator();
|
|
for (Object e : arr) {
|
|
it.next();
|
|
it.set(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Swaps the elements at the specified positions in the specified list.
|
|
* (If the specified positions are equal, invoking this method leaves
|
|
* the list unchanged.)
|
|
*
|
|
* @param list The list in which to swap elements.
|
|
* @param i the index of one element to be swapped.
|
|
* @param j the index of the other element to be swapped.
|
|
* @throws IndexOutOfBoundsException if either {@code i} or {@code j}
|
|
* is out of range (i < 0 || i >= list.size()
|
|
* || j < 0 || j >= list.size()).
|
|
* @since 1.4
|
|
*/
|
|
@SuppressWarnings({"rawtypes", "unchecked"})
|
|
public static void swap(List<?> list, int i, int j) {
|
|
// instead of using a raw type here, it's possible to capture
|
|
// the wildcard but it will require a call to a supplementary
|
|
// private method
|
|
final List l = list;
|
|
l.set(i, l.set(j, l.get(i)));
|
|
}
|
|
|
|
/**
|
|
* Swaps the two specified elements in the specified array.
|
|
*/
|
|
private static void swap(Object[] arr, int i, int j) {
|
|
Object tmp = arr[i];
|
|
arr[i] = arr[j];
|
|
arr[j] = tmp;
|
|
}
|
|
|
|
/**
|
|
* Replaces all of the elements of the specified list with the specified
|
|
* element. <p>
|
|
*
|
|
* This method runs in linear time.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list to be filled with the specified element.
|
|
* @param obj The element with which to fill the specified list.
|
|
* @throws UnsupportedOperationException if the specified list or its
|
|
* list-iterator does not support the {@code set} operation.
|
|
*/
|
|
public static <T> void fill(List<? super T> list, T obj) {
|
|
int size = list.size();
|
|
|
|
if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
|
|
for (int i=0; i<size; i++)
|
|
list.set(i, obj);
|
|
} else {
|
|
ListIterator<? super T> itr = list.listIterator();
|
|
for (int i=0; i<size; i++) {
|
|
itr.next();
|
|
itr.set(obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copies all of the elements from one list into another. After the
|
|
* operation, the index of each copied element in the destination list
|
|
* will be identical to its index in the source list. The destination
|
|
* list's size must be greater than or equal to the source list's size.
|
|
* If it is greater, the remaining elements in the destination list are
|
|
* unaffected. <p>
|
|
*
|
|
* This method runs in linear time.
|
|
*
|
|
* @param <T> the class of the objects in the lists
|
|
* @param dest The destination list.
|
|
* @param src The source list.
|
|
* @throws IndexOutOfBoundsException if the destination list is too small
|
|
* to contain the entire source List.
|
|
* @throws UnsupportedOperationException if the destination list's
|
|
* list-iterator does not support the {@code set} operation.
|
|
*/
|
|
public static <T> void copy(List<? super T> dest, List<? extends T> src) {
|
|
int srcSize = src.size();
|
|
if (srcSize > dest.size())
|
|
throw new IndexOutOfBoundsException("Source does not fit in dest");
|
|
|
|
if (srcSize < COPY_THRESHOLD ||
|
|
(src instanceof RandomAccess && dest instanceof RandomAccess)) {
|
|
for (int i=0; i<srcSize; i++)
|
|
dest.set(i, src.get(i));
|
|
} else {
|
|
ListIterator<? super T> di=dest.listIterator();
|
|
ListIterator<? extends T> si=src.listIterator();
|
|
for (int i=0; i<srcSize; i++) {
|
|
di.next();
|
|
di.set(si.next());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum element of the given collection, according to the
|
|
* <i>natural ordering</i> of its elements. All elements in the
|
|
* collection must implement the {@code Comparable} interface.
|
|
* Furthermore, all elements in the collection must be <i>mutually
|
|
* comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
|
|
* {@code ClassCastException} for any elements {@code e1} and
|
|
* {@code e2} in the collection).<p>
|
|
*
|
|
* This method iterates over the entire collection, hence it requires
|
|
* time proportional to the size of the collection.
|
|
*
|
|
* @param <T> the class of the objects in the collection
|
|
* @param coll the collection whose minimum element is to be determined.
|
|
* @return the minimum element of the given collection, according
|
|
* to the <i>natural ordering</i> of its elements.
|
|
* @throws ClassCastException if the collection contains elements that are
|
|
* not <i>mutually comparable</i> (for example, strings and
|
|
* integers).
|
|
* @throws NoSuchElementException if the collection is empty.
|
|
* @see Comparable
|
|
*/
|
|
public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
|
|
Iterator<? extends T> i = coll.iterator();
|
|
T candidate = i.next();
|
|
|
|
while (i.hasNext()) {
|
|
T next = i.next();
|
|
if (next.compareTo(candidate) < 0)
|
|
candidate = next;
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum element of the given collection, according to the
|
|
* order induced by the specified comparator. All elements in the
|
|
* collection must be <i>mutually comparable</i> by the specified
|
|
* comparator (that is, {@code comp.compare(e1, e2)} must not throw a
|
|
* {@code ClassCastException} for any elements {@code e1} and
|
|
* {@code e2} in the collection).<p>
|
|
*
|
|
* This method iterates over the entire collection, hence it requires
|
|
* time proportional to the size of the collection.
|
|
*
|
|
* @param <T> the class of the objects in the collection
|
|
* @param coll the collection whose minimum element is to be determined.
|
|
* @param comp the comparator with which to determine the minimum element.
|
|
* A {@code null} value indicates that the elements' <i>natural
|
|
* ordering</i> should be used.
|
|
* @return the minimum element of the given collection, according
|
|
* to the specified comparator.
|
|
* @throws ClassCastException if the collection contains elements that are
|
|
* not <i>mutually comparable</i> using the specified comparator.
|
|
* @throws NoSuchElementException if the collection is empty.
|
|
* @see Comparable
|
|
*/
|
|
@SuppressWarnings({"unchecked"})
|
|
public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
|
|
if (comp==null)
|
|
return (T)min((Collection<Comparable<Object>>) coll);
|
|
|
|
Iterator<? extends T> i = coll.iterator();
|
|
T candidate = i.next();
|
|
|
|
while (i.hasNext()) {
|
|
T next = i.next();
|
|
if (comp.compare(next, candidate) < 0)
|
|
candidate = next;
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
/**
|
|
* Returns the maximum element of the given collection, according to the
|
|
* <i>natural ordering</i> of its elements. All elements in the
|
|
* collection must implement the {@code Comparable} interface.
|
|
* Furthermore, all elements in the collection must be <i>mutually
|
|
* comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
|
|
* {@code ClassCastException} for any elements {@code e1} and
|
|
* {@code e2} in the collection).<p>
|
|
*
|
|
* This method iterates over the entire collection, hence it requires
|
|
* time proportional to the size of the collection.
|
|
*
|
|
* @param <T> the class of the objects in the collection
|
|
* @param coll the collection whose maximum element is to be determined.
|
|
* @return the maximum element of the given collection, according
|
|
* to the <i>natural ordering</i> of its elements.
|
|
* @throws ClassCastException if the collection contains elements that are
|
|
* not <i>mutually comparable</i> (for example, strings and
|
|
* integers).
|
|
* @throws NoSuchElementException if the collection is empty.
|
|
* @see Comparable
|
|
*/
|
|
public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
|
|
Iterator<? extends T> i = coll.iterator();
|
|
T candidate = i.next();
|
|
|
|
while (i.hasNext()) {
|
|
T next = i.next();
|
|
if (next.compareTo(candidate) > 0)
|
|
candidate = next;
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
/**
|
|
* Returns the maximum element of the given collection, according to the
|
|
* order induced by the specified comparator. All elements in the
|
|
* collection must be <i>mutually comparable</i> by the specified
|
|
* comparator (that is, {@code comp.compare(e1, e2)} must not throw a
|
|
* {@code ClassCastException} for any elements {@code e1} and
|
|
* {@code e2} in the collection).<p>
|
|
*
|
|
* This method iterates over the entire collection, hence it requires
|
|
* time proportional to the size of the collection.
|
|
*
|
|
* @param <T> the class of the objects in the collection
|
|
* @param coll the collection whose maximum element is to be determined.
|
|
* @param comp the comparator with which to determine the maximum element.
|
|
* A {@code null} value indicates that the elements' <i>natural
|
|
* ordering</i> should be used.
|
|
* @return the maximum element of the given collection, according
|
|
* to the specified comparator.
|
|
* @throws ClassCastException if the collection contains elements that are
|
|
* not <i>mutually comparable</i> using the specified comparator.
|
|
* @throws NoSuchElementException if the collection is empty.
|
|
* @see Comparable
|
|
*/
|
|
@SuppressWarnings({"unchecked"})
|
|
public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
|
|
if (comp==null)
|
|
return (T)max((Collection<Comparable<Object>>) coll);
|
|
|
|
Iterator<? extends T> i = coll.iterator();
|
|
T candidate = i.next();
|
|
|
|
while (i.hasNext()) {
|
|
T next = i.next();
|
|
if (comp.compare(next, candidate) > 0)
|
|
candidate = next;
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
/**
|
|
* Rotates the elements in the specified list by the specified distance.
|
|
* After calling this method, the element at index {@code i} will be
|
|
* the element previously at index {@code (i - distance)} mod
|
|
* {@code list.size()}, for all values of {@code i} between {@code 0}
|
|
* and {@code list.size()-1}, inclusive. (This method has no effect on
|
|
* the size of the list.)
|
|
*
|
|
* <p>For example, suppose {@code list} comprises{@code [t, a, n, k, s]}.
|
|
* After invoking {@code Collections.rotate(list, 1)} (or
|
|
* {@code Collections.rotate(list, -4)}), {@code list} will comprise
|
|
* {@code [s, t, a, n, k]}.
|
|
*
|
|
* <p>Note that this method can usefully be applied to sublists to
|
|
* move one or more elements within a list while preserving the
|
|
* order of the remaining elements. For example, the following idiom
|
|
* moves the element at index {@code j} forward to position
|
|
* {@code k} (which must be greater than or equal to {@code j}):
|
|
* <pre>
|
|
* Collections.rotate(list.subList(j, k+1), -1);
|
|
* </pre>
|
|
* To make this concrete, suppose {@code list} comprises
|
|
* {@code [a, b, c, d, e]}. To move the element at index {@code 1}
|
|
* ({@code b}) forward two positions, perform the following invocation:
|
|
* <pre>
|
|
* Collections.rotate(l.subList(1, 4), -1);
|
|
* </pre>
|
|
* The resulting list is {@code [a, c, d, b, e]}.
|
|
*
|
|
* <p>To move more than one element forward, increase the absolute value
|
|
* of the rotation distance. To move elements backward, use a positive
|
|
* shift distance.
|
|
*
|
|
* <p>If the specified list is small or implements the {@link
|
|
* RandomAccess} interface, this implementation exchanges the first
|
|
* element into the location it should go, and then repeatedly exchanges
|
|
* the displaced element into the location it should go until a displaced
|
|
* element is swapped into the first element. If necessary, the process
|
|
* is repeated on the second and successive elements, until the rotation
|
|
* is complete. If the specified list is large and doesn't implement the
|
|
* {@code RandomAccess} interface, this implementation breaks the
|
|
* list into two sublist views around index {@code -distance mod size}.
|
|
* Then the {@link #reverse(List)} method is invoked on each sublist view,
|
|
* and finally it is invoked on the entire list. For a more complete
|
|
* description of both algorithms, see Section 2.3 of Jon Bentley's
|
|
* <i>Programming Pearls</i> (Addison-Wesley, 1986).
|
|
*
|
|
* @param list the list to be rotated.
|
|
* @param distance the distance to rotate the list. There are no
|
|
* constraints on this value; it may be zero, negative, or
|
|
* greater than {@code list.size()}.
|
|
* @throws UnsupportedOperationException if the specified list or
|
|
* its list-iterator does not support the {@code set} operation.
|
|
* @since 1.4
|
|
*/
|
|
public static void rotate(List<?> list, int distance) {
|
|
if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
|
|
rotate1(list, distance);
|
|
else
|
|
rotate2(list, distance);
|
|
}
|
|
|
|
private static <T> void rotate1(List<T> list, int distance) {
|
|
int size = list.size();
|
|
if (size == 0)
|
|
return;
|
|
distance = distance % size;
|
|
if (distance < 0)
|
|
distance += size;
|
|
if (distance == 0)
|
|
return;
|
|
|
|
for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
|
|
T displaced = list.get(cycleStart);
|
|
int i = cycleStart;
|
|
do {
|
|
i += distance;
|
|
if (i >= size)
|
|
i -= size;
|
|
displaced = list.set(i, displaced);
|
|
nMoved ++;
|
|
} while (i != cycleStart);
|
|
}
|
|
}
|
|
|
|
private static void rotate2(List<?> list, int distance) {
|
|
int size = list.size();
|
|
if (size == 0)
|
|
return;
|
|
int mid = -distance % size;
|
|
if (mid < 0)
|
|
mid += size;
|
|
if (mid == 0)
|
|
return;
|
|
|
|
reverse(list.subList(0, mid));
|
|
reverse(list.subList(mid, size));
|
|
reverse(list);
|
|
}
|
|
|
|
/**
|
|
* Replaces all occurrences of one specified value in a list with another.
|
|
* More formally, replaces with {@code newVal} each element {@code e}
|
|
* in {@code list} such that
|
|
* {@code (oldVal==null ? e==null : oldVal.equals(e))}.
|
|
* (This method has no effect on the size of the list.)
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list in which replacement is to occur.
|
|
* @param oldVal the old value to be replaced.
|
|
* @param newVal the new value with which {@code oldVal} is to be
|
|
* replaced.
|
|
* @return {@code true} if {@code list} contained one or more elements
|
|
* {@code e} such that
|
|
* {@code (oldVal==null ? e==null : oldVal.equals(e))}.
|
|
* @throws UnsupportedOperationException if the specified list or
|
|
* its list-iterator does not support the {@code set} operation.
|
|
* @since 1.4
|
|
*/
|
|
public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
|
|
boolean result = false;
|
|
int size = list.size();
|
|
if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
|
|
if (oldVal==null) {
|
|
for (int i=0; i<size; i++) {
|
|
if (list.get(i)==null) {
|
|
list.set(i, newVal);
|
|
result = true;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i=0; i<size; i++) {
|
|
if (oldVal.equals(list.get(i))) {
|
|
list.set(i, newVal);
|
|
result = true;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
ListIterator<T> itr=list.listIterator();
|
|
if (oldVal==null) {
|
|
for (int i=0; i<size; i++) {
|
|
if (itr.next()==null) {
|
|
itr.set(newVal);
|
|
result = true;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i=0; i<size; i++) {
|
|
if (oldVal.equals(itr.next())) {
|
|
itr.set(newVal);
|
|
result = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the starting position of the first occurrence of the specified
|
|
* target list within the specified source list, or -1 if there is no
|
|
* such occurrence. More formally, returns the lowest index {@code i}
|
|
* such that {@code source.subList(i, i+target.size()).equals(target)},
|
|
* or -1 if there is no such index. (Returns -1 if
|
|
* {@code target.size() > source.size()})
|
|
*
|
|
* <p>This implementation uses the "brute force" technique of scanning
|
|
* over the source list, looking for a match with the target at each
|
|
* location in turn.
|
|
*
|
|
* @param source the list in which to search for the first occurrence
|
|
* of {@code target}.
|
|
* @param target the list to search for as a subList of {@code source}.
|
|
* @return the starting position of the first occurrence of the specified
|
|
* target list within the specified source list, or -1 if there
|
|
* is no such occurrence.
|
|
* @since 1.4
|
|
*/
|
|
public static int indexOfSubList(List<?> source, List<?> target) {
|
|
int sourceSize = source.size();
|
|
int targetSize = target.size();
|
|
int maxCandidate = sourceSize - targetSize;
|
|
|
|
if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
|
|
(source instanceof RandomAccess&&target instanceof RandomAccess)) {
|
|
nextCand:
|
|
for (int candidate = 0; candidate <= maxCandidate; candidate++) {
|
|
for (int i=0, j=candidate; i<targetSize; i++, j++)
|
|
if (!eq(target.get(i), source.get(j)))
|
|
continue nextCand; // Element mismatch, try next cand
|
|
return candidate; // All elements of candidate matched target
|
|
}
|
|
} else { // Iterator version of above algorithm
|
|
ListIterator<?> si = source.listIterator();
|
|
nextCand:
|
|
for (int candidate = 0; candidate <= maxCandidate; candidate++) {
|
|
ListIterator<?> ti = target.listIterator();
|
|
for (int i=0; i<targetSize; i++) {
|
|
if (!eq(ti.next(), si.next())) {
|
|
// Back up source iterator to next candidate
|
|
for (int j=0; j<i; j++)
|
|
si.previous();
|
|
continue nextCand;
|
|
}
|
|
}
|
|
return candidate;
|
|
}
|
|
}
|
|
return -1; // No candidate matched the target
|
|
}
|
|
|
|
/**
|
|
* Returns the starting position of the last occurrence of the specified
|
|
* target list within the specified source list, or -1 if there is no such
|
|
* occurrence. More formally, returns the highest index {@code i}
|
|
* such that {@code source.subList(i, i+target.size()).equals(target)},
|
|
* or -1 if there is no such index. (Returns -1 if
|
|
* {@code target.size() > source.size()})
|
|
*
|
|
* <p>This implementation uses the "brute force" technique of iterating
|
|
* over the source list, looking for a match with the target at each
|
|
* location in turn.
|
|
*
|
|
* @param source the list in which to search for the last occurrence
|
|
* of {@code target}.
|
|
* @param target the list to search for as a subList of {@code source}.
|
|
* @return the starting position of the last occurrence of the specified
|
|
* target list within the specified source list, or -1 if there
|
|
* is no such occurrence.
|
|
* @since 1.4
|
|
*/
|
|
public static int lastIndexOfSubList(List<?> source, List<?> target) {
|
|
int sourceSize = source.size();
|
|
int targetSize = target.size();
|
|
int maxCandidate = sourceSize - targetSize;
|
|
|
|
if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
|
|
source instanceof RandomAccess) { // Index access version
|
|
nextCand:
|
|
for (int candidate = maxCandidate; candidate >= 0; candidate--) {
|
|
for (int i=0, j=candidate; i<targetSize; i++, j++)
|
|
if (!eq(target.get(i), source.get(j)))
|
|
continue nextCand; // Element mismatch, try next cand
|
|
return candidate; // All elements of candidate matched target
|
|
}
|
|
} else { // Iterator version of above algorithm
|
|
if (maxCandidate < 0)
|
|
return -1;
|
|
ListIterator<?> si = source.listIterator(maxCandidate);
|
|
nextCand:
|
|
for (int candidate = maxCandidate; candidate >= 0; candidate--) {
|
|
ListIterator<?> ti = target.listIterator();
|
|
for (int i=0; i<targetSize; i++) {
|
|
if (!eq(ti.next(), si.next())) {
|
|
if (candidate != 0) {
|
|
// Back up source iterator to next candidate
|
|
for (int j=0; j<=i+1; j++)
|
|
si.previous();
|
|
}
|
|
continue nextCand;
|
|
}
|
|
}
|
|
return candidate;
|
|
}
|
|
}
|
|
return -1; // No candidate matched the target
|
|
}
|
|
|
|
|
|
// Unmodifiable Wrappers
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified collection. Query operations on the returned collection "read through"
|
|
* to the specified collection, and attempts to modify the returned
|
|
* collection, whether direct or via its iterator, result in an
|
|
* {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned collection does <i>not</i> pass the hashCode and equals
|
|
* operations through to the backing collection, but relies on
|
|
* {@code Object}'s {@code equals} and {@code hashCode} methods. This
|
|
* is necessary to preserve the contracts of these operations in the case
|
|
* that the backing collection is a set or a list.<p>
|
|
*
|
|
* The returned collection will be serializable if the specified collection
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the collection
|
|
* @param c the collection for which an unmodifiable view is to be
|
|
* returned.
|
|
* @return an unmodifiable view of the specified collection.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
|
|
if (c.getClass() == UnmodifiableCollection.class) {
|
|
return (Collection<T>) c;
|
|
}
|
|
return new UnmodifiableCollection<>(c);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1820017752578914078L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Collection<? extends E> c;
|
|
|
|
UnmodifiableCollection(Collection<? extends E> c) {
|
|
if (c==null)
|
|
throw new NullPointerException();
|
|
this.c = c;
|
|
}
|
|
|
|
public int size() {return c.size();}
|
|
public boolean isEmpty() {return c.isEmpty();}
|
|
public boolean contains(Object o) {return c.contains(o);}
|
|
public Object[] toArray() {return c.toArray();}
|
|
public <T> T[] toArray(T[] a) {return c.toArray(a);}
|
|
public <T> T[] toArray(IntFunction<T[]> f) {return c.toArray(f);}
|
|
public String toString() {return c.toString();}
|
|
|
|
public Iterator<E> iterator() {
|
|
return new Iterator<>() {
|
|
private final Iterator<? extends E> i = c.iterator();
|
|
|
|
public boolean hasNext() {return i.hasNext();}
|
|
public E next() {return i.next();}
|
|
public void remove() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
// Use backing collection version
|
|
i.forEachRemaining(action);
|
|
}
|
|
};
|
|
}
|
|
|
|
public boolean add(E e) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public boolean remove(Object o) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public boolean containsAll(Collection<?> coll) {
|
|
return c.containsAll(coll);
|
|
}
|
|
public boolean addAll(Collection<? extends E> coll) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public boolean removeAll(Collection<?> coll) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public boolean retainAll(Collection<?> coll) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public void clear() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
c.forEach(action);
|
|
}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@SuppressWarnings("unchecked")
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return (Spliterator<E>)c.spliterator();
|
|
}
|
|
@SuppressWarnings("unchecked")
|
|
@Override
|
|
public Stream<E> stream() {
|
|
return (Stream<E>)c.stream();
|
|
}
|
|
@SuppressWarnings("unchecked")
|
|
@Override
|
|
public Stream<E> parallelStream() {
|
|
return (Stream<E>)c.parallelStream();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified {@code SequencedCollection}. Query operations on the returned collection
|
|
* "read through" to the specified collection, and attempts to modify the returned
|
|
* collection, whether direct or via its iterator, result in an
|
|
* {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned collection does <i>not</i> pass the {@code hashCode} and
|
|
* {@code equals} operations through to the backing collection, but relies on
|
|
* {@code Object}'s {@code equals} and {@code hashCode} methods. This
|
|
* is necessary to preserve the contracts of these operations in the case
|
|
* that the backing collection is a set or a list.<p>
|
|
*
|
|
* The returned collection will be serializable if the specified collection
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the collection
|
|
* @param c the collection for which an unmodifiable view is to be
|
|
* returned.
|
|
* @return an unmodifiable view of the specified collection.
|
|
* @since 21
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> SequencedCollection<T> unmodifiableSequencedCollection(SequencedCollection<? extends T> c) {
|
|
if (c.getClass() == UnmodifiableSequencedCollection.class) {
|
|
return (SequencedCollection<T>) c;
|
|
}
|
|
return new UnmodifiableSequencedCollection<>(c);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableSequencedCollection<E> extends UnmodifiableCollection<E>
|
|
implements SequencedCollection<E>, Serializable {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -6060065079711684830L;
|
|
|
|
UnmodifiableSequencedCollection(SequencedCollection<? extends E> c) {
|
|
super(c);
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
private SequencedCollection<E> sc() {
|
|
return (SequencedCollection<E>) c;
|
|
}
|
|
|
|
// Even though this wrapper class is serializable, the reversed view is effectively
|
|
// not serializable because it points to the reversed collection view, which usually isn't
|
|
// serializable.
|
|
public SequencedCollection<E> reversed() {
|
|
return new UnmodifiableSequencedCollection<>(sc().reversed());
|
|
}
|
|
|
|
public void addFirst(E e) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public void addLast(E e) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public E getFirst() {
|
|
return sc().getFirst();
|
|
}
|
|
|
|
public E getLast() {
|
|
return sc().getLast();
|
|
}
|
|
|
|
public E removeFirst() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public E removeLast() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified set. Query operations on the returned set "read through" to the specified
|
|
* set, and attempts to modify the returned set, whether direct or via its
|
|
* iterator, result in an {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned set will be serializable if the specified set
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the set for which an unmodifiable view is to be returned.
|
|
* @return an unmodifiable view of the specified set.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
|
|
// Not checking for subclasses because of heap pollution and information leakage.
|
|
if (s.getClass() == UnmodifiableSet.class) {
|
|
return (Set<T>) s;
|
|
}
|
|
return new UnmodifiableSet<>(s);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
|
|
implements Set<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -9215047833775013803L;
|
|
|
|
UnmodifiableSet(Set<? extends E> s) {super(s);}
|
|
public boolean equals(Object o) {return o == this || c.equals(o);}
|
|
public int hashCode() {return c.hashCode();}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified {@code SequencedSet}. Query operations on the returned set
|
|
* "read through" to the specified set, and attempts to modify the returned
|
|
* set, whether direct or via its iterator, result in an
|
|
* {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned set will be serializable if the specified set
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the set for which an unmodifiable view is to be returned.
|
|
* @return an unmodifiable view of the specified sequenced set.
|
|
* @since 21
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> SequencedSet<T> unmodifiableSequencedSet(SequencedSet<? extends T> s) {
|
|
// Not checking for subclasses because of heap pollution and information leakage.
|
|
if (s.getClass() == UnmodifiableSequencedSet.class) {
|
|
return (SequencedSet<T>) s;
|
|
}
|
|
return new UnmodifiableSequencedSet<>(s);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableSequencedSet<E> extends UnmodifiableSequencedCollection<E>
|
|
implements SequencedSet<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -2153469532349793522L;
|
|
|
|
UnmodifiableSequencedSet(SequencedSet<? extends E> s) {super(s);}
|
|
public boolean equals(Object o) {return o == this || c.equals(o);}
|
|
public int hashCode() {return c.hashCode();}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
private SequencedSet<E> ss() {
|
|
return (SequencedSet<E>) c;
|
|
}
|
|
|
|
// Even though this wrapper class is serializable, the reversed view is effectively
|
|
// not serializable because it points to the reversed set view, which usually isn't
|
|
// serializable.
|
|
public SequencedSet<E> reversed() {
|
|
return new UnmodifiableSequencedSet<>(ss().reversed());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified sorted set. Query operations on the returned sorted set "read
|
|
* through" to the specified sorted set. Attempts to modify the returned
|
|
* sorted set, whether direct, via its iterator, or via its
|
|
* {@code subSet}, {@code headSet}, or {@code tailSet} views, result in
|
|
* an {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned sorted set will be serializable if the specified sorted set
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the sorted set for which an unmodifiable view is to be
|
|
* returned.
|
|
* @return an unmodifiable view of the specified sorted set.
|
|
*/
|
|
public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
|
|
// Not checking for subclasses because of heap pollution and information leakage.
|
|
if (s.getClass() == UnmodifiableSortedSet.class) {
|
|
return s;
|
|
}
|
|
return new UnmodifiableSortedSet<>(s);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableSortedSet<E>
|
|
extends UnmodifiableSet<E>
|
|
implements SortedSet<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -4929149591599911165L;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final SortedSet<E> ss;
|
|
|
|
UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
|
|
|
|
public Comparator<? super E> comparator() {return ss.comparator();}
|
|
|
|
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
|
|
}
|
|
public SortedSet<E> headSet(E toElement) {
|
|
return new UnmodifiableSortedSet<>(ss.headSet(toElement));
|
|
}
|
|
public SortedSet<E> tailSet(E fromElement) {
|
|
return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
|
|
}
|
|
|
|
public E first() {return ss.first();}
|
|
public E last() {return ss.last();}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified navigable set. Query operations on the returned navigable set "read
|
|
* through" to the specified navigable set. Attempts to modify the returned
|
|
* navigable set, whether direct, via its iterator, or via its
|
|
* {@code subSet}, {@code headSet}, or {@code tailSet} views, result in
|
|
* an {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned navigable set will be serializable if the specified
|
|
* navigable set is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the navigable set for which an unmodifiable view is to be
|
|
* returned
|
|
* @return an unmodifiable view of the specified navigable set
|
|
* @since 1.8
|
|
*/
|
|
public static <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s) {
|
|
if (s.getClass() == UnmodifiableNavigableSet.class) {
|
|
return s;
|
|
}
|
|
return new UnmodifiableNavigableSet<>(s);
|
|
}
|
|
|
|
/**
|
|
* Wraps a navigable set and disables all of the mutative operations.
|
|
*
|
|
* @param <E> type of elements
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableNavigableSet<E>
|
|
extends UnmodifiableSortedSet<E>
|
|
implements NavigableSet<E>, Serializable {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -6027448201786391929L;
|
|
|
|
/**
|
|
* A singleton empty unmodifiable navigable set used for
|
|
* {@link #emptyNavigableSet()}.
|
|
*
|
|
* @param <E> type of elements, if there were any, and bounds
|
|
*/
|
|
private static class EmptyNavigableSet<E> extends UnmodifiableNavigableSet<E>
|
|
implements Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -6291252904449939134L;
|
|
|
|
public EmptyNavigableSet() {
|
|
super(new TreeSet<>());
|
|
}
|
|
|
|
@java.io.Serial
|
|
private Object readResolve() { return EMPTY_NAVIGABLE_SET; }
|
|
}
|
|
|
|
private static final NavigableSet<?> EMPTY_NAVIGABLE_SET =
|
|
new EmptyNavigableSet<>();
|
|
|
|
/**
|
|
* The instance we are protecting.
|
|
*/
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final NavigableSet<E> ns;
|
|
|
|
UnmodifiableNavigableSet(NavigableSet<E> s) {super(s); ns = s;}
|
|
|
|
public E lower(E e) { return ns.lower(e); }
|
|
public E floor(E e) { return ns.floor(e); }
|
|
public E ceiling(E e) { return ns.ceiling(e); }
|
|
public E higher(E e) { return ns.higher(e); }
|
|
public E pollFirst() { throw new UnsupportedOperationException(); }
|
|
public E pollLast() { throw new UnsupportedOperationException(); }
|
|
public NavigableSet<E> descendingSet()
|
|
{ return new UnmodifiableNavigableSet<>(ns.descendingSet()); }
|
|
public Iterator<E> descendingIterator()
|
|
{ return descendingSet().iterator(); }
|
|
|
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
|
|
return new UnmodifiableNavigableSet<>(
|
|
ns.subSet(fromElement, fromInclusive, toElement, toInclusive));
|
|
}
|
|
|
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
|
|
return new UnmodifiableNavigableSet<>(
|
|
ns.headSet(toElement, inclusive));
|
|
}
|
|
|
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
|
|
return new UnmodifiableNavigableSet<>(
|
|
ns.tailSet(fromElement, inclusive));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified list. Query operations on the returned list "read through" to the
|
|
* specified list, and attempts to modify the returned list, whether
|
|
* direct or via its iterator, result in an
|
|
* {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned list will be serializable if the specified list
|
|
* is serializable. Similarly, the returned list will implement
|
|
* {@link RandomAccess} if the specified list does.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list for which an unmodifiable view is to be returned.
|
|
* @return an unmodifiable view of the specified list.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> List<T> unmodifiableList(List<? extends T> list) {
|
|
if (list.getClass() == UnmodifiableList.class || list.getClass() == UnmodifiableRandomAccessList.class) {
|
|
return (List<T>) list;
|
|
}
|
|
|
|
return (list instanceof RandomAccess ?
|
|
new UnmodifiableRandomAccessList<>(list) :
|
|
new UnmodifiableList<>(list));
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableList<E> extends UnmodifiableCollection<E>
|
|
implements List<E> {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -283967356065247728L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final List<? extends E> list;
|
|
|
|
UnmodifiableList(List<? extends E> list) {
|
|
super(list);
|
|
this.list = list;
|
|
}
|
|
|
|
public boolean equals(Object o) {return o == this || list.equals(o);}
|
|
public int hashCode() {return list.hashCode();}
|
|
|
|
public E get(int index) {return list.get(index);}
|
|
public E set(int index, E element) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public void add(int index, E element) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public E remove(int index) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public int indexOf(Object o) {return list.indexOf(o);}
|
|
public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@Override
|
|
public void sort(Comparator<? super E> c) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public ListIterator<E> listIterator() {return listIterator(0);}
|
|
|
|
public ListIterator<E> listIterator(final int index) {
|
|
return new ListIterator<>() {
|
|
private final ListIterator<? extends E> i
|
|
= list.listIterator(index);
|
|
|
|
public boolean hasNext() {return i.hasNext();}
|
|
public E next() {return i.next();}
|
|
public boolean hasPrevious() {return i.hasPrevious();}
|
|
public E previous() {return i.previous();}
|
|
public int nextIndex() {return i.nextIndex();}
|
|
public int previousIndex() {return i.previousIndex();}
|
|
|
|
public void remove() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public void set(E e) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public void add(E e) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
i.forEachRemaining(action);
|
|
}
|
|
};
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
|
|
}
|
|
|
|
/**
|
|
* UnmodifiableRandomAccessList instances are serialized as
|
|
* UnmodifiableList instances to allow them to be deserialized
|
|
* in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
|
|
* This method inverts the transformation. As a beneficial
|
|
* side-effect, it also grafts the RandomAccess marker onto
|
|
* UnmodifiableList instances that were serialized in pre-1.4 JREs.
|
|
*
|
|
* Note: Unfortunately, UnmodifiableRandomAccessList instances
|
|
* serialized in 1.4.1 and deserialized in 1.4 will become
|
|
* UnmodifiableList instances, as this method was missing in 1.4.
|
|
*/
|
|
@java.io.Serial
|
|
private Object readResolve() {
|
|
return (list instanceof RandomAccess
|
|
? new UnmodifiableRandomAccessList<>(list)
|
|
: this);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
|
|
implements RandomAccess
|
|
{
|
|
UnmodifiableRandomAccessList(List<? extends E> list) {
|
|
super(list);
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
return new UnmodifiableRandomAccessList<>(
|
|
list.subList(fromIndex, toIndex));
|
|
}
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -2542308836966382001L;
|
|
|
|
/**
|
|
* Allows instances to be deserialized in pre-1.4 JREs (which do
|
|
* not have UnmodifiableRandomAccessList). UnmodifiableList has
|
|
* a readResolve method that inverts this transformation upon
|
|
* deserialization.
|
|
*/
|
|
@java.io.Serial
|
|
private Object writeReplace() {
|
|
return new UnmodifiableList<>(list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified map. Query operations on the returned map "read through"
|
|
* to the specified map, and attempts to modify the returned
|
|
* map, whether direct or via its collection views, result in an
|
|
* {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned map will be serializable if the specified map
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the map for which an unmodifiable view is to be returned.
|
|
* @return an unmodifiable view of the specified map.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
|
|
// Not checking for subclasses because of heap pollution and information leakage.
|
|
if (m.getClass() == UnmodifiableMap.class) {
|
|
return (Map<K,V>) m;
|
|
}
|
|
return new UnmodifiableMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -1034234728574286014L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Map<? extends K, ? extends V> m;
|
|
|
|
UnmodifiableMap(Map<? extends K, ? extends V> m) {
|
|
if (m==null)
|
|
throw new NullPointerException();
|
|
this.m = m;
|
|
}
|
|
|
|
public int size() {return m.size();}
|
|
public boolean isEmpty() {return m.isEmpty();}
|
|
public boolean containsKey(Object key) {return m.containsKey(key);}
|
|
public boolean containsValue(Object val) {return m.containsValue(val);}
|
|
public V get(Object key) {return m.get(key);}
|
|
|
|
public V put(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public V remove(Object key) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public void putAll(Map<? extends K, ? extends V> m) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public void clear() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
private transient Set<K> keySet;
|
|
private transient Set<Map.Entry<K,V>> entrySet;
|
|
private transient Collection<V> values;
|
|
|
|
public Set<K> keySet() {
|
|
if (keySet==null)
|
|
keySet = unmodifiableSet(m.keySet());
|
|
return keySet;
|
|
}
|
|
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
if (entrySet==null)
|
|
entrySet = new UnmodifiableEntrySet<>(m.entrySet());
|
|
return entrySet;
|
|
}
|
|
|
|
public Collection<V> values() {
|
|
if (values==null)
|
|
values = unmodifiableCollection(m.values());
|
|
return values;
|
|
}
|
|
|
|
public boolean equals(Object o) {return o == this || m.equals(o);}
|
|
public int hashCode() {return m.hashCode();}
|
|
public String toString() {return m.toString();}
|
|
|
|
// Override default methods in Map
|
|
@Override
|
|
@SuppressWarnings("unchecked")
|
|
public V getOrDefault(Object k, V defaultValue) {
|
|
// Safe cast as we don't change the value
|
|
return ((Map<K, V>)m).getOrDefault(k, defaultValue);
|
|
}
|
|
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
m.forEach(action);
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public boolean remove(Object key, Object value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V computeIfPresent(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V compute(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V merge(K key, V value,
|
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
/**
|
|
* We need this class in addition to UnmodifiableSet as
|
|
* Map.Entries themselves permit modification of the backing Map
|
|
* via their setValue operation. This class is subtle: there are
|
|
* many possible attacks that must be thwarted.
|
|
*
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableEntrySet<K,V>
|
|
extends UnmodifiableSet<Map.Entry<K,V>> {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 7854390611657943733L;
|
|
|
|
@SuppressWarnings({"unchecked"})
|
|
UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
|
|
super((Set<Map.Entry<K, V>>)s);
|
|
}
|
|
|
|
static <K, V> Consumer<Map.Entry<? extends K, ? extends V>> entryConsumer(
|
|
Consumer<? super Entry<K, V>> action) {
|
|
return e -> action.accept(new UnmodifiableEntry<>(e));
|
|
}
|
|
|
|
public void forEach(Consumer<? super Entry<K, V>> action) {
|
|
Objects.requireNonNull(action);
|
|
c.forEach(entryConsumer(action));
|
|
}
|
|
|
|
static final class UnmodifiableEntrySetSpliterator<K, V>
|
|
implements Spliterator<Entry<K,V>> {
|
|
final Spliterator<Map.Entry<K, V>> s;
|
|
|
|
UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) {
|
|
this.s = s;
|
|
}
|
|
|
|
@Override
|
|
public boolean tryAdvance(Consumer<? super Entry<K, V>> action) {
|
|
Objects.requireNonNull(action);
|
|
return s.tryAdvance(entryConsumer(action));
|
|
}
|
|
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super Entry<K, V>> action) {
|
|
Objects.requireNonNull(action);
|
|
s.forEachRemaining(entryConsumer(action));
|
|
}
|
|
|
|
@Override
|
|
public Spliterator<Entry<K, V>> trySplit() {
|
|
Spliterator<Entry<K, V>> split = s.trySplit();
|
|
return split == null
|
|
? null
|
|
: new UnmodifiableEntrySetSpliterator<>(split);
|
|
}
|
|
|
|
@Override
|
|
public long estimateSize() {
|
|
return s.estimateSize();
|
|
}
|
|
|
|
@Override
|
|
public long getExactSizeIfKnown() {
|
|
return s.getExactSizeIfKnown();
|
|
}
|
|
|
|
@Override
|
|
public int characteristics() {
|
|
return s.characteristics();
|
|
}
|
|
|
|
@Override
|
|
public boolean hasCharacteristics(int characteristics) {
|
|
return s.hasCharacteristics(characteristics);
|
|
}
|
|
|
|
@Override
|
|
public Comparator<? super Entry<K, V>> getComparator() {
|
|
return s.getComparator();
|
|
}
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Spliterator<Entry<K,V>> spliterator() {
|
|
return new UnmodifiableEntrySetSpliterator<>(
|
|
(Spliterator<Map.Entry<K, V>>) c.spliterator());
|
|
}
|
|
|
|
@Override
|
|
public Stream<Entry<K,V>> stream() {
|
|
return StreamSupport.stream(spliterator(), false);
|
|
}
|
|
|
|
@Override
|
|
public Stream<Entry<K,V>> parallelStream() {
|
|
return StreamSupport.stream(spliterator(), true);
|
|
}
|
|
|
|
public Iterator<Map.Entry<K,V>> iterator() {
|
|
return new Iterator<>() {
|
|
private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
|
|
|
|
public boolean hasNext() {
|
|
return i.hasNext();
|
|
}
|
|
public Map.Entry<K,V> next() {
|
|
return new UnmodifiableEntry<>(i.next());
|
|
}
|
|
public void remove() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
// Seems like an oversight. http://b/110351017
|
|
public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
|
|
Objects.requireNonNull(action);
|
|
i.forEachRemaining(entryConsumer(action));
|
|
}
|
|
};
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Object[] toArray() {
|
|
Object[] a = c.toArray();
|
|
for (int i=0; i<a.length; i++)
|
|
a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]);
|
|
return a;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
// We don't pass a to c.toArray, to avoid window of
|
|
// vulnerability wherein an unscrupulous multithreaded client
|
|
// could get his hands on raw (unwrapped) Entries from c.
|
|
Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
|
|
|
|
for (int i=0; i<arr.length; i++)
|
|
arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]);
|
|
|
|
if (arr.length > a.length)
|
|
return (T[])arr;
|
|
|
|
System.arraycopy(arr, 0, a, 0, arr.length);
|
|
if (a.length > arr.length)
|
|
a[arr.length] = null;
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* This method is overridden to protect the backing set against
|
|
* an object with a nefarious equals function that senses
|
|
* that the equality-candidate is Map.Entry and calls its
|
|
* setValue method.
|
|
*/
|
|
public boolean contains(Object o) {
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
return c.contains(
|
|
new UnmodifiableEntry<>((Map.Entry<?,?>) o));
|
|
}
|
|
|
|
/**
|
|
* The next two methods are overridden to protect against
|
|
* an unscrupulous List whose contains(Object o) method senses
|
|
* when o is a Map.Entry, and calls o.setValue.
|
|
*/
|
|
public boolean containsAll(Collection<?> coll) {
|
|
for (Object e : coll) {
|
|
if (!contains(e)) // Invokes safe contains() above
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
public boolean equals(Object o) {
|
|
if (o == this)
|
|
return true;
|
|
|
|
// Android-changed: (b/247094511) instanceof pattern variable is not yet supported.
|
|
/*
|
|
return o instanceof Set<?> s
|
|
&& s.size() == c.size()
|
|
&& containsAll(s); // Invokes safe containsAll() above
|
|
*/
|
|
if (!(o instanceof Set))
|
|
return false;
|
|
Set<?> s = (Set<?>) o;
|
|
if (s.size() != c.size())
|
|
return false;
|
|
return containsAll(s); // Invokes safe containsAll() above
|
|
}
|
|
|
|
/**
|
|
* This "wrapper class" serves two purposes: it prevents
|
|
* the client from modifying the backing Map, by short-circuiting
|
|
* the setValue method, and it protects the backing Map against
|
|
* an ill-behaved Map.Entry that attempts to modify another
|
|
* Map Entry when asked to perform an equality check.
|
|
*/
|
|
private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
|
|
private Map.Entry<? extends K, ? extends V> e;
|
|
|
|
UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e)
|
|
{this.e = Objects.requireNonNull(e);}
|
|
|
|
public K getKey() {return e.getKey();}
|
|
public V getValue() {return e.getValue();}
|
|
public V setValue(V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public int hashCode() {return e.hashCode();}
|
|
public boolean equals(Object o) {
|
|
if (this == o)
|
|
return true;
|
|
// Android-changed: (b/247094511) instanceof pattern variable is not yet
|
|
// supported.
|
|
/*
|
|
return o instanceof Map.Entry<?, ?> t
|
|
&& eq(e.getKey(), t.getKey())
|
|
&& eq(e.getValue(), t.getValue());
|
|
*/
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
Map.Entry<?,?> t = (Map.Entry<?,?>)o;
|
|
return eq(e.getKey(), t.getKey()) &&
|
|
eq(e.getValue(), t.getValue());
|
|
}
|
|
public String toString() {return e.toString();}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified {@code SequencedMap}. Query operations on the returned map
|
|
* "read through" to the specified map, and attempts to modify the returned
|
|
* map, whether direct or via its collection views, result in an
|
|
* {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned map will be serializable if the specified map
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the map for which an unmodifiable view is to be returned.
|
|
* @return an unmodifiable view of the specified map.
|
|
* @since 21
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <K,V> SequencedMap<K,V> unmodifiableSequencedMap(SequencedMap<? extends K, ? extends V> m) {
|
|
// Not checking for subclasses because of heap pollution and information leakage.
|
|
if (m.getClass() == UnmodifiableSequencedMap.class) {
|
|
return (SequencedMap<K,V>) m;
|
|
}
|
|
return new UnmodifiableSequencedMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class UnmodifiableSequencedMap<K,V> extends UnmodifiableMap<K,V> implements SequencedMap<K,V>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -8171676257373950636L;
|
|
|
|
UnmodifiableSequencedMap(Map<? extends K, ? extends V> m) {
|
|
super(m);
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
private SequencedMap<K, V> sm() {
|
|
return (SequencedMap<K, V>) m;
|
|
}
|
|
|
|
// Even though this wrapper class is serializable, the reversed view is effectively
|
|
// not serializable because it points to the reversed map view, which usually isn't
|
|
// serializable.
|
|
public SequencedMap<K, V> reversed() {
|
|
return new UnmodifiableSequencedMap<>(sm().reversed());
|
|
}
|
|
|
|
public Entry<K, V> pollFirstEntry() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public Entry<K, V> pollLastEntry() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public V putFirst(K k, V v) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public V putLast(K k, V v) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified sorted map. Query operations on the returned sorted map "read through"
|
|
* to the specified sorted map. Attempts to modify the returned
|
|
* sorted map, whether direct, via its collection views, or via its
|
|
* {@code subMap}, {@code headMap}, or {@code tailMap} views, result in
|
|
* an {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned sorted map will be serializable if the specified sorted map
|
|
* is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the sorted map for which an unmodifiable view is to be
|
|
* returned.
|
|
* @return an unmodifiable view of the specified sorted map.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
|
|
// Not checking for subclasses because of heap pollution and information leakage.
|
|
if (m.getClass() == UnmodifiableSortedMap.class) {
|
|
return (SortedMap<K,V>) m;
|
|
}
|
|
return new UnmodifiableSortedMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableSortedMap<K,V>
|
|
extends UnmodifiableMap<K,V>
|
|
implements SortedMap<K,V>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -8806743815996713206L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final SortedMap<K, ? extends V> sm;
|
|
|
|
UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; }
|
|
public Comparator<? super K> comparator() { return sm.comparator(); }
|
|
public SortedMap<K,V> subMap(K fromKey, K toKey)
|
|
{ return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); }
|
|
public SortedMap<K,V> headMap(K toKey)
|
|
{ return new UnmodifiableSortedMap<>(sm.headMap(toKey)); }
|
|
public SortedMap<K,V> tailMap(K fromKey)
|
|
{ return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); }
|
|
public K firstKey() { return sm.firstKey(); }
|
|
public K lastKey() { return sm.lastKey(); }
|
|
}
|
|
|
|
/**
|
|
* Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the
|
|
* specified navigable map. Query operations on the returned navigable map "read
|
|
* through" to the specified navigable map. Attempts to modify the returned
|
|
* navigable map, whether direct, via its collection views, or via its
|
|
* {@code subMap}, {@code headMap}, or {@code tailMap} views, result in
|
|
* an {@code UnsupportedOperationException}.<p>
|
|
*
|
|
* The returned navigable map will be serializable if the specified
|
|
* navigable map is serializable.
|
|
*
|
|
* @implNote This method may return its argument if the argument is already unmodifiable.
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the navigable map for which an unmodifiable view is to be
|
|
* returned
|
|
* @return an unmodifiable view of the specified navigable map
|
|
* @since 1.8
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K, ? extends V> m) {
|
|
if (m.getClass() == UnmodifiableNavigableMap.class) {
|
|
return (NavigableMap<K,V>) m;
|
|
}
|
|
return new UnmodifiableNavigableMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class UnmodifiableNavigableMap<K,V>
|
|
extends UnmodifiableSortedMap<K,V>
|
|
implements NavigableMap<K,V>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -4858195264774772197L;
|
|
|
|
/**
|
|
* A class for the {@link #EMPTY_NAVIGABLE_MAP} which needs readResolve
|
|
* to preserve singleton property.
|
|
*
|
|
* @param <K> type of keys, if there were any, and of bounds
|
|
* @param <V> type of values, if there were any
|
|
*/
|
|
private static class EmptyNavigableMap<K,V> extends UnmodifiableNavigableMap<K,V>
|
|
implements Serializable {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -2239321462712562324L;
|
|
|
|
EmptyNavigableMap() { super(new TreeMap<>()); }
|
|
|
|
@Override
|
|
public NavigableSet<K> navigableKeySet()
|
|
{ return emptyNavigableSet(); }
|
|
|
|
@java.io.Serial
|
|
private Object readResolve() { return EMPTY_NAVIGABLE_MAP; }
|
|
}
|
|
|
|
/**
|
|
* Singleton for {@link #emptyNavigableMap()} which is also immutable.
|
|
*/
|
|
private static final EmptyNavigableMap<?,?> EMPTY_NAVIGABLE_MAP =
|
|
new EmptyNavigableMap<>();
|
|
|
|
/**
|
|
* The instance we wrap and protect.
|
|
*/
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final NavigableMap<K, ? extends V> nm;
|
|
|
|
UnmodifiableNavigableMap(NavigableMap<K, ? extends V> m)
|
|
{super(m); nm = m;}
|
|
|
|
public K lowerKey(K key) { return nm.lowerKey(key); }
|
|
public K floorKey(K key) { return nm.floorKey(key); }
|
|
public K ceilingKey(K key) { return nm.ceilingKey(key); }
|
|
public K higherKey(K key) { return nm.higherKey(key); }
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Entry<K, V> lowerEntry(K key) {
|
|
Entry<K,V> lower = (Entry<K, V>) nm.lowerEntry(key);
|
|
return (null != lower)
|
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(lower)
|
|
: null;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Entry<K, V> floorEntry(K key) {
|
|
Entry<K,V> floor = (Entry<K, V>) nm.floorEntry(key);
|
|
return (null != floor)
|
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(floor)
|
|
: null;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Entry<K, V> ceilingEntry(K key) {
|
|
Entry<K,V> ceiling = (Entry<K, V>) nm.ceilingEntry(key);
|
|
return (null != ceiling)
|
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(ceiling)
|
|
: null;
|
|
}
|
|
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Entry<K, V> higherEntry(K key) {
|
|
Entry<K,V> higher = (Entry<K, V>) nm.higherEntry(key);
|
|
return (null != higher)
|
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(higher)
|
|
: null;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Entry<K, V> firstEntry() {
|
|
Entry<K,V> first = (Entry<K, V>) nm.firstEntry();
|
|
return (null != first)
|
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(first)
|
|
: null;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public Entry<K, V> lastEntry() {
|
|
Entry<K,V> last = (Entry<K, V>) nm.lastEntry();
|
|
return (null != last)
|
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(last)
|
|
: null;
|
|
}
|
|
|
|
public Entry<K, V> pollFirstEntry()
|
|
{ throw new UnsupportedOperationException(); }
|
|
public Entry<K, V> pollLastEntry()
|
|
{ throw new UnsupportedOperationException(); }
|
|
public NavigableMap<K, V> descendingMap()
|
|
{ return unmodifiableNavigableMap(nm.descendingMap()); }
|
|
public NavigableSet<K> navigableKeySet()
|
|
{ return unmodifiableNavigableSet(nm.navigableKeySet()); }
|
|
public NavigableSet<K> descendingKeySet()
|
|
{ return unmodifiableNavigableSet(nm.descendingKeySet()); }
|
|
|
|
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
|
|
return unmodifiableNavigableMap(
|
|
nm.subMap(fromKey, fromInclusive, toKey, toInclusive));
|
|
}
|
|
|
|
public NavigableMap<K, V> headMap(K toKey, boolean inclusive)
|
|
{ return unmodifiableNavigableMap(nm.headMap(toKey, inclusive)); }
|
|
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive)
|
|
{ return unmodifiableNavigableMap(nm.tailMap(fromKey, inclusive)); }
|
|
}
|
|
|
|
// Synch Wrappers
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) collection backed by the specified
|
|
* collection. In order to guarantee serial access, it is critical that
|
|
* <strong>all</strong> access to the backing collection is accomplished
|
|
* through the returned collection.<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* collection when traversing it via {@link Iterator}, {@link Spliterator}
|
|
* or {@link Stream}:
|
|
* <pre>
|
|
* Collection c = Collections.synchronizedCollection(myCollection);
|
|
* ...
|
|
* synchronized (c) {
|
|
* Iterator i = c.iterator(); // Must be in the synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned collection does <i>not</i> pass the {@code hashCode}
|
|
* and {@code equals} operations through to the backing collection, but
|
|
* relies on {@code Object}'s equals and hashCode methods. This is
|
|
* necessary to preserve the contracts of these operations in the case
|
|
* that the backing collection is a set or a list.<p>
|
|
*
|
|
* The returned collection will be serializable if the specified collection
|
|
* is serializable.
|
|
*
|
|
* @param <T> the class of the objects in the collection
|
|
* @param c the collection to be "wrapped" in a synchronized collection.
|
|
* @return a synchronized view of the specified collection.
|
|
*/
|
|
public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
|
|
return new SynchronizedCollection<>(c);
|
|
}
|
|
|
|
static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
|
|
return new SynchronizedCollection<>(c, mutex);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedCollection<E> implements Collection<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 3053995032091335093L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Collection<E> c; // Backing Collection
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Object mutex; // Object on which to synchronize
|
|
|
|
SynchronizedCollection(Collection<E> c) {
|
|
this.c = Objects.requireNonNull(c);
|
|
mutex = this;
|
|
}
|
|
|
|
SynchronizedCollection(Collection<E> c, Object mutex) {
|
|
this.c = Objects.requireNonNull(c);
|
|
this.mutex = Objects.requireNonNull(mutex);
|
|
}
|
|
|
|
public int size() {
|
|
synchronized (mutex) {return c.size();}
|
|
}
|
|
public boolean isEmpty() {
|
|
synchronized (mutex) {return c.isEmpty();}
|
|
}
|
|
public boolean contains(Object o) {
|
|
synchronized (mutex) {return c.contains(o);}
|
|
}
|
|
public Object[] toArray() {
|
|
synchronized (mutex) {return c.toArray();}
|
|
}
|
|
public <T> T[] toArray(T[] a) {
|
|
synchronized (mutex) {return c.toArray(a);}
|
|
}
|
|
public <T> T[] toArray(IntFunction<T[]> f) {
|
|
synchronized (mutex) {return c.toArray(f);}
|
|
}
|
|
|
|
public Iterator<E> iterator() {
|
|
return c.iterator(); // Must be manually synched by user!
|
|
}
|
|
|
|
public boolean add(E e) {
|
|
synchronized (mutex) {return c.add(e);}
|
|
}
|
|
public boolean remove(Object o) {
|
|
synchronized (mutex) {return c.remove(o);}
|
|
}
|
|
|
|
public boolean containsAll(Collection<?> coll) {
|
|
synchronized (mutex) {return c.containsAll(coll);}
|
|
}
|
|
public boolean addAll(Collection<? extends E> coll) {
|
|
synchronized (mutex) {return c.addAll(coll);}
|
|
}
|
|
public boolean removeAll(Collection<?> coll) {
|
|
synchronized (mutex) {return c.removeAll(coll);}
|
|
}
|
|
public boolean retainAll(Collection<?> coll) {
|
|
synchronized (mutex) {return c.retainAll(coll);}
|
|
}
|
|
public void clear() {
|
|
synchronized (mutex) {c.clear();}
|
|
}
|
|
public String toString() {
|
|
synchronized (mutex) {return c.toString();}
|
|
}
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> consumer) {
|
|
synchronized (mutex) {c.forEach(consumer);}
|
|
}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
synchronized (mutex) {return c.removeIf(filter);}
|
|
}
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return c.spliterator(); // Must be manually synched by user!
|
|
}
|
|
@Override
|
|
public Stream<E> stream() {
|
|
return c.stream(); // Must be manually synched by user!
|
|
}
|
|
@Override
|
|
public Stream<E> parallelStream() {
|
|
return c.parallelStream(); // Must be manually synched by user!
|
|
}
|
|
@java.io.Serial
|
|
private void writeObject(ObjectOutputStream s) throws IOException {
|
|
synchronized (mutex) {s.defaultWriteObject();}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) set backed by the specified
|
|
* set. In order to guarantee serial access, it is critical that
|
|
* <strong>all</strong> access to the backing set is accomplished
|
|
* through the returned set.<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* collection when traversing it via {@link Iterator}, {@link Spliterator}
|
|
* or {@link Stream}:
|
|
* <pre>
|
|
* Set s = Collections.synchronizedSet(new HashSet());
|
|
* ...
|
|
* synchronized (s) {
|
|
* Iterator i = s.iterator(); // Must be in the synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned set will be serializable if the specified set is
|
|
* serializable.
|
|
*
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the set to be "wrapped" in a synchronized set.
|
|
* @return a synchronized view of the specified set.
|
|
*/
|
|
public static <T> Set<T> synchronizedSet(Set<T> s) {
|
|
return new SynchronizedSet<>(s);
|
|
}
|
|
|
|
static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
|
|
return new SynchronizedSet<>(s, mutex);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedSet<E>
|
|
extends SynchronizedCollection<E>
|
|
implements Set<E> {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 487447009682186044L;
|
|
|
|
SynchronizedSet(Set<E> s) {
|
|
super(s);
|
|
}
|
|
SynchronizedSet(Set<E> s, Object mutex) {
|
|
super(s, mutex);
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
if (this == o)
|
|
return true;
|
|
synchronized (mutex) {return c.equals(o);}
|
|
}
|
|
public int hashCode() {
|
|
synchronized (mutex) {return c.hashCode();}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) sorted set backed by the specified
|
|
* sorted set. In order to guarantee serial access, it is critical that
|
|
* <strong>all</strong> access to the backing sorted set is accomplished
|
|
* through the returned sorted set (or its views).<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* sorted set when traversing it or any of its {@code subSet},
|
|
* {@code headSet}, or {@code tailSet} views via {@link Iterator},
|
|
* {@link Spliterator} or {@link Stream}:
|
|
* <pre>
|
|
* SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
|
|
* ...
|
|
* synchronized (s) {
|
|
* Iterator i = s.iterator(); // Must be in the synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* or:
|
|
* <pre>
|
|
* SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
|
|
* SortedSet s2 = s.headSet(foo);
|
|
* ...
|
|
* synchronized (s) { // Note: s, not s2!!!
|
|
* Iterator i = s2.iterator(); // Must be in the synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned sorted set will be serializable if the specified
|
|
* sorted set is serializable.
|
|
*
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the sorted set to be "wrapped" in a synchronized sorted set.
|
|
* @return a synchronized view of the specified sorted set.
|
|
*/
|
|
public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
|
|
return new SynchronizedSortedSet<>(s);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedSortedSet<E>
|
|
extends SynchronizedSet<E>
|
|
implements SortedSet<E>
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 8695801310862127406L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final SortedSet<E> ss;
|
|
|
|
SynchronizedSortedSet(SortedSet<E> s) {
|
|
super(s);
|
|
ss = s;
|
|
}
|
|
SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
|
|
super(s, mutex);
|
|
ss = s;
|
|
}
|
|
|
|
public Comparator<? super E> comparator() {
|
|
synchronized (mutex) {return ss.comparator();}
|
|
}
|
|
|
|
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedSortedSet<>(
|
|
ss.subSet(fromElement, toElement), mutex);
|
|
}
|
|
}
|
|
public SortedSet<E> headSet(E toElement) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
|
|
}
|
|
}
|
|
public SortedSet<E> tailSet(E fromElement) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
|
|
}
|
|
}
|
|
|
|
public E first() {
|
|
synchronized (mutex) {return ss.first();}
|
|
}
|
|
public E last() {
|
|
synchronized (mutex) {return ss.last();}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) navigable set backed by the
|
|
* specified navigable set. In order to guarantee serial access, it is
|
|
* critical that <strong>all</strong> access to the backing navigable set is
|
|
* accomplished through the returned navigable set (or its views).<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* navigable set when traversing it, or any of its {@code subSet},
|
|
* {@code headSet}, or {@code tailSet} views, via {@link Iterator},
|
|
* {@link Spliterator} or {@link Stream}:
|
|
* <pre>
|
|
* NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet());
|
|
* ...
|
|
* synchronized (s) {
|
|
* Iterator i = s.iterator(); // Must be in the synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* or:
|
|
* <pre>
|
|
* NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet());
|
|
* NavigableSet s2 = s.headSet(foo, true);
|
|
* ...
|
|
* synchronized (s) { // Note: s, not s2!!!
|
|
* Iterator i = s2.iterator(); // Must be in the synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned navigable set will be serializable if the specified
|
|
* navigable set is serializable.
|
|
*
|
|
* @param <T> the class of the objects in the set
|
|
* @param s the navigable set to be "wrapped" in a synchronized navigable
|
|
* set
|
|
* @return a synchronized view of the specified navigable set
|
|
* @since 1.8
|
|
*/
|
|
public static <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s) {
|
|
return new SynchronizedNavigableSet<>(s);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedNavigableSet<E>
|
|
extends SynchronizedSortedSet<E>
|
|
implements NavigableSet<E>
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -5505529816273629798L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final NavigableSet<E> ns;
|
|
|
|
SynchronizedNavigableSet(NavigableSet<E> s) {
|
|
super(s);
|
|
ns = s;
|
|
}
|
|
|
|
SynchronizedNavigableSet(NavigableSet<E> s, Object mutex) {
|
|
super(s, mutex);
|
|
ns = s;
|
|
}
|
|
public E lower(E e) { synchronized (mutex) {return ns.lower(e);} }
|
|
public E floor(E e) { synchronized (mutex) {return ns.floor(e);} }
|
|
public E ceiling(E e) { synchronized (mutex) {return ns.ceiling(e);} }
|
|
public E higher(E e) { synchronized (mutex) {return ns.higher(e);} }
|
|
public E pollFirst() { synchronized (mutex) {return ns.pollFirst();} }
|
|
public E pollLast() { synchronized (mutex) {return ns.pollLast();} }
|
|
|
|
public NavigableSet<E> descendingSet() {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.descendingSet(), mutex);
|
|
}
|
|
}
|
|
|
|
public Iterator<E> descendingIterator()
|
|
{ synchronized (mutex) { return descendingSet().iterator(); } }
|
|
|
|
public NavigableSet<E> subSet(E fromElement, E toElement) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.subSet(fromElement, true, toElement, false), mutex);
|
|
}
|
|
}
|
|
public NavigableSet<E> headSet(E toElement) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.headSet(toElement, false), mutex);
|
|
}
|
|
}
|
|
public NavigableSet<E> tailSet(E fromElement) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, true), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.headSet(toElement, inclusive), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, inclusive), mutex);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) list backed by the specified
|
|
* list. In order to guarantee serial access, it is critical that
|
|
* <strong>all</strong> access to the backing list is accomplished
|
|
* through the returned list.<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* list when traversing it via {@link Iterator}, {@link Spliterator}
|
|
* or {@link Stream}:
|
|
* <pre>
|
|
* List list = Collections.synchronizedList(new ArrayList());
|
|
* ...
|
|
* synchronized (list) {
|
|
* Iterator i = list.iterator(); // Must be in synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned list will be serializable if the specified list is
|
|
* serializable.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param list the list to be "wrapped" in a synchronized list.
|
|
* @return a synchronized view of the specified list.
|
|
*/
|
|
public static <T> List<T> synchronizedList(List<T> list) {
|
|
return (list instanceof RandomAccess ?
|
|
new SynchronizedRandomAccessList<>(list) :
|
|
new SynchronizedList<>(list));
|
|
}
|
|
|
|
static <T> List<T> synchronizedList(List<T> list, Object mutex) {
|
|
return (list instanceof RandomAccess ?
|
|
new SynchronizedRandomAccessList<>(list, mutex) :
|
|
new SynchronizedList<>(list, mutex));
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedList<E>
|
|
extends SynchronizedCollection<E>
|
|
implements List<E> {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -7754090372962971524L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final List<E> list;
|
|
|
|
SynchronizedList(List<E> list) {
|
|
super(list);
|
|
this.list = list;
|
|
}
|
|
SynchronizedList(List<E> list, Object mutex) {
|
|
super(list, mutex);
|
|
this.list = list;
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
if (this == o)
|
|
return true;
|
|
synchronized (mutex) {return list.equals(o);}
|
|
}
|
|
public int hashCode() {
|
|
synchronized (mutex) {return list.hashCode();}
|
|
}
|
|
|
|
public E get(int index) {
|
|
synchronized (mutex) {return list.get(index);}
|
|
}
|
|
public E set(int index, E element) {
|
|
synchronized (mutex) {return list.set(index, element);}
|
|
}
|
|
public void add(int index, E element) {
|
|
synchronized (mutex) {list.add(index, element);}
|
|
}
|
|
public E remove(int index) {
|
|
synchronized (mutex) {return list.remove(index);}
|
|
}
|
|
|
|
public int indexOf(Object o) {
|
|
synchronized (mutex) {return list.indexOf(o);}
|
|
}
|
|
public int lastIndexOf(Object o) {
|
|
synchronized (mutex) {return list.lastIndexOf(o);}
|
|
}
|
|
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
synchronized (mutex) {return list.addAll(index, c);}
|
|
}
|
|
|
|
public ListIterator<E> listIterator() {
|
|
return list.listIterator(); // Must be manually synched by user
|
|
}
|
|
|
|
public ListIterator<E> listIterator(int index) {
|
|
return list.listIterator(index); // Must be manually synched by user
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedList<>(list.subList(fromIndex, toIndex),
|
|
mutex);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
synchronized (mutex) {list.replaceAll(operator);}
|
|
}
|
|
@Override
|
|
public void sort(Comparator<? super E> c) {
|
|
synchronized (mutex) {list.sort(c);}
|
|
}
|
|
|
|
/**
|
|
* SynchronizedRandomAccessList instances are serialized as
|
|
* SynchronizedList instances to allow them to be deserialized
|
|
* in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
|
|
* This method inverts the transformation. As a beneficial
|
|
* side-effect, it also grafts the RandomAccess marker onto
|
|
* SynchronizedList instances that were serialized in pre-1.4 JREs.
|
|
*
|
|
* Note: Unfortunately, SynchronizedRandomAccessList instances
|
|
* serialized in 1.4.1 and deserialized in 1.4 will become
|
|
* SynchronizedList instances, as this method was missing in 1.4.
|
|
*/
|
|
@java.io.Serial
|
|
private Object readResolve() {
|
|
return (list instanceof RandomAccess
|
|
? new SynchronizedRandomAccessList<>(list)
|
|
: this);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedRandomAccessList<E>
|
|
extends SynchronizedList<E>
|
|
implements RandomAccess {
|
|
|
|
SynchronizedRandomAccessList(List<E> list) {
|
|
super(list);
|
|
}
|
|
|
|
SynchronizedRandomAccessList(List<E> list, Object mutex) {
|
|
super(list, mutex);
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedRandomAccessList<>(
|
|
list.subList(fromIndex, toIndex), mutex);
|
|
}
|
|
}
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1530674583602358482L;
|
|
|
|
/**
|
|
* Allows instances to be deserialized in pre-1.4 JREs (which do
|
|
* not have SynchronizedRandomAccessList). SynchronizedList has
|
|
* a readResolve method that inverts this transformation upon
|
|
* deserialization.
|
|
*/
|
|
@java.io.Serial
|
|
private Object writeReplace() {
|
|
return new SynchronizedList<>(list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) map backed by the specified
|
|
* map. In order to guarantee serial access, it is critical that
|
|
* <strong>all</strong> access to the backing map is accomplished
|
|
* through the returned map.<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* map when traversing any of its collection views via {@link Iterator},
|
|
* {@link Spliterator} or {@link Stream}:
|
|
* <pre>
|
|
* Map m = Collections.synchronizedMap(new HashMap());
|
|
* ...
|
|
* Set s = m.keySet(); // Needn't be in synchronized block
|
|
* ...
|
|
* synchronized (m) { // Synchronizing on m, not s!
|
|
* Iterator i = s.iterator(); // Must be in synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned map will be serializable if the specified map is
|
|
* serializable.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the map to be "wrapped" in a synchronized map.
|
|
* @return a synchronized view of the specified map.
|
|
*/
|
|
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
|
|
return new SynchronizedMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class SynchronizedMap<K,V>
|
|
implements Map<K,V>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1978198479659022715L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final Map<K,V> m; // Backing Map
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Object mutex; // Object on which to synchronize
|
|
|
|
SynchronizedMap(Map<K,V> m) {
|
|
this.m = Objects.requireNonNull(m);
|
|
mutex = this;
|
|
}
|
|
|
|
SynchronizedMap(Map<K,V> m, Object mutex) {
|
|
this.m = m;
|
|
this.mutex = mutex;
|
|
}
|
|
|
|
public int size() {
|
|
synchronized (mutex) {return m.size();}
|
|
}
|
|
public boolean isEmpty() {
|
|
synchronized (mutex) {return m.isEmpty();}
|
|
}
|
|
public boolean containsKey(Object key) {
|
|
synchronized (mutex) {return m.containsKey(key);}
|
|
}
|
|
public boolean containsValue(Object value) {
|
|
synchronized (mutex) {return m.containsValue(value);}
|
|
}
|
|
public V get(Object key) {
|
|
synchronized (mutex) {return m.get(key);}
|
|
}
|
|
|
|
public V put(K key, V value) {
|
|
synchronized (mutex) {return m.put(key, value);}
|
|
}
|
|
public V remove(Object key) {
|
|
synchronized (mutex) {return m.remove(key);}
|
|
}
|
|
public void putAll(Map<? extends K, ? extends V> map) {
|
|
synchronized (mutex) {m.putAll(map);}
|
|
}
|
|
public void clear() {
|
|
synchronized (mutex) {m.clear();}
|
|
}
|
|
|
|
private transient Set<K> keySet;
|
|
private transient Set<Map.Entry<K,V>> entrySet;
|
|
private transient Collection<V> values;
|
|
|
|
public Set<K> keySet() {
|
|
synchronized (mutex) {
|
|
if (keySet==null)
|
|
keySet = new SynchronizedSet<>(m.keySet(), mutex);
|
|
return keySet;
|
|
}
|
|
}
|
|
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
synchronized (mutex) {
|
|
if (entrySet==null)
|
|
entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
|
|
return entrySet;
|
|
}
|
|
}
|
|
|
|
public Collection<V> values() {
|
|
synchronized (mutex) {
|
|
if (values==null)
|
|
values = new SynchronizedCollection<>(m.values(), mutex);
|
|
return values;
|
|
}
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
if (this == o)
|
|
return true;
|
|
synchronized (mutex) {return m.equals(o);}
|
|
}
|
|
public int hashCode() {
|
|
synchronized (mutex) {return m.hashCode();}
|
|
}
|
|
public String toString() {
|
|
synchronized (mutex) {return m.toString();}
|
|
}
|
|
|
|
// Override default methods in Map
|
|
@Override
|
|
public V getOrDefault(Object k, V defaultValue) {
|
|
synchronized (mutex) {return m.getOrDefault(k, defaultValue);}
|
|
}
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
synchronized (mutex) {m.forEach(action);}
|
|
}
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
synchronized (mutex) {m.replaceAll(function);}
|
|
}
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
synchronized (mutex) {return m.putIfAbsent(key, value);}
|
|
}
|
|
@Override
|
|
public boolean remove(Object key, Object value) {
|
|
synchronized (mutex) {return m.remove(key, value);}
|
|
}
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
synchronized (mutex) {return m.replace(key, oldValue, newValue);}
|
|
}
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
synchronized (mutex) {return m.replace(key, value);}
|
|
}
|
|
@Override
|
|
public V computeIfAbsent(K key,
|
|
Function<? super K, ? extends V> mappingFunction) {
|
|
synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);}
|
|
}
|
|
@Override
|
|
public V computeIfPresent(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);}
|
|
}
|
|
@Override
|
|
public V compute(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
synchronized (mutex) {return m.compute(key, remappingFunction);}
|
|
}
|
|
@Override
|
|
public V merge(K key, V value,
|
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
synchronized (mutex) {return m.merge(key, value, remappingFunction);}
|
|
}
|
|
|
|
@java.io.Serial
|
|
private void writeObject(ObjectOutputStream s) throws IOException {
|
|
synchronized (mutex) {s.defaultWriteObject();}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) sorted map backed by the specified
|
|
* sorted map. In order to guarantee serial access, it is critical that
|
|
* <strong>all</strong> access to the backing sorted map is accomplished
|
|
* through the returned sorted map (or its views).<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* sorted map when traversing any of its collection views, or the
|
|
* collections views of any of its {@code subMap}, {@code headMap} or
|
|
* {@code tailMap} views, via {@link Iterator}, {@link Spliterator} or
|
|
* {@link Stream}:
|
|
* <pre>
|
|
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
|
|
* ...
|
|
* Set s = m.keySet(); // Needn't be in synchronized block
|
|
* ...
|
|
* synchronized (m) { // Synchronizing on m, not s!
|
|
* Iterator i = s.iterator(); // Must be in synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* or:
|
|
* <pre>
|
|
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
|
|
* SortedMap m2 = m.subMap(foo, bar);
|
|
* ...
|
|
* Set s2 = m2.keySet(); // Needn't be in synchronized block
|
|
* ...
|
|
* synchronized (m) { // Synchronizing on m, not m2 or s2!
|
|
* Iterator i = s2.iterator(); // Must be in synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned sorted map will be serializable if the specified
|
|
* sorted map is serializable.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the sorted map to be "wrapped" in a synchronized sorted map.
|
|
* @return a synchronized view of the specified sorted map.
|
|
*/
|
|
public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
|
|
return new SynchronizedSortedMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedSortedMap<K,V>
|
|
extends SynchronizedMap<K,V>
|
|
implements SortedMap<K,V>
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -8798146769416483793L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final SortedMap<K,V> sm;
|
|
|
|
SynchronizedSortedMap(SortedMap<K,V> m) {
|
|
super(m);
|
|
sm = m;
|
|
}
|
|
SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
|
|
super(m, mutex);
|
|
sm = m;
|
|
}
|
|
|
|
public Comparator<? super K> comparator() {
|
|
synchronized (mutex) {return sm.comparator();}
|
|
}
|
|
|
|
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedSortedMap<>(
|
|
sm.subMap(fromKey, toKey), mutex);
|
|
}
|
|
}
|
|
public SortedMap<K,V> headMap(K toKey) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
|
|
}
|
|
}
|
|
public SortedMap<K,V> tailMap(K fromKey) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
|
|
}
|
|
}
|
|
|
|
public K firstKey() {
|
|
synchronized (mutex) {return sm.firstKey();}
|
|
}
|
|
public K lastKey() {
|
|
synchronized (mutex) {return sm.lastKey();}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a synchronized (thread-safe) navigable map backed by the
|
|
* specified navigable map. In order to guarantee serial access, it is
|
|
* critical that <strong>all</strong> access to the backing navigable map is
|
|
* accomplished through the returned navigable map (or its views).<p>
|
|
*
|
|
* It is imperative that the user manually synchronize on the returned
|
|
* navigable map when traversing any of its collection views, or the
|
|
* collections views of any of its {@code subMap}, {@code headMap} or
|
|
* {@code tailMap} views, via {@link Iterator}, {@link Spliterator} or
|
|
* {@link Stream}:
|
|
* <pre>
|
|
* NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap());
|
|
* ...
|
|
* Set s = m.keySet(); // Needn't be in synchronized block
|
|
* ...
|
|
* synchronized (m) { // Synchronizing on m, not s!
|
|
* Iterator i = s.iterator(); // Must be in synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* or:
|
|
* <pre>
|
|
* NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap());
|
|
* NavigableMap m2 = m.subMap(foo, true, bar, false);
|
|
* ...
|
|
* Set s2 = m2.keySet(); // Needn't be in synchronized block
|
|
* ...
|
|
* synchronized (m) { // Synchronizing on m, not m2 or s2!
|
|
* Iterator i = s2.iterator(); // Must be in synchronized block
|
|
* while (i.hasNext())
|
|
* foo(i.next());
|
|
* }
|
|
* </pre>
|
|
* Failure to follow this advice may result in non-deterministic behavior.
|
|
*
|
|
* <p>The returned navigable map will be serializable if the specified
|
|
* navigable map is serializable.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the navigable map to be "wrapped" in a synchronized navigable
|
|
* map
|
|
* @return a synchronized view of the specified navigable map.
|
|
* @since 1.8
|
|
*/
|
|
public static <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m) {
|
|
return new SynchronizedNavigableMap<>(m);
|
|
}
|
|
|
|
/**
|
|
* A synchronized NavigableMap.
|
|
*
|
|
* @serial include
|
|
*/
|
|
static class SynchronizedNavigableMap<K,V>
|
|
extends SynchronizedSortedMap<K,V>
|
|
implements NavigableMap<K,V>
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 699392247599746807L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final NavigableMap<K,V> nm;
|
|
|
|
SynchronizedNavigableMap(NavigableMap<K,V> m) {
|
|
super(m);
|
|
nm = m;
|
|
}
|
|
SynchronizedNavigableMap(NavigableMap<K,V> m, Object mutex) {
|
|
super(m, mutex);
|
|
nm = m;
|
|
}
|
|
|
|
public Entry<K, V> lowerEntry(K key)
|
|
{ synchronized (mutex) { return nm.lowerEntry(key); } }
|
|
public K lowerKey(K key)
|
|
{ synchronized (mutex) { return nm.lowerKey(key); } }
|
|
public Entry<K, V> floorEntry(K key)
|
|
{ synchronized (mutex) { return nm.floorEntry(key); } }
|
|
public K floorKey(K key)
|
|
{ synchronized (mutex) { return nm.floorKey(key); } }
|
|
public Entry<K, V> ceilingEntry(K key)
|
|
{ synchronized (mutex) { return nm.ceilingEntry(key); } }
|
|
public K ceilingKey(K key)
|
|
{ synchronized (mutex) { return nm.ceilingKey(key); } }
|
|
public Entry<K, V> higherEntry(K key)
|
|
{ synchronized (mutex) { return nm.higherEntry(key); } }
|
|
public K higherKey(K key)
|
|
{ synchronized (mutex) { return nm.higherKey(key); } }
|
|
public Entry<K, V> firstEntry()
|
|
{ synchronized (mutex) { return nm.firstEntry(); } }
|
|
public Entry<K, V> lastEntry()
|
|
{ synchronized (mutex) { return nm.lastEntry(); } }
|
|
public Entry<K, V> pollFirstEntry()
|
|
{ synchronized (mutex) { return nm.pollFirstEntry(); } }
|
|
public Entry<K, V> pollLastEntry()
|
|
{ synchronized (mutex) { return nm.pollLastEntry(); } }
|
|
|
|
public NavigableMap<K, V> descendingMap() {
|
|
synchronized (mutex) {
|
|
return
|
|
new SynchronizedNavigableMap<>(nm.descendingMap(), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableSet<K> keySet() {
|
|
return navigableKeySet();
|
|
}
|
|
|
|
public NavigableSet<K> navigableKeySet() {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(nm.navigableKeySet(), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableSet<K> descendingKeySet() {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableSet<>(nm.descendingKeySet(), mutex);
|
|
}
|
|
}
|
|
|
|
|
|
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableMap<>(
|
|
nm.subMap(fromKey, true, toKey, false), mutex);
|
|
}
|
|
}
|
|
public SortedMap<K,V> headMap(K toKey) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableMap<>(nm.headMap(toKey, false), mutex);
|
|
}
|
|
}
|
|
public SortedMap<K,V> tailMap(K fromKey) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableMap<>(nm.tailMap(fromKey, true),mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableMap<>(
|
|
nm.subMap(fromKey, fromInclusive, toKey, toInclusive), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableMap<>(
|
|
nm.headMap(toKey, inclusive), mutex);
|
|
}
|
|
}
|
|
|
|
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
|
|
synchronized (mutex) {
|
|
return new SynchronizedNavigableMap<>(
|
|
nm.tailMap(fromKey, inclusive), mutex);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Dynamically typesafe collection wrappers
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified collection.
|
|
* Any attempt to insert an element of the wrong type will result in an
|
|
* immediate {@link ClassCastException}. Assuming a collection
|
|
* contains no incorrectly typed elements prior to the time a
|
|
* dynamically typesafe view is generated, and that all subsequent
|
|
* access to the collection takes place through the view, it is
|
|
* <i>guaranteed</i> that the collection cannot contain an incorrectly
|
|
* typed element.
|
|
*
|
|
* <p>The generics mechanism in the language provides compile-time
|
|
* (static) type checking, but it is possible to defeat this mechanism
|
|
* with unchecked casts. Usually this is not a problem, as the compiler
|
|
* issues warnings on all such unchecked operations. There are, however,
|
|
* times when static type checking alone is not sufficient. For example,
|
|
* suppose a collection is passed to a third-party library and it is
|
|
* imperative that the library code not corrupt the collection by
|
|
* inserting an element of the wrong type.
|
|
*
|
|
* <p>Another use of dynamically typesafe views is debugging. Suppose a
|
|
* program fails with a {@code ClassCastException}, indicating that an
|
|
* incorrectly typed element was put into a parameterized collection.
|
|
* Unfortunately, the exception can occur at any time after the erroneous
|
|
* element is inserted, so it typically provides little or no information
|
|
* as to the real source of the problem. If the problem is reproducible,
|
|
* one can quickly determine its source by temporarily modifying the
|
|
* program to wrap the collection with a dynamically typesafe view.
|
|
* For example, this declaration:
|
|
* <pre> {@code
|
|
* Collection<String> c = new HashSet<>();
|
|
* }</pre>
|
|
* may be replaced temporarily by this one:
|
|
* <pre> {@code
|
|
* Collection<String> c = Collections.checkedCollection(
|
|
* new HashSet<>(), String.class);
|
|
* }</pre>
|
|
* Running the program again will cause it to fail at the point where
|
|
* an incorrectly typed element is inserted into the collection, clearly
|
|
* identifying the source of the problem. Once the problem is fixed, the
|
|
* modified declaration may be reverted back to the original.
|
|
*
|
|
* <p>The returned collection does <i>not</i> pass the hashCode and equals
|
|
* operations through to the backing collection, but relies on
|
|
* {@code Object}'s {@code equals} and {@code hashCode} methods. This
|
|
* is necessary to preserve the contracts of these operations in the case
|
|
* that the backing collection is a set or a list.
|
|
*
|
|
* <p>The returned collection will be serializable if the specified
|
|
* collection is serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned collection permits insertion of null elements
|
|
* whenever the backing collection does.
|
|
*
|
|
* @param <E> the class of the objects in the collection
|
|
* @param c the collection for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param type the type of element that {@code c} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified collection
|
|
* @since 1.5
|
|
*/
|
|
public static <E> Collection<E> checkedCollection(Collection<E> c,
|
|
Class<E> type) {
|
|
return new CheckedCollection<>(c, type);
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
static <T> T[] zeroLengthArray(Class<T> type) {
|
|
return (T[]) Array.newInstance(type, 0);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedCollection<E> implements Collection<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1578914078182001775L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Collection<E> c;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Class<E> type;
|
|
|
|
@SuppressWarnings("unchecked")
|
|
E typeCheck(Object o) {
|
|
if (o != null && !type.isInstance(o))
|
|
throw new ClassCastException(badElementMsg(o));
|
|
return (E) o;
|
|
}
|
|
|
|
private String badElementMsg(Object o) {
|
|
return "Attempt to insert " + o.getClass() +
|
|
" element into collection with element type " + type;
|
|
}
|
|
|
|
CheckedCollection(Collection<E> c, Class<E> type) {
|
|
this.c = Objects.requireNonNull(c, "c");
|
|
this.type = Objects.requireNonNull(type, "type");
|
|
}
|
|
|
|
public int size() { return c.size(); }
|
|
public boolean isEmpty() { return c.isEmpty(); }
|
|
public boolean contains(Object o) { return c.contains(o); }
|
|
public Object[] toArray() { return c.toArray(); }
|
|
public <T> T[] toArray(T[] a) { return c.toArray(a); }
|
|
public <T> T[] toArray(IntFunction<T[]> f) { return c.toArray(f); }
|
|
public String toString() { return c.toString(); }
|
|
public boolean remove(Object o) { return c.remove(o); }
|
|
public void clear() { c.clear(); }
|
|
|
|
public boolean containsAll(Collection<?> coll) {
|
|
return c.containsAll(coll);
|
|
}
|
|
public boolean removeAll(Collection<?> coll) {
|
|
return c.removeAll(coll);
|
|
}
|
|
public boolean retainAll(Collection<?> coll) {
|
|
return c.retainAll(coll);
|
|
}
|
|
|
|
public Iterator<E> iterator() {
|
|
// JDK-6363904 - unwrapped iterator could be typecast to
|
|
// ListIterator with unsafe set()
|
|
final Iterator<E> it = c.iterator();
|
|
return new Iterator<>() {
|
|
public boolean hasNext() { return it.hasNext(); }
|
|
public E next() { return it.next(); }
|
|
public void remove() { it.remove(); }
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
it.forEachRemaining(action);
|
|
}
|
|
};
|
|
}
|
|
|
|
public boolean add(E e) { return c.add(typeCheck(e)); }
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private E[] zeroLengthElementArray; // Lazily initialized
|
|
|
|
private E[] zeroLengthElementArray() {
|
|
return zeroLengthElementArray != null ? zeroLengthElementArray :
|
|
(zeroLengthElementArray = zeroLengthArray(type));
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
Collection<E> checkedCopyOf(Collection<? extends E> coll) {
|
|
Object[] a;
|
|
try {
|
|
E[] z = zeroLengthElementArray();
|
|
a = coll.toArray(z);
|
|
// Defend against coll violating the toArray contract
|
|
if (a.getClass() != z.getClass())
|
|
a = Arrays.copyOf(a, a.length, z.getClass());
|
|
} catch (ArrayStoreException ignore) {
|
|
// To get better and consistent diagnostics,
|
|
// we call typeCheck explicitly on each element.
|
|
// We call clone() to defend against coll retaining a
|
|
// reference to the returned array and storing a bad
|
|
// element into it after it has been type checked.
|
|
a = coll.toArray().clone();
|
|
for (Object o : a)
|
|
typeCheck(o);
|
|
}
|
|
// A slight abuse of the type system, but safe here.
|
|
return (Collection<E>) Arrays.asList(a);
|
|
}
|
|
|
|
public boolean addAll(Collection<? extends E> coll) {
|
|
// Doing things this way insulates us from concurrent changes
|
|
// in the contents of coll and provides all-or-nothing
|
|
// semantics (which we wouldn't get if we type-checked each
|
|
// element as we added it)
|
|
return c.addAll(checkedCopyOf(coll));
|
|
}
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {c.forEach(action);}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
return c.removeIf(filter);
|
|
}
|
|
@Override
|
|
public Spliterator<E> spliterator() {return c.spliterator();}
|
|
@Override
|
|
public Stream<E> stream() {return c.stream();}
|
|
@Override
|
|
public Stream<E> parallelStream() {return c.parallelStream();}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified queue.
|
|
* Any attempt to insert an element of the wrong type will result in
|
|
* an immediate {@link ClassCastException}. Assuming a queue contains
|
|
* no incorrectly typed elements prior to the time a dynamically typesafe
|
|
* view is generated, and that all subsequent access to the queue
|
|
* takes place through the view, it is <i>guaranteed</i> that the
|
|
* queue cannot contain an incorrectly typed element.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned queue will be serializable if the specified queue
|
|
* is serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned queue permits insertion of {@code null} elements
|
|
* whenever the backing queue does.
|
|
*
|
|
* @param <E> the class of the objects in the queue
|
|
* @param queue the queue for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param type the type of element that {@code queue} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified queue
|
|
* @since 1.8
|
|
*/
|
|
public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) {
|
|
return new CheckedQueue<>(queue, type);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedQueue<E>
|
|
extends CheckedCollection<E>
|
|
implements Queue<E>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1433151992604707767L;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Queue<E> queue;
|
|
|
|
CheckedQueue(Queue<E> queue, Class<E> elementType) {
|
|
super(queue, elementType);
|
|
this.queue = queue;
|
|
}
|
|
|
|
public E element() {return queue.element();}
|
|
public boolean equals(Object o) {return o == this || c.equals(o);}
|
|
public int hashCode() {return c.hashCode();}
|
|
public E peek() {return queue.peek();}
|
|
public E poll() {return queue.poll();}
|
|
public E remove() {return queue.remove();}
|
|
public boolean offer(E e) {return queue.offer(typeCheck(e));}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified set.
|
|
* Any attempt to insert an element of the wrong type will result in
|
|
* an immediate {@link ClassCastException}. Assuming a set contains
|
|
* no incorrectly typed elements prior to the time a dynamically typesafe
|
|
* view is generated, and that all subsequent access to the set
|
|
* takes place through the view, it is <i>guaranteed</i> that the
|
|
* set cannot contain an incorrectly typed element.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned set will be serializable if the specified set is
|
|
* serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned set permits insertion of null elements whenever
|
|
* the backing set does.
|
|
*
|
|
* @param <E> the class of the objects in the set
|
|
* @param s the set for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param type the type of element that {@code s} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified set
|
|
* @since 1.5
|
|
*/
|
|
public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
|
|
return new CheckedSet<>(s, type);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedSet<E> extends CheckedCollection<E>
|
|
implements Set<E>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 4694047833775013803L;
|
|
|
|
CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
|
|
|
|
public boolean equals(Object o) { return o == this || c.equals(o); }
|
|
public int hashCode() { return c.hashCode(); }
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified sorted set.
|
|
* Any attempt to insert an element of the wrong type will result in an
|
|
* immediate {@link ClassCastException}. Assuming a sorted set
|
|
* contains no incorrectly typed elements prior to the time a
|
|
* dynamically typesafe view is generated, and that all subsequent
|
|
* access to the sorted set takes place through the view, it is
|
|
* <i>guaranteed</i> that the sorted set cannot contain an incorrectly
|
|
* typed element.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned sorted set will be serializable if the specified sorted
|
|
* set is serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned sorted set permits insertion of null elements
|
|
* whenever the backing sorted set does.
|
|
*
|
|
* @param <E> the class of the objects in the set
|
|
* @param s the sorted set for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param type the type of element that {@code s} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified sorted set
|
|
* @since 1.5
|
|
*/
|
|
public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
|
|
Class<E> type) {
|
|
return new CheckedSortedSet<>(s, type);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedSortedSet<E> extends CheckedSet<E>
|
|
implements SortedSet<E>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1599911165492914959L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final SortedSet<E> ss;
|
|
|
|
CheckedSortedSet(SortedSet<E> s, Class<E> type) {
|
|
super(s, type);
|
|
ss = s;
|
|
}
|
|
|
|
public Comparator<? super E> comparator() { return ss.comparator(); }
|
|
public E first() { return ss.first(); }
|
|
public E last() { return ss.last(); }
|
|
|
|
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
return checkedSortedSet(ss.subSet(fromElement,toElement), type);
|
|
}
|
|
public SortedSet<E> headSet(E toElement) {
|
|
return checkedSortedSet(ss.headSet(toElement), type);
|
|
}
|
|
public SortedSet<E> tailSet(E fromElement) {
|
|
return checkedSortedSet(ss.tailSet(fromElement), type);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified navigable set.
|
|
* Any attempt to insert an element of the wrong type will result in an
|
|
* immediate {@link ClassCastException}. Assuming a navigable set
|
|
* contains no incorrectly typed elements prior to the time a
|
|
* dynamically typesafe view is generated, and that all subsequent
|
|
* access to the navigable set takes place through the view, it is
|
|
* <em>guaranteed</em> that the navigable set cannot contain an incorrectly
|
|
* typed element.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned navigable set will be serializable if the specified
|
|
* navigable set is serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned navigable set permits insertion of null elements
|
|
* whenever the backing sorted set does.
|
|
*
|
|
* @param <E> the class of the objects in the set
|
|
* @param s the navigable set for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param type the type of element that {@code s} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified navigable set
|
|
* @since 1.8
|
|
*/
|
|
public static <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s,
|
|
Class<E> type) {
|
|
return new CheckedNavigableSet<>(s, type);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedNavigableSet<E> extends CheckedSortedSet<E>
|
|
implements NavigableSet<E>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -5429120189805438922L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final NavigableSet<E> ns;
|
|
|
|
CheckedNavigableSet(NavigableSet<E> s, Class<E> type) {
|
|
super(s, type);
|
|
ns = s;
|
|
}
|
|
|
|
public E lower(E e) { return ns.lower(e); }
|
|
public E floor(E e) { return ns.floor(e); }
|
|
public E ceiling(E e) { return ns.ceiling(e); }
|
|
public E higher(E e) { return ns.higher(e); }
|
|
public E pollFirst() { return ns.pollFirst(); }
|
|
public E pollLast() {return ns.pollLast(); }
|
|
public NavigableSet<E> descendingSet()
|
|
{ return checkedNavigableSet(ns.descendingSet(), type); }
|
|
public Iterator<E> descendingIterator()
|
|
{return checkedNavigableSet(ns.descendingSet(), type).iterator(); }
|
|
|
|
public NavigableSet<E> subSet(E fromElement, E toElement) {
|
|
return checkedNavigableSet(ns.subSet(fromElement, true, toElement, false), type);
|
|
}
|
|
public NavigableSet<E> headSet(E toElement) {
|
|
return checkedNavigableSet(ns.headSet(toElement, false), type);
|
|
}
|
|
public NavigableSet<E> tailSet(E fromElement) {
|
|
return checkedNavigableSet(ns.tailSet(fromElement, true), type);
|
|
}
|
|
|
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
|
|
return checkedNavigableSet(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), type);
|
|
}
|
|
|
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
|
|
return checkedNavigableSet(ns.headSet(toElement, inclusive), type);
|
|
}
|
|
|
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
|
|
return checkedNavigableSet(ns.tailSet(fromElement, inclusive), type);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified list.
|
|
* Any attempt to insert an element of the wrong type will result in
|
|
* an immediate {@link ClassCastException}. Assuming a list contains
|
|
* no incorrectly typed elements prior to the time a dynamically typesafe
|
|
* view is generated, and that all subsequent access to the list
|
|
* takes place through the view, it is <i>guaranteed</i> that the
|
|
* list cannot contain an incorrectly typed element.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned list will be serializable if the specified list
|
|
* is serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned list permits insertion of null elements whenever
|
|
* the backing list does.
|
|
*
|
|
* @param <E> the class of the objects in the list
|
|
* @param list the list for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param type the type of element that {@code list} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified list
|
|
* @since 1.5
|
|
*/
|
|
public static <E> List<E> checkedList(List<E> list, Class<E> type) {
|
|
return (list instanceof RandomAccess ?
|
|
new CheckedRandomAccessList<>(list, type) :
|
|
new CheckedList<>(list, type));
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedList<E>
|
|
extends CheckedCollection<E>
|
|
implements List<E>
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 65247728283967356L;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final List<E> list;
|
|
|
|
CheckedList(List<E> list, Class<E> type) {
|
|
super(list, type);
|
|
this.list = list;
|
|
}
|
|
|
|
public boolean equals(Object o) { return o == this || list.equals(o); }
|
|
public int hashCode() { return list.hashCode(); }
|
|
public E get(int index) { return list.get(index); }
|
|
public E remove(int index) { return list.remove(index); }
|
|
public int indexOf(Object o) { return list.indexOf(o); }
|
|
public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
|
|
|
|
public E set(int index, E element) {
|
|
return list.set(index, typeCheck(element));
|
|
}
|
|
|
|
public void add(int index, E element) {
|
|
list.add(index, typeCheck(element));
|
|
}
|
|
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
return list.addAll(index, checkedCopyOf(c));
|
|
}
|
|
public ListIterator<E> listIterator() { return listIterator(0); }
|
|
|
|
public ListIterator<E> listIterator(final int index) {
|
|
final ListIterator<E> i = list.listIterator(index);
|
|
|
|
return new ListIterator<>() {
|
|
public boolean hasNext() { return i.hasNext(); }
|
|
public E next() { return i.next(); }
|
|
public boolean hasPrevious() { return i.hasPrevious(); }
|
|
public E previous() { return i.previous(); }
|
|
public int nextIndex() { return i.nextIndex(); }
|
|
public int previousIndex() { return i.previousIndex(); }
|
|
public void remove() { i.remove(); }
|
|
|
|
public void set(E e) {
|
|
i.set(typeCheck(e));
|
|
}
|
|
|
|
public void add(E e) {
|
|
i.add(typeCheck(e));
|
|
}
|
|
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
i.forEachRemaining(action);
|
|
}
|
|
};
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
return new CheckedList<>(list.subList(fromIndex, toIndex), type);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @throws ClassCastException if the class of an element returned by the
|
|
* operator prevents it from being added to this collection. The
|
|
* exception may be thrown after some elements of the list have
|
|
* already been replaced.
|
|
*/
|
|
@Override
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
Objects.requireNonNull(operator);
|
|
list.replaceAll(e -> typeCheck(operator.apply(e)));
|
|
}
|
|
|
|
@Override
|
|
public void sort(Comparator<? super E> c) {
|
|
list.sort(c);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedRandomAccessList<E> extends CheckedList<E>
|
|
implements RandomAccess
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1638200125423088369L;
|
|
|
|
CheckedRandomAccessList(List<E> list, Class<E> type) {
|
|
super(list, type);
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
return new CheckedRandomAccessList<>(
|
|
list.subList(fromIndex, toIndex), type);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified map.
|
|
* Any attempt to insert a mapping whose key or value have the wrong
|
|
* type will result in an immediate {@link ClassCastException}.
|
|
* Similarly, any attempt to modify the value currently associated with
|
|
* a key will result in an immediate {@link ClassCastException},
|
|
* whether the modification is attempted directly through the map
|
|
* itself, or through a {@link Map.Entry} instance obtained from the
|
|
* map's {@link Map#entrySet() entry set} view.
|
|
*
|
|
* <p>Assuming a map contains no incorrectly typed keys or values
|
|
* prior to the time a dynamically typesafe view is generated, and
|
|
* that all subsequent access to the map takes place through the view
|
|
* (or one of its collection views), it is <i>guaranteed</i> that the
|
|
* map cannot contain an incorrectly typed key or value.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned map will be serializable if the specified map is
|
|
* serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned map permits insertion of null keys or values
|
|
* whenever the backing map does.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the map for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param keyType the type of key that {@code m} is permitted to hold
|
|
* @param valueType the type of value that {@code m} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified map
|
|
* @since 1.5
|
|
*/
|
|
public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
|
|
Class<K> keyType,
|
|
Class<V> valueType) {
|
|
return new CheckedMap<>(m, keyType, valueType);
|
|
}
|
|
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class CheckedMap<K,V>
|
|
implements Map<K,V>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 5742860141034234728L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final Map<K, V> m;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Class<K> keyType;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Class<V> valueType;
|
|
|
|
private void typeCheck(Object key, Object value) {
|
|
if (key != null && !keyType.isInstance(key))
|
|
throw new ClassCastException(badKeyMsg(key));
|
|
|
|
if (value != null && !valueType.isInstance(value))
|
|
throw new ClassCastException(badValueMsg(value));
|
|
}
|
|
|
|
private BiFunction<? super K, ? super V, ? extends V> typeCheck(
|
|
BiFunction<? super K, ? super V, ? extends V> func) {
|
|
Objects.requireNonNull(func);
|
|
return (k, v) -> {
|
|
V newValue = func.apply(k, v);
|
|
typeCheck(k, newValue);
|
|
return newValue;
|
|
};
|
|
}
|
|
|
|
private String badKeyMsg(Object key) {
|
|
return "Attempt to insert " + key.getClass() +
|
|
" key into map with key type " + keyType;
|
|
}
|
|
|
|
private String badValueMsg(Object value) {
|
|
return "Attempt to insert " + value.getClass() +
|
|
" value into map with value type " + valueType;
|
|
}
|
|
|
|
CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
|
|
this.m = Objects.requireNonNull(m);
|
|
this.keyType = Objects.requireNonNull(keyType);
|
|
this.valueType = Objects.requireNonNull(valueType);
|
|
}
|
|
|
|
public int size() { return m.size(); }
|
|
public boolean isEmpty() { return m.isEmpty(); }
|
|
public boolean containsKey(Object key) { return m.containsKey(key); }
|
|
public boolean containsValue(Object v) { return m.containsValue(v); }
|
|
public V get(Object key) { return m.get(key); }
|
|
public V remove(Object key) { return m.remove(key); }
|
|
public void clear() { m.clear(); }
|
|
public Set<K> keySet() { return m.keySet(); }
|
|
public Collection<V> values() { return m.values(); }
|
|
public boolean equals(Object o) { return o == this || m.equals(o); }
|
|
public int hashCode() { return m.hashCode(); }
|
|
public String toString() { return m.toString(); }
|
|
|
|
public V put(K key, V value) {
|
|
typeCheck(key, value);
|
|
return m.put(key, value);
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public void putAll(Map<? extends K, ? extends V> t) {
|
|
// Satisfy the following goals:
|
|
// - good diagnostics in case of type mismatch
|
|
// - all-or-nothing semantics
|
|
// - protection from malicious t
|
|
// - correct behavior if t is a concurrent map
|
|
Object[] entries = t.entrySet().toArray();
|
|
List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
|
|
for (Object o : entries) {
|
|
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
|
|
Object k = e.getKey();
|
|
Object v = e.getValue();
|
|
typeCheck(k, v);
|
|
checked.add(
|
|
new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v));
|
|
}
|
|
for (Map.Entry<K,V> e : checked)
|
|
m.put(e.getKey(), e.getValue());
|
|
}
|
|
|
|
private transient Set<Map.Entry<K,V>> entrySet;
|
|
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
if (entrySet==null)
|
|
entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
|
|
return entrySet;
|
|
}
|
|
|
|
// Override default methods in Map
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
m.forEach(action);
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
m.replaceAll(typeCheck(function));
|
|
}
|
|
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
typeCheck(key, value);
|
|
return m.putIfAbsent(key, value);
|
|
}
|
|
|
|
@Override
|
|
public boolean remove(Object key, Object value) {
|
|
return m.remove(key, value);
|
|
}
|
|
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
typeCheck(key, newValue);
|
|
return m.replace(key, oldValue, newValue);
|
|
}
|
|
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
typeCheck(key, value);
|
|
return m.replace(key, value);
|
|
}
|
|
|
|
@Override
|
|
public V computeIfAbsent(K key,
|
|
Function<? super K, ? extends V> mappingFunction) {
|
|
Objects.requireNonNull(mappingFunction);
|
|
return m.computeIfAbsent(key, k -> {
|
|
V value = mappingFunction.apply(k);
|
|
typeCheck(k, value);
|
|
return value;
|
|
});
|
|
}
|
|
|
|
@Override
|
|
public V computeIfPresent(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
return m.computeIfPresent(key, typeCheck(remappingFunction));
|
|
}
|
|
|
|
@Override
|
|
public V compute(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
return m.compute(key, typeCheck(remappingFunction));
|
|
}
|
|
|
|
@Override
|
|
public V merge(K key, V value,
|
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
Objects.requireNonNull(remappingFunction);
|
|
return m.merge(key, value, (v1, v2) -> {
|
|
V newValue = remappingFunction.apply(v1, v2);
|
|
typeCheck(null, newValue);
|
|
return newValue;
|
|
});
|
|
}
|
|
|
|
/**
|
|
* We need this class in addition to CheckedSet as Map.Entry permits
|
|
* modification of the backing Map via the setValue operation. This
|
|
* class is subtle: there are many possible attacks that must be
|
|
* thwarted.
|
|
*
|
|
* @serial exclude
|
|
*/
|
|
static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
|
|
private final Set<Map.Entry<K,V>> s;
|
|
private final Class<V> valueType;
|
|
|
|
CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
|
|
this.s = s;
|
|
this.valueType = valueType;
|
|
}
|
|
|
|
public int size() { return s.size(); }
|
|
public boolean isEmpty() { return s.isEmpty(); }
|
|
public String toString() { return s.toString(); }
|
|
public int hashCode() { return s.hashCode(); }
|
|
public void clear() { s.clear(); }
|
|
|
|
public boolean add(Map.Entry<K, V> e) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
public Iterator<Map.Entry<K,V>> iterator() {
|
|
final Iterator<Map.Entry<K, V>> i = s.iterator();
|
|
|
|
return new Iterator<>() {
|
|
public boolean hasNext() { return i.hasNext(); }
|
|
public void remove() { i.remove(); }
|
|
|
|
public Map.Entry<K,V> next() {
|
|
return checkedEntry(i.next(), valueType);
|
|
}
|
|
public void forEachRemaining(Consumer<? super Entry<K, V>> action) {
|
|
Objects.requireNonNull(action);
|
|
i.forEachRemaining(
|
|
e -> action.accept(checkedEntry(e, valueType)));
|
|
}
|
|
};
|
|
}
|
|
|
|
// Android-changed: Ignore IsInstanceOfClass warning. b/73288967, b/73344263.
|
|
// @SuppressWarnings("unchecked")
|
|
@SuppressWarnings({ "unchecked", "IsInstanceOfClass" })
|
|
public Object[] toArray() {
|
|
Object[] source = s.toArray();
|
|
|
|
/*
|
|
* Ensure that we don't get an ArrayStoreException even if
|
|
* s.toArray returns an array of something other than Object
|
|
*/
|
|
Object[] dest = (source.getClass() == Object[].class)
|
|
? source
|
|
: new Object[source.length];
|
|
|
|
for (int i = 0; i < source.length; i++)
|
|
dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
|
|
valueType);
|
|
return dest;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
// We don't pass a to s.toArray, to avoid window of
|
|
// vulnerability wherein an unscrupulous multithreaded client
|
|
// could get his hands on raw (unwrapped) Entries from s.
|
|
T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
|
|
|
|
for (int i=0; i<arr.length; i++)
|
|
arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
|
|
valueType);
|
|
if (arr.length > a.length)
|
|
return arr;
|
|
|
|
System.arraycopy(arr, 0, a, 0, arr.length);
|
|
if (a.length > arr.length)
|
|
a[arr.length] = null;
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* This method is overridden to protect the backing set against
|
|
* an object with a nefarious equals function that senses
|
|
* that the equality-candidate is Map.Entry and calls its
|
|
* setValue method.
|
|
*/
|
|
public boolean contains(Object o) {
|
|
// Android-changed: (b/247094511) instanceof pattern variable is not yet supported.
|
|
/*
|
|
return o instanceof Map.Entry<?, ?> e
|
|
&& s.contains((e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
|
|
*/
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
|
|
return s.contains(
|
|
(e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
|
|
}
|
|
|
|
/**
|
|
* The bulk collection methods are overridden to protect
|
|
* against an unscrupulous collection whose contains(Object o)
|
|
* method senses when o is a Map.Entry, and calls o.setValue.
|
|
*/
|
|
public boolean containsAll(Collection<?> c) {
|
|
for (Object o : c)
|
|
if (!contains(o)) // Invokes safe contains() above
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public boolean remove(Object o) {
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
return s.remove(new AbstractMap.SimpleImmutableEntry
|
|
<>((Map.Entry<?,?>)o));
|
|
}
|
|
|
|
public boolean removeAll(Collection<?> c) {
|
|
return batchRemove(c, false);
|
|
}
|
|
public boolean retainAll(Collection<?> c) {
|
|
return batchRemove(c, true);
|
|
}
|
|
private boolean batchRemove(Collection<?> c, boolean complement) {
|
|
Objects.requireNonNull(c);
|
|
boolean modified = false;
|
|
Iterator<Map.Entry<K,V>> it = iterator();
|
|
while (it.hasNext()) {
|
|
if (c.contains(it.next()) != complement) {
|
|
it.remove();
|
|
modified = true;
|
|
}
|
|
}
|
|
return modified;
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
if (o == this)
|
|
return true;
|
|
// Android-changed: (b/247094511) instanceof pattern variable is not yet supported
|
|
/*
|
|
return o instanceof Set<?> that
|
|
&& that.size() == s.size()
|
|
&& containsAll(that); // Invokes safe containsAll() above
|
|
*/
|
|
if (!(o instanceof Set))
|
|
return false;
|
|
Set<?> that = (Set<?>) o;
|
|
return that.size() == s.size()
|
|
&& containsAll(that); // Invokes safe containsAll() above
|
|
}
|
|
|
|
static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
|
|
Class<T> valueType) {
|
|
return new CheckedEntry<>(e, valueType);
|
|
}
|
|
|
|
/**
|
|
* This "wrapper class" serves two purposes: it prevents
|
|
* the client from modifying the backing Map, by short-circuiting
|
|
* the setValue method, and it protects the backing Map against
|
|
* an ill-behaved Map.Entry that attempts to modify another
|
|
* Map.Entry when asked to perform an equality check.
|
|
*/
|
|
private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
|
|
private final Map.Entry<K, V> e;
|
|
private final Class<T> valueType;
|
|
|
|
CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
|
|
this.e = Objects.requireNonNull(e);
|
|
this.valueType = Objects.requireNonNull(valueType);
|
|
}
|
|
|
|
public K getKey() { return e.getKey(); }
|
|
public V getValue() { return e.getValue(); }
|
|
public int hashCode() { return e.hashCode(); }
|
|
public String toString() { return e.toString(); }
|
|
|
|
public V setValue(V value) {
|
|
if (value != null && !valueType.isInstance(value))
|
|
throw new ClassCastException(badValueMsg(value));
|
|
return e.setValue(value);
|
|
}
|
|
|
|
private String badValueMsg(Object value) {
|
|
return "Attempt to insert " + value.getClass() +
|
|
" value into map with value type " + valueType;
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
if (o == this)
|
|
return true;
|
|
if (!(o instanceof Map.Entry))
|
|
return false;
|
|
return e.equals(new AbstractMap.SimpleImmutableEntry
|
|
<>((Map.Entry<?,?>)o));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified sorted map.
|
|
* Any attempt to insert a mapping whose key or value have the wrong
|
|
* type will result in an immediate {@link ClassCastException}.
|
|
* Similarly, any attempt to modify the value currently associated with
|
|
* a key will result in an immediate {@link ClassCastException},
|
|
* whether the modification is attempted directly through the map
|
|
* itself, or through a {@link Map.Entry} instance obtained from the
|
|
* map's {@link Map#entrySet() entry set} view.
|
|
*
|
|
* <p>Assuming a map contains no incorrectly typed keys or values
|
|
* prior to the time a dynamically typesafe view is generated, and
|
|
* that all subsequent access to the map takes place through the view
|
|
* (or one of its collection views), it is <i>guaranteed</i> that the
|
|
* map cannot contain an incorrectly typed key or value.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned map will be serializable if the specified map is
|
|
* serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned map permits insertion of null keys or values
|
|
* whenever the backing map does.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param m the map for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param keyType the type of key that {@code m} is permitted to hold
|
|
* @param valueType the type of value that {@code m} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified map
|
|
* @since 1.5
|
|
*/
|
|
public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
|
|
Class<K> keyType,
|
|
Class<V> valueType) {
|
|
return new CheckedSortedMap<>(m, keyType, valueType);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
|
|
implements SortedMap<K,V>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1599671320688067438L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final SortedMap<K, V> sm;
|
|
|
|
CheckedSortedMap(SortedMap<K, V> m,
|
|
Class<K> keyType, Class<V> valueType) {
|
|
super(m, keyType, valueType);
|
|
sm = m;
|
|
}
|
|
|
|
public Comparator<? super K> comparator() { return sm.comparator(); }
|
|
public K firstKey() { return sm.firstKey(); }
|
|
public K lastKey() { return sm.lastKey(); }
|
|
|
|
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
return checkedSortedMap(sm.subMap(fromKey, toKey),
|
|
keyType, valueType);
|
|
}
|
|
public SortedMap<K,V> headMap(K toKey) {
|
|
return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
|
|
}
|
|
public SortedMap<K,V> tailMap(K fromKey) {
|
|
return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a dynamically typesafe view of the specified navigable map.
|
|
* Any attempt to insert a mapping whose key or value have the wrong
|
|
* type will result in an immediate {@link ClassCastException}.
|
|
* Similarly, any attempt to modify the value currently associated with
|
|
* a key will result in an immediate {@link ClassCastException},
|
|
* whether the modification is attempted directly through the map
|
|
* itself, or through a {@link Map.Entry} instance obtained from the
|
|
* map's {@link Map#entrySet() entry set} view.
|
|
*
|
|
* <p>Assuming a map contains no incorrectly typed keys or values
|
|
* prior to the time a dynamically typesafe view is generated, and
|
|
* that all subsequent access to the map takes place through the view
|
|
* (or one of its collection views), it is <em>guaranteed</em> that the
|
|
* map cannot contain an incorrectly typed key or value.
|
|
*
|
|
* <p>A discussion of the use of dynamically typesafe views may be
|
|
* found in the documentation for the {@link #checkedCollection
|
|
* checkedCollection} method.
|
|
*
|
|
* <p>The returned map will be serializable if the specified map is
|
|
* serializable.
|
|
*
|
|
* <p>Since {@code null} is considered to be a value of any reference
|
|
* type, the returned map permits insertion of null keys or values
|
|
* whenever the backing map does.
|
|
*
|
|
* @param <K> type of map keys
|
|
* @param <V> type of map values
|
|
* @param m the map for which a dynamically typesafe view is to be
|
|
* returned
|
|
* @param keyType the type of key that {@code m} is permitted to hold
|
|
* @param valueType the type of value that {@code m} is permitted to hold
|
|
* @return a dynamically typesafe view of the specified map
|
|
* @since 1.8
|
|
*/
|
|
public static <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K, V> m,
|
|
Class<K> keyType,
|
|
Class<V> valueType) {
|
|
return new CheckedNavigableMap<>(m, keyType, valueType);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class CheckedNavigableMap<K,V> extends CheckedSortedMap<K,V>
|
|
implements NavigableMap<K,V>, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -4852462692372534096L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final NavigableMap<K, V> nm;
|
|
|
|
CheckedNavigableMap(NavigableMap<K, V> m,
|
|
Class<K> keyType, Class<V> valueType) {
|
|
super(m, keyType, valueType);
|
|
nm = m;
|
|
}
|
|
|
|
public Comparator<? super K> comparator() { return nm.comparator(); }
|
|
public K firstKey() { return nm.firstKey(); }
|
|
public K lastKey() { return nm.lastKey(); }
|
|
|
|
public Entry<K, V> lowerEntry(K key) {
|
|
Entry<K,V> lower = nm.lowerEntry(key);
|
|
return (null != lower)
|
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(lower, valueType)
|
|
: null;
|
|
}
|
|
|
|
public K lowerKey(K key) { return nm.lowerKey(key); }
|
|
|
|
public Entry<K, V> floorEntry(K key) {
|
|
Entry<K,V> floor = nm.floorEntry(key);
|
|
return (null != floor)
|
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(floor, valueType)
|
|
: null;
|
|
}
|
|
|
|
public K floorKey(K key) { return nm.floorKey(key); }
|
|
|
|
public Entry<K, V> ceilingEntry(K key) {
|
|
Entry<K,V> ceiling = nm.ceilingEntry(key);
|
|
return (null != ceiling)
|
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(ceiling, valueType)
|
|
: null;
|
|
}
|
|
|
|
public K ceilingKey(K key) { return nm.ceilingKey(key); }
|
|
|
|
public Entry<K, V> higherEntry(K key) {
|
|
Entry<K,V> higher = nm.higherEntry(key);
|
|
return (null != higher)
|
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(higher, valueType)
|
|
: null;
|
|
}
|
|
|
|
public K higherKey(K key) { return nm.higherKey(key); }
|
|
|
|
public Entry<K, V> firstEntry() {
|
|
Entry<K,V> first = nm.firstEntry();
|
|
return (null != first)
|
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(first, valueType)
|
|
: null;
|
|
}
|
|
|
|
public Entry<K, V> lastEntry() {
|
|
Entry<K,V> last = nm.lastEntry();
|
|
return (null != last)
|
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(last, valueType)
|
|
: null;
|
|
}
|
|
|
|
public Entry<K, V> pollFirstEntry() {
|
|
Entry<K,V> entry = nm.pollFirstEntry();
|
|
return (null == entry)
|
|
? null
|
|
: new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType);
|
|
}
|
|
|
|
public Entry<K, V> pollLastEntry() {
|
|
Entry<K,V> entry = nm.pollLastEntry();
|
|
return (null == entry)
|
|
? null
|
|
: new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType);
|
|
}
|
|
|
|
public NavigableMap<K, V> descendingMap() {
|
|
return checkedNavigableMap(nm.descendingMap(), keyType, valueType);
|
|
}
|
|
|
|
public NavigableSet<K> keySet() {
|
|
return navigableKeySet();
|
|
}
|
|
|
|
public NavigableSet<K> navigableKeySet() {
|
|
return checkedNavigableSet(nm.navigableKeySet(), keyType);
|
|
}
|
|
|
|
public NavigableSet<K> descendingKeySet() {
|
|
return checkedNavigableSet(nm.descendingKeySet(), keyType);
|
|
}
|
|
|
|
@Override
|
|
public NavigableMap<K,V> subMap(K fromKey, K toKey) {
|
|
return checkedNavigableMap(nm.subMap(fromKey, true, toKey, false),
|
|
keyType, valueType);
|
|
}
|
|
|
|
@Override
|
|
public NavigableMap<K,V> headMap(K toKey) {
|
|
return checkedNavigableMap(nm.headMap(toKey, false), keyType, valueType);
|
|
}
|
|
|
|
@Override
|
|
public NavigableMap<K,V> tailMap(K fromKey) {
|
|
return checkedNavigableMap(nm.tailMap(fromKey, true), keyType, valueType);
|
|
}
|
|
|
|
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
|
|
return checkedNavigableMap(nm.subMap(fromKey, fromInclusive, toKey, toInclusive), keyType, valueType);
|
|
}
|
|
|
|
public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
|
|
return checkedNavigableMap(nm.headMap(toKey, inclusive), keyType, valueType);
|
|
}
|
|
|
|
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
|
|
return checkedNavigableMap(nm.tailMap(fromKey, inclusive), keyType, valueType);
|
|
}
|
|
}
|
|
|
|
// Empty collections
|
|
|
|
/**
|
|
* Returns an iterator that has no elements. More precisely,
|
|
*
|
|
* <ul>
|
|
* <li>{@link Iterator#hasNext hasNext} always returns {@code
|
|
* false}.</li>
|
|
* <li>{@link Iterator#next next} always throws {@link
|
|
* NoSuchElementException}.</li>
|
|
* <li>{@link Iterator#remove remove} always throws {@link
|
|
* IllegalStateException}.</li>
|
|
* </ul>
|
|
*
|
|
* <p>Implementations of this method are permitted, but not
|
|
* required, to return the same object from multiple invocations.
|
|
*
|
|
* @param <T> type of elements, if there were any, in the iterator
|
|
* @return an empty iterator
|
|
* @since 1.7
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> Iterator<T> emptyIterator() {
|
|
return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
|
|
}
|
|
|
|
private static class EmptyIterator<E> implements Iterator<E> {
|
|
static final EmptyIterator<Object> EMPTY_ITERATOR
|
|
= new EmptyIterator<>();
|
|
|
|
public boolean hasNext() { return false; }
|
|
public E next() { throw new NoSuchElementException(); }
|
|
public void remove() { throw new IllegalStateException(); }
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a list iterator that has no elements. More precisely,
|
|
*
|
|
* <ul>
|
|
* <li>{@link Iterator#hasNext hasNext} and {@link
|
|
* ListIterator#hasPrevious hasPrevious} always return {@code
|
|
* false}.</li>
|
|
* <li>{@link Iterator#next next} and {@link ListIterator#previous
|
|
* previous} always throw {@link NoSuchElementException}.</li>
|
|
* <li>{@link Iterator#remove remove} and {@link ListIterator#set
|
|
* set} always throw {@link IllegalStateException}.</li>
|
|
* <li>{@link ListIterator#add add} always throws {@link
|
|
* UnsupportedOperationException}.</li>
|
|
* <li>{@link ListIterator#nextIndex nextIndex} always returns
|
|
* {@code 0}.</li>
|
|
* <li>{@link ListIterator#previousIndex previousIndex} always
|
|
* returns {@code -1}.</li>
|
|
* </ul>
|
|
*
|
|
* <p>Implementations of this method are permitted, but not
|
|
* required, to return the same object from multiple invocations.
|
|
*
|
|
* @param <T> type of elements, if there were any, in the iterator
|
|
* @return an empty list iterator
|
|
* @since 1.7
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> ListIterator<T> emptyListIterator() {
|
|
return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
|
|
}
|
|
|
|
private static class EmptyListIterator<E>
|
|
extends EmptyIterator<E>
|
|
implements ListIterator<E>
|
|
{
|
|
static final EmptyListIterator<Object> EMPTY_ITERATOR
|
|
= new EmptyListIterator<>();
|
|
|
|
public boolean hasPrevious() { return false; }
|
|
public E previous() { throw new NoSuchElementException(); }
|
|
public int nextIndex() { return 0; }
|
|
public int previousIndex() { return -1; }
|
|
public void set(E e) { throw new IllegalStateException(); }
|
|
public void add(E e) { throw new UnsupportedOperationException(); }
|
|
}
|
|
|
|
/**
|
|
* Returns an enumeration that has no elements. More precisely,
|
|
*
|
|
* <ul>
|
|
* <li>{@link Enumeration#hasMoreElements hasMoreElements} always
|
|
* returns {@code false}.</li>
|
|
* <li> {@link Enumeration#nextElement nextElement} always throws
|
|
* {@link NoSuchElementException}.</li>
|
|
* </ul>
|
|
*
|
|
* <p>Implementations of this method are permitted, but not
|
|
* required, to return the same object from multiple invocations.
|
|
*
|
|
* @param <T> the class of the objects in the enumeration
|
|
* @return an empty enumeration
|
|
* @since 1.7
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> Enumeration<T> emptyEnumeration() {
|
|
return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
|
|
}
|
|
|
|
private static class EmptyEnumeration<E> implements Enumeration<E> {
|
|
static final EmptyEnumeration<Object> EMPTY_ENUMERATION
|
|
= new EmptyEnumeration<>();
|
|
|
|
public boolean hasMoreElements() { return false; }
|
|
public E nextElement() { throw new NoSuchElementException(); }
|
|
public Iterator<E> asIterator() { return emptyIterator(); }
|
|
}
|
|
|
|
/**
|
|
* The empty set (immutable). This set is serializable.
|
|
*
|
|
* @see #emptySet()
|
|
*/
|
|
@SuppressWarnings("rawtypes")
|
|
public static final Set EMPTY_SET = new EmptySet<>();
|
|
|
|
/**
|
|
* Returns an empty set (immutable). This set is serializable.
|
|
* Unlike the like-named field, this method is parameterized.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty set:
|
|
* <pre>
|
|
* Set<String> s = Collections.emptySet();
|
|
* </pre>
|
|
* @implNote Implementations of this method need not create a separate
|
|
* {@code Set} object for each call. Using this method is likely to have
|
|
* comparable cost to using the like-named field. (Unlike this method, the
|
|
* field does not provide type safety.)
|
|
*
|
|
* @param <T> the class of the objects in the set
|
|
* @return the empty set
|
|
*
|
|
* @see #EMPTY_SET
|
|
* @since 1.5
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static final <T> Set<T> emptySet() {
|
|
return (Set<T>) EMPTY_SET;
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class EmptySet<E>
|
|
extends AbstractSet<E>
|
|
implements Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1582296315990362920L;
|
|
|
|
public Iterator<E> iterator() { return emptyIterator(); }
|
|
|
|
public int size() {return 0;}
|
|
public boolean isEmpty() {return true;}
|
|
public void clear() {}
|
|
|
|
public boolean contains(Object obj) {return false;}
|
|
public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
|
|
|
|
public Object[] toArray() { return new Object[0]; }
|
|
|
|
public <T> T[] toArray(T[] a) {
|
|
if (a.length > 0)
|
|
a[0] = null;
|
|
return a;
|
|
}
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
Objects.requireNonNull(filter);
|
|
return false;
|
|
}
|
|
@Override
|
|
public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
|
|
|
|
// Preserves singleton property
|
|
@java.io.Serial
|
|
private Object readResolve() {
|
|
return EMPTY_SET;
|
|
}
|
|
|
|
@Override
|
|
public int hashCode() {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an empty sorted set (immutable). This set is serializable.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty
|
|
* sorted set:
|
|
* <pre> {@code
|
|
* SortedSet<String> s = Collections.emptySortedSet();
|
|
* }</pre>
|
|
*
|
|
* @implNote Implementations of this method need not create a separate
|
|
* {@code SortedSet} object for each call.
|
|
*
|
|
* @param <E> type of elements, if there were any, in the set
|
|
* @return the empty sorted set
|
|
* @since 1.8
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <E> SortedSet<E> emptySortedSet() {
|
|
return (SortedSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET;
|
|
}
|
|
|
|
/**
|
|
* Returns an empty navigable set (immutable). This set is serializable.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty
|
|
* navigable set:
|
|
* <pre> {@code
|
|
* NavigableSet<String> s = Collections.emptyNavigableSet();
|
|
* }</pre>
|
|
*
|
|
* @implNote Implementations of this method need not
|
|
* create a separate {@code NavigableSet} object for each call.
|
|
*
|
|
* @param <E> type of elements, if there were any, in the set
|
|
* @return the empty navigable set
|
|
* @since 1.8
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <E> NavigableSet<E> emptyNavigableSet() {
|
|
return (NavigableSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET;
|
|
}
|
|
|
|
/**
|
|
* The empty list (immutable). This list is serializable.
|
|
*
|
|
* @see #emptyList()
|
|
*/
|
|
@SuppressWarnings("rawtypes")
|
|
public static final List EMPTY_LIST = new EmptyList<>();
|
|
|
|
/**
|
|
* Returns an empty list (immutable). This list is serializable.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty list:
|
|
* <pre>
|
|
* List<String> s = Collections.emptyList();
|
|
* </pre>
|
|
*
|
|
* @implNote
|
|
* Implementations of this method need not create a separate {@code List}
|
|
* object for each call. Using this method is likely to have comparable
|
|
* cost to using the like-named field. (Unlike this method, the field does
|
|
* not provide type safety.)
|
|
*
|
|
* @param <T> type of elements, if there were any, in the list
|
|
* @return an empty immutable list
|
|
*
|
|
* @see #EMPTY_LIST
|
|
* @since 1.5
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static final <T> List<T> emptyList() {
|
|
return (List<T>) EMPTY_LIST;
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class EmptyList<E>
|
|
extends AbstractList<E>
|
|
implements RandomAccess, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 8842843931221139166L;
|
|
|
|
public Iterator<E> iterator() {
|
|
return emptyIterator();
|
|
}
|
|
public ListIterator<E> listIterator() {
|
|
return emptyListIterator();
|
|
}
|
|
|
|
public int size() {return 0;}
|
|
public boolean isEmpty() {return true;}
|
|
public void clear() {}
|
|
|
|
public boolean contains(Object obj) {return false;}
|
|
public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
|
|
|
|
public Object[] toArray() { return new Object[0]; }
|
|
|
|
public <T> T[] toArray(T[] a) {
|
|
if (a.length > 0)
|
|
a[0] = null;
|
|
return a;
|
|
}
|
|
|
|
public E get(int index) {
|
|
throw new IndexOutOfBoundsException("Index: "+index);
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
return (o instanceof List) && ((List<?>)o).isEmpty();
|
|
}
|
|
|
|
public int hashCode() { return 1; }
|
|
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
Objects.requireNonNull(filter);
|
|
return false;
|
|
}
|
|
@Override
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
Objects.requireNonNull(operator);
|
|
}
|
|
@Override
|
|
public void sort(Comparator<? super E> c) {
|
|
}
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
}
|
|
|
|
@Override
|
|
public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
|
|
|
|
// Preserves singleton property
|
|
@java.io.Serial
|
|
private Object readResolve() {
|
|
return EMPTY_LIST;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The empty map (immutable). This map is serializable.
|
|
*
|
|
* @see #emptyMap()
|
|
* @since 1.3
|
|
*/
|
|
@SuppressWarnings("rawtypes")
|
|
public static final Map EMPTY_MAP = new EmptyMap<>();
|
|
|
|
/**
|
|
* Returns an empty map (immutable). This map is serializable.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty map:
|
|
* <pre>
|
|
* Map<String, Date> s = Collections.emptyMap();
|
|
* </pre>
|
|
* @implNote Implementations of this method need not create a separate
|
|
* {@code Map} object for each call. Using this method is likely to have
|
|
* comparable cost to using the like-named field. (Unlike this method, the
|
|
* field does not provide type safety.)
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @return an empty map
|
|
* @see #EMPTY_MAP
|
|
* @since 1.5
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static final <K,V> Map<K,V> emptyMap() {
|
|
return (Map<K,V>) EMPTY_MAP;
|
|
}
|
|
|
|
/**
|
|
* Returns an empty sorted map (immutable). This map is serializable.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty map:
|
|
* <pre> {@code
|
|
* SortedMap<String, Date> s = Collections.emptySortedMap();
|
|
* }</pre>
|
|
*
|
|
* @implNote Implementations of this method need not create a separate
|
|
* {@code SortedMap} object for each call.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @return an empty sorted map
|
|
* @since 1.8
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static final <K,V> SortedMap<K,V> emptySortedMap() {
|
|
return (SortedMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP;
|
|
}
|
|
|
|
/**
|
|
* Returns an empty navigable map (immutable). This map is serializable.
|
|
*
|
|
* <p>This example illustrates the type-safe way to obtain an empty map:
|
|
* <pre> {@code
|
|
* NavigableMap<String, Date> s = Collections.emptyNavigableMap();
|
|
* }</pre>
|
|
*
|
|
* @implNote Implementations of this method need not create a separate
|
|
* {@code NavigableMap} object for each call.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @return an empty navigable map
|
|
* @since 1.8
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static final <K,V> NavigableMap<K,V> emptyNavigableMap() {
|
|
return (NavigableMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP;
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class EmptyMap<K,V>
|
|
extends AbstractMap<K,V>
|
|
implements Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 6428348081105594320L;
|
|
|
|
public int size() {return 0;}
|
|
public boolean isEmpty() {return true;}
|
|
public void clear() {}
|
|
public boolean containsKey(Object key) {return false;}
|
|
public boolean containsValue(Object value) {return false;}
|
|
public V get(Object key) {return null;}
|
|
public Set<K> keySet() {return emptySet();}
|
|
public Collection<V> values() {return emptySet();}
|
|
public Set<Map.Entry<K,V>> entrySet() {return emptySet();}
|
|
|
|
public boolean equals(Object o) {
|
|
return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
|
|
}
|
|
|
|
public int hashCode() {return 0;}
|
|
|
|
// Override default methods in Map
|
|
@Override
|
|
public V getOrDefault(Object k, V defaultValue) {
|
|
return defaultValue;
|
|
}
|
|
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
Objects.requireNonNull(action);
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
Objects.requireNonNull(function);
|
|
}
|
|
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public boolean remove(Object key, Object value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V computeIfAbsent(K key,
|
|
Function<? super K, ? extends V> mappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V computeIfPresent(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V compute(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V merge(K key, V value,
|
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
// Preserves singleton property
|
|
@java.io.Serial
|
|
private Object readResolve() {
|
|
return EMPTY_MAP;
|
|
}
|
|
}
|
|
|
|
// Singleton collections
|
|
|
|
/**
|
|
* Returns an immutable set containing only the specified object.
|
|
* The returned set is serializable.
|
|
*
|
|
* @param <T> the class of the objects in the set
|
|
* @param o the sole object to be stored in the returned set.
|
|
* @return an immutable set containing only the specified object.
|
|
*/
|
|
public static <T> Set<T> singleton(T o) {
|
|
return new SingletonSet<>(o);
|
|
}
|
|
|
|
static <E> Iterator<E> singletonIterator(final E e) {
|
|
return new Iterator<>() {
|
|
private boolean hasNext = true;
|
|
public boolean hasNext() {
|
|
return hasNext;
|
|
}
|
|
public E next() {
|
|
if (hasNext) {
|
|
hasNext = false;
|
|
return e;
|
|
}
|
|
throw new NoSuchElementException();
|
|
}
|
|
public void remove() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
if (hasNext) {
|
|
hasNext = false;
|
|
action.accept(e);
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Creates a {@code Spliterator} with only the specified element
|
|
*
|
|
* @param <T> Type of elements
|
|
* @return A singleton {@code Spliterator}
|
|
*/
|
|
static <T> Spliterator<T> singletonSpliterator(final T element) {
|
|
return new Spliterator<>() {
|
|
long est = 1;
|
|
|
|
@Override
|
|
public Spliterator<T> trySplit() {
|
|
return null;
|
|
}
|
|
|
|
@Override
|
|
public boolean tryAdvance(Consumer<? super T> consumer) {
|
|
Objects.requireNonNull(consumer);
|
|
if (est > 0) {
|
|
est--;
|
|
consumer.accept(element);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
public void forEachRemaining(Consumer<? super T> consumer) {
|
|
tryAdvance(consumer);
|
|
}
|
|
|
|
@Override
|
|
public long estimateSize() {
|
|
return est;
|
|
}
|
|
|
|
@Override
|
|
public int characteristics() {
|
|
int value = (element != null) ? Spliterator.NONNULL : 0;
|
|
|
|
return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE |
|
|
Spliterator.DISTINCT | Spliterator.ORDERED;
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class SingletonSet<E>
|
|
extends AbstractSet<E>
|
|
implements Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 3193687207550431679L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final E element;
|
|
|
|
SingletonSet(E e) {element = e;}
|
|
|
|
public Iterator<E> iterator() {
|
|
return singletonIterator(element);
|
|
}
|
|
|
|
public int size() {return 1;}
|
|
|
|
public boolean contains(Object o) {return eq(o, element);}
|
|
|
|
// Override default methods for Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
action.accept(element);
|
|
}
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return singletonSpliterator(element);
|
|
}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@Override
|
|
public int hashCode() {
|
|
return Objects.hashCode(element);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an immutable list containing only the specified object.
|
|
* The returned list is serializable.
|
|
*
|
|
* @param <T> the class of the objects in the list
|
|
* @param o the sole object to be stored in the returned list.
|
|
* @return an immutable list containing only the specified object.
|
|
* @since 1.3
|
|
*/
|
|
public static <T> List<T> singletonList(T o) {
|
|
return new SingletonList<>(o);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class SingletonList<E>
|
|
extends AbstractList<E>
|
|
implements RandomAccess, Serializable {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 3093736618740652951L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final E element;
|
|
|
|
SingletonList(E obj) {element = obj;}
|
|
|
|
public Iterator<E> iterator() {
|
|
return singletonIterator(element);
|
|
}
|
|
|
|
public int size() {return 1;}
|
|
|
|
public boolean contains(Object obj) {return eq(obj, element);}
|
|
|
|
public E get(int index) {
|
|
if (index != 0)
|
|
throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
|
|
return element;
|
|
}
|
|
|
|
// Override default methods for Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
action.accept(element);
|
|
}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@Override
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
@Override
|
|
public void sort(Comparator<? super E> c) {
|
|
}
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return singletonSpliterator(element);
|
|
}
|
|
@Override
|
|
public int hashCode() {
|
|
return 31 + Objects.hashCode(element);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an immutable map, mapping only the specified key to the
|
|
* specified value. The returned map is serializable.
|
|
*
|
|
* @param <K> the class of the map keys
|
|
* @param <V> the class of the map values
|
|
* @param key the sole key to be stored in the returned map.
|
|
* @param value the value to which the returned map maps {@code key}.
|
|
* @return an immutable map containing only the specified key-value
|
|
* mapping.
|
|
* @since 1.3
|
|
*/
|
|
public static <K,V> Map<K,V> singletonMap(K key, V value) {
|
|
return new SingletonMap<>(key, value);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class SingletonMap<K,V>
|
|
extends AbstractMap<K,V>
|
|
implements Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -6979724477215052911L;
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final K k;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final V v;
|
|
|
|
SingletonMap(K key, V value) {
|
|
k = key;
|
|
v = value;
|
|
}
|
|
|
|
public int size() {return 1;}
|
|
public boolean isEmpty() {return false;}
|
|
public boolean containsKey(Object key) {return eq(key, k);}
|
|
public boolean containsValue(Object value) {return eq(value, v);}
|
|
public V get(Object key) {return (eq(key, k) ? v : null);}
|
|
|
|
private transient Set<K> keySet;
|
|
private transient Set<Map.Entry<K,V>> entrySet;
|
|
private transient Collection<V> values;
|
|
|
|
public Set<K> keySet() {
|
|
if (keySet==null)
|
|
keySet = singleton(k);
|
|
return keySet;
|
|
}
|
|
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
if (entrySet==null)
|
|
entrySet = Collections.singleton(
|
|
new SimpleImmutableEntry<>(k, v));
|
|
return entrySet;
|
|
}
|
|
|
|
public Collection<V> values() {
|
|
if (values==null)
|
|
values = singleton(v);
|
|
return values;
|
|
}
|
|
|
|
// Override default methods in Map
|
|
@Override
|
|
public V getOrDefault(Object key, V defaultValue) {
|
|
return eq(key, k) ? v : defaultValue;
|
|
}
|
|
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
action.accept(k, v);
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public boolean remove(Object key, Object value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V computeIfAbsent(K key,
|
|
Function<? super K, ? extends V> mappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V computeIfPresent(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V compute(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public V merge(K key, V value,
|
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
@Override
|
|
public int hashCode() {
|
|
return Objects.hashCode(k) ^ Objects.hashCode(v);
|
|
}
|
|
}
|
|
|
|
// Miscellaneous
|
|
|
|
/**
|
|
* Returns an immutable list consisting of {@code n} copies of the
|
|
* specified object. The newly allocated data object is tiny (it contains
|
|
* a single reference to the data object). This method is useful in
|
|
* combination with the {@code List.addAll} method to grow lists.
|
|
* The returned list is serializable.
|
|
*
|
|
* @param <T> the class of the object to copy and of the objects
|
|
* in the returned list.
|
|
* @param n the number of elements in the returned list.
|
|
* @param o the element to appear repeatedly in the returned list.
|
|
* @return an immutable list consisting of {@code n} copies of the
|
|
* specified object.
|
|
* @throws IllegalArgumentException if {@code n < 0}
|
|
* @see List#addAll(Collection)
|
|
* @see List#addAll(int, Collection)
|
|
*/
|
|
public static <T> List<T> nCopies(int n, T o) {
|
|
if (n < 0)
|
|
throw new IllegalArgumentException("List length = " + n);
|
|
return new CopiesList<>(n, o);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class CopiesList<E>
|
|
extends AbstractList<E>
|
|
implements RandomAccess, Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 2739099268398711800L;
|
|
|
|
final int n;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final E element;
|
|
|
|
CopiesList(int n, E e) {
|
|
assert n >= 0;
|
|
this.n = n;
|
|
element = e;
|
|
}
|
|
|
|
public int size() {
|
|
return n;
|
|
}
|
|
|
|
public boolean contains(Object obj) {
|
|
return n != 0 && eq(obj, element);
|
|
}
|
|
|
|
public int indexOf(Object o) {
|
|
return contains(o) ? 0 : -1;
|
|
}
|
|
|
|
public int lastIndexOf(Object o) {
|
|
return contains(o) ? n - 1 : -1;
|
|
}
|
|
|
|
public E get(int index) {
|
|
Objects.checkIndex(index, n);
|
|
return element;
|
|
}
|
|
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
int n = this.n;
|
|
E element = this.element;
|
|
for (int i = 0; i < n; i++) {
|
|
action.accept(element);
|
|
}
|
|
}
|
|
|
|
public Object[] toArray() {
|
|
final Object[] a = new Object[n];
|
|
if (element != null)
|
|
Arrays.fill(a, 0, n, element);
|
|
return a;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
final int n = this.n;
|
|
if (a.length < n) {
|
|
a = (T[])java.lang.reflect.Array
|
|
.newInstance(a.getClass().getComponentType(), n);
|
|
if (element != null)
|
|
Arrays.fill(a, 0, n, element);
|
|
} else {
|
|
Arrays.fill(a, 0, n, element);
|
|
if (a.length > n)
|
|
a[n] = null;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
if (fromIndex < 0)
|
|
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
|
|
if (toIndex > n)
|
|
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
|
|
if (fromIndex > toIndex)
|
|
throw new IllegalArgumentException("fromIndex(" + fromIndex +
|
|
") > toIndex(" + toIndex + ")");
|
|
return new CopiesList<>(toIndex - fromIndex, element);
|
|
}
|
|
|
|
@Override
|
|
public int hashCode() {
|
|
if (n == 0) return 1;
|
|
// hashCode of n repeating elements is 31^n + elementHash * Sum(31^k, k = 0..n-1)
|
|
// this implementation completes in O(log(n)) steps taking advantage of
|
|
// 31^(2*n) = (31^n)^2 and Sum(31^k, k = 0..(2*n-1)) = Sum(31^k, k = 0..n-1) * (31^n + 1)
|
|
int pow = 31;
|
|
int sum = 1;
|
|
for (int i = Integer.numberOfLeadingZeros(n) + 1; i < Integer.SIZE; i++) {
|
|
sum *= pow + 1;
|
|
pow *= pow;
|
|
if ((n << i) < 0) {
|
|
pow *= 31;
|
|
sum = sum * 31 + 1;
|
|
}
|
|
}
|
|
return pow + sum * (element == null ? 0 : element.hashCode());
|
|
}
|
|
|
|
@Override
|
|
public boolean equals(Object o) {
|
|
if (o == this)
|
|
return true;
|
|
// Android-changed: (b/247094511) instanceof pattern variable is not yet supported.
|
|
// if (o instanceof CopiesList<?> other) {
|
|
if (o instanceof CopiesList<?>) {
|
|
CopiesList<?> other = (CopiesList<?>) o;
|
|
return n == other.n && (n == 0 || eq(element, other.element));
|
|
}
|
|
if (!(o instanceof List))
|
|
return false;
|
|
|
|
int remaining = n;
|
|
E e = element;
|
|
Iterator<?> itr = ((List<?>) o).iterator();
|
|
if (e == null) {
|
|
while (itr.hasNext() && remaining-- > 0) {
|
|
if (itr.next() != null)
|
|
return false;
|
|
}
|
|
} else {
|
|
while (itr.hasNext() && remaining-- > 0) {
|
|
if (!e.equals(itr.next()))
|
|
return false;
|
|
}
|
|
}
|
|
return remaining == 0 && !itr.hasNext();
|
|
}
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public Stream<E> stream() {
|
|
return IntStream.range(0, n).mapToObj(i -> element);
|
|
}
|
|
|
|
@Override
|
|
public Stream<E> parallelStream() {
|
|
return IntStream.range(0, n).parallel().mapToObj(i -> element);
|
|
}
|
|
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return stream().spliterator();
|
|
}
|
|
|
|
@java.io.Serial
|
|
private void readObject(ObjectInputStream ois) throws IOException, ClassNotFoundException {
|
|
ois.defaultReadObject();
|
|
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(ois, Object[].class, n);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a comparator that imposes the reverse of the <em>natural
|
|
* ordering</em> on a collection of objects that implement the
|
|
* {@code Comparable} interface. (The natural ordering is the ordering
|
|
* imposed by the objects' own {@code compareTo} method.) This enables a
|
|
* simple idiom for sorting (or maintaining) collections (or arrays) of
|
|
* objects that implement the {@code Comparable} interface in
|
|
* reverse-natural-order. For example, suppose {@code a} is an array of
|
|
* strings. Then: <pre>
|
|
* Arrays.sort(a, Collections.reverseOrder());
|
|
* </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
|
|
*
|
|
* The returned comparator is serializable.
|
|
*
|
|
* @apiNote
|
|
* This method returns a {@code Comparator} that is suitable for sorting
|
|
* elements in reverse order. To obtain a reverse-ordered <i>view</i> of a
|
|
* sequenced collection, use the {@link SequencedCollection#reversed
|
|
* SequencedCollection.reversed} method. Or, to obtain a reverse-ordered
|
|
* <i>view</i> of a sequenced map, use the {@link SequencedMap#reversed
|
|
* SequencedMap.reversed} method.
|
|
*
|
|
* @param <T> the class of the objects compared by the comparator
|
|
* @return A comparator that imposes the reverse of the <i>natural
|
|
* ordering</i> on a collection of objects that implement
|
|
* the {@code Comparable} interface.
|
|
* @see Comparable
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> Comparator<T> reverseOrder() {
|
|
return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class ReverseComparator
|
|
implements Comparator<Comparable<Object>>, Serializable {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 7207038068494060240L;
|
|
|
|
static final ReverseComparator REVERSE_ORDER
|
|
= new ReverseComparator();
|
|
|
|
public int compare(Comparable<Object> c1, Comparable<Object> c2) {
|
|
return c2.compareTo(c1);
|
|
}
|
|
|
|
@java.io.Serial
|
|
private Object readResolve() { return Collections.reverseOrder(); }
|
|
|
|
@Override
|
|
public Comparator<Comparable<Object>> reversed() {
|
|
return Comparator.naturalOrder();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a comparator that imposes the reverse ordering of the specified
|
|
* comparator. If the specified comparator is {@code null}, this method is
|
|
* equivalent to {@link #reverseOrder()} (in other words, it returns a
|
|
* comparator that imposes the reverse of the <em>natural ordering</em> on
|
|
* a collection of objects that implement the Comparable interface).
|
|
*
|
|
* <p>The returned comparator is serializable (assuming the specified
|
|
* comparator is also serializable or {@code null}).
|
|
*
|
|
* @apiNote
|
|
* This method returns a {@code Comparator} that is suitable for sorting
|
|
* elements in reverse order. To obtain a reverse-ordered <i>view</i> of a
|
|
* sequenced collection, use the {@link SequencedCollection#reversed
|
|
* SequencedCollection.reversed} method. Or, to obtain a reverse-ordered
|
|
* <i>view</i> of a sequenced map, use the {@link SequencedMap#reversed
|
|
* SequencedMap.reversed} method.
|
|
*
|
|
* @param <T> the class of the objects compared by the comparator
|
|
* @param cmp a comparator who's ordering is to be reversed by the returned
|
|
* comparator or {@code null}
|
|
* @return A comparator that imposes the reverse ordering of the
|
|
* specified comparator.
|
|
* @since 1.5
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
|
|
if (cmp == null) {
|
|
return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
|
|
} else if (cmp == ReverseComparator.REVERSE_ORDER) {
|
|
return (Comparator<T>) Comparators.NaturalOrderComparator.INSTANCE;
|
|
} else if (cmp == Comparators.NaturalOrderComparator.INSTANCE) {
|
|
return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
|
|
} else if (cmp instanceof ReverseComparator2) {
|
|
return ((ReverseComparator2<T>) cmp).cmp;
|
|
} else {
|
|
return new ReverseComparator2<>(cmp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class ReverseComparator2<T> implements Comparator<T>,
|
|
Serializable
|
|
{
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 4374092139857L;
|
|
|
|
/**
|
|
* The comparator specified in the static factory. This will never
|
|
* be null, as the static factory returns a ReverseComparator
|
|
* instance if its argument is null.
|
|
*
|
|
* @serial
|
|
*/
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Comparator<T> cmp;
|
|
|
|
ReverseComparator2(Comparator<T> cmp) {
|
|
assert cmp != null;
|
|
this.cmp = cmp;
|
|
}
|
|
|
|
public int compare(T t1, T t2) {
|
|
return cmp.compare(t2, t1);
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
return (o == this) ||
|
|
(o instanceof ReverseComparator2<?> that &&
|
|
cmp.equals(that.cmp));
|
|
}
|
|
|
|
public int hashCode() {
|
|
return cmp.hashCode() ^ Integer.MIN_VALUE;
|
|
}
|
|
|
|
@Override
|
|
public Comparator<T> reversed() {
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an enumeration over the specified collection. This provides
|
|
* interoperability with legacy APIs that require an enumeration
|
|
* as input.
|
|
*
|
|
* <p>The iterator returned from a call to {@link Enumeration#asIterator()}
|
|
* does not support removal of elements from the specified collection. This
|
|
* is necessary to avoid unintentionally increasing the capabilities of the
|
|
* returned enumeration.
|
|
*
|
|
* @param <T> the class of the objects in the collection
|
|
* @param c the collection for which an enumeration is to be returned.
|
|
* @return an enumeration over the specified collection.
|
|
* @see Enumeration
|
|
*/
|
|
public static <T> Enumeration<T> enumeration(final Collection<T> c) {
|
|
return new Enumeration<>() {
|
|
private final Iterator<T> i = c.iterator();
|
|
|
|
public boolean hasMoreElements() {
|
|
return i.hasNext();
|
|
}
|
|
|
|
public T nextElement() {
|
|
return i.next();
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Returns an array list containing the elements returned by the
|
|
* specified enumeration in the order they are returned by the
|
|
* enumeration. This method provides interoperability between
|
|
* legacy APIs that return enumerations and new APIs that require
|
|
* collections.
|
|
*
|
|
* @param <T> the class of the objects returned by the enumeration
|
|
* @param e enumeration providing elements for the returned
|
|
* array list
|
|
* @return an array list containing the elements returned
|
|
* by the specified enumeration.
|
|
* @since 1.4
|
|
* @see Enumeration
|
|
* @see ArrayList
|
|
*/
|
|
public static <T> ArrayList<T> list(Enumeration<T> e) {
|
|
ArrayList<T> l = new ArrayList<>();
|
|
while (e.hasMoreElements())
|
|
l.add(e.nextElement());
|
|
return l;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the specified arguments are equal, or both null.
|
|
*
|
|
* NB: Do not replace with Object.equals until JDK-8015417 is resolved.
|
|
*/
|
|
static boolean eq(Object o1, Object o2) {
|
|
return o1==null ? o2==null : o1.equals(o2);
|
|
}
|
|
|
|
/**
|
|
* Returns the number of elements in the specified collection equal to the
|
|
* specified object. More formally, returns the number of elements
|
|
* {@code e} in the collection such that
|
|
* {@code Objects.equals(o, e)}.
|
|
*
|
|
* @param c the collection in which to determine the frequency
|
|
* of {@code o}
|
|
* @param o the object whose frequency is to be determined
|
|
* @return the number of elements in {@code c} equal to {@code o}
|
|
* @throws NullPointerException if {@code c} is null
|
|
* @since 1.5
|
|
*/
|
|
public static int frequency(Collection<?> c, Object o) {
|
|
int result = 0;
|
|
if (o == null) {
|
|
for (Object e : c)
|
|
if (e == null)
|
|
result++;
|
|
} else {
|
|
for (Object e : c)
|
|
if (o.equals(e))
|
|
result++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if the two specified collections have no
|
|
* elements in common.
|
|
*
|
|
* <p>Care must be exercised if this method is used on collections that
|
|
* do not comply with the general contract for {@code Collection}.
|
|
* Implementations may elect to iterate over either collection and test
|
|
* for containment in the other collection (or to perform any equivalent
|
|
* computation). If either collection uses a nonstandard equality test
|
|
* (as does a {@link SortedSet} whose ordering is not <em>compatible with
|
|
* equals</em>, or the key set of an {@link IdentityHashMap}), both
|
|
* collections must use the same nonstandard equality test, or the
|
|
* result of this method is undefined.
|
|
*
|
|
* <p>Care must also be exercised when using collections that have
|
|
* restrictions on the elements that they may contain. Collection
|
|
* implementations are allowed to throw exceptions for any operation
|
|
* involving elements they deem ineligible. For absolute safety the
|
|
* specified collections should contain only elements which are
|
|
* eligible elements for both collections.
|
|
*
|
|
* <p>Note that it is permissible to pass the same collection in both
|
|
* parameters, in which case the method will return {@code true} if and
|
|
* only if the collection is empty.
|
|
*
|
|
* @param c1 a collection
|
|
* @param c2 a collection
|
|
* @return {@code true} if the two specified collections have no
|
|
* elements in common.
|
|
* @throws NullPointerException if either collection is {@code null}.
|
|
* @throws NullPointerException if one collection contains a {@code null}
|
|
* element and {@code null} is not an eligible element for the other collection.
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>)
|
|
* @throws ClassCastException if one collection contains an element that is
|
|
* of a type which is ineligible for the other collection.
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>)
|
|
* @since 1.5
|
|
*/
|
|
public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
|
|
// The collection to be used for contains(). Preference is given to
|
|
// the collection who's contains() has lower O() complexity.
|
|
Collection<?> contains = c2;
|
|
// The collection to be iterated. If the collections' contains() impl
|
|
// are of different O() complexity, the collection with slower
|
|
// contains() will be used for iteration. For collections who's
|
|
// contains() are of the same complexity then best performance is
|
|
// achieved by iterating the smaller collection.
|
|
Collection<?> iterate = c1;
|
|
|
|
// Performance optimization cases. The heuristics:
|
|
// 1. Generally iterate over c1.
|
|
// 2. If c1 is a Set then iterate over c2.
|
|
// 3. If either collection is empty then result is always true.
|
|
// 4. Iterate over the smaller Collection.
|
|
if (c1 instanceof Set) {
|
|
// Use c1 for contains as a Set's contains() is expected to perform
|
|
// better than O(N/2)
|
|
iterate = c2;
|
|
contains = c1;
|
|
} else if (!(c2 instanceof Set)) {
|
|
// Both are mere Collections. Iterate over smaller collection.
|
|
// Example: If c1 contains 3 elements and c2 contains 50 elements and
|
|
// assuming contains() requires ceiling(N/2) comparisons then
|
|
// checking for all c1 elements in c2 would require 75 comparisons
|
|
// (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
|
|
// 100 comparisons (50 * ceiling(3/2)).
|
|
int c1size = c1.size();
|
|
int c2size = c2.size();
|
|
if (c1size == 0 || c2size == 0) {
|
|
// At least one collection is empty. Nothing will match.
|
|
return true;
|
|
}
|
|
|
|
if (c1size > c2size) {
|
|
iterate = c2;
|
|
contains = c1;
|
|
}
|
|
}
|
|
|
|
for (Object e : iterate) {
|
|
if (contains.contains(e)) {
|
|
// Found a common element. Collections are not disjoint.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// No common elements were found.
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Adds all of the specified elements to the specified collection.
|
|
* Elements to be added may be specified individually or as an array.
|
|
* The behaviour of this convenience method is similar to that of
|
|
* {@code c.addAll(Collections.unmodifiableList(Arrays.asList(elements)))}.
|
|
*
|
|
* <p>When elements are specified individually, this method provides a
|
|
* convenient way to add a few elements to an existing collection:
|
|
* <pre>
|
|
* Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
|
|
* </pre>
|
|
*
|
|
* @param <T> the class of the elements to add and of the collection
|
|
* @param c the collection into which {@code elements} are to be inserted
|
|
* @param elements the elements to insert into {@code c}
|
|
* @return {@code true} if the collection changed as a result of the call
|
|
* @throws UnsupportedOperationException if {@code c} does not support
|
|
* the {@code add} operation
|
|
* @throws NullPointerException if {@code elements} contains one or more
|
|
* null values and {@code c} does not permit null elements, or
|
|
* if {@code c} or {@code elements} are {@code null}
|
|
* @throws IllegalArgumentException if some property of a value in
|
|
* {@code elements} prevents it from being added to {@code c}
|
|
* @see Collection#addAll(Collection)
|
|
* @since 1.5
|
|
*/
|
|
@SafeVarargs
|
|
public static <T> boolean addAll(Collection<? super T> c, T... elements) {
|
|
boolean result = false;
|
|
for (T element : elements)
|
|
result |= c.add(element);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a set backed by the specified map. The resulting set displays
|
|
* the same ordering, concurrency, and performance characteristics as the
|
|
* backing map. In essence, this factory method provides a {@link Set}
|
|
* implementation corresponding to any {@link Map} implementation. There
|
|
* is no need to use this method on a {@link Map} implementation that
|
|
* already has a corresponding {@link Set} implementation (such as {@link
|
|
* HashMap} or {@link TreeMap}).
|
|
*
|
|
* <p>Each method invocation on the set returned by this method results in
|
|
* exactly one method invocation on the backing map or its {@code keySet}
|
|
* view, with one exception. The {@code addAll} method is implemented
|
|
* as a sequence of {@code put} invocations on the backing map.
|
|
*
|
|
* <p>The specified map must be empty at the time this method is invoked,
|
|
* and should not be accessed directly after this method returns. These
|
|
* conditions are ensured if the map is created empty, passed directly
|
|
* to this method, and no reference to the map is retained, as illustrated
|
|
* in the following code fragment:
|
|
* <pre>
|
|
* Set<Object> weakHashSet = Collections.newSetFromMap(
|
|
* new WeakHashMap<Object, Boolean>());
|
|
* </pre>
|
|
*
|
|
* @param <E> the class of the map keys and of the objects in the
|
|
* returned set
|
|
* @param map the backing map
|
|
* @return the set backed by the map
|
|
* @throws IllegalArgumentException if {@code map} is not empty
|
|
* @since 1.6
|
|
*/
|
|
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
|
|
if (! map.isEmpty()) // implicit null check
|
|
throw new IllegalArgumentException("Map is non-empty");
|
|
return new SetFromMap<>(map);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class SetFromMap<E> extends AbstractSet<E>
|
|
implements Set<E>, Serializable
|
|
{
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Map<E, Boolean> m; // The backing map
|
|
private transient Set<E> s; // Its keySet
|
|
|
|
SetFromMap(Map<E, Boolean> map) {
|
|
m = map;
|
|
s = map.keySet();
|
|
}
|
|
|
|
public void clear() { m.clear(); }
|
|
public int size() { return m.size(); }
|
|
public boolean isEmpty() { return m.isEmpty(); }
|
|
public boolean contains(Object o) { return m.containsKey(o); }
|
|
public boolean remove(Object o) { return m.remove(o) != null; }
|
|
public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
|
|
public Iterator<E> iterator() { return s.iterator(); }
|
|
public Object[] toArray() { return s.toArray(); }
|
|
public <T> T[] toArray(T[] a) { return s.toArray(a); }
|
|
public String toString() { return s.toString(); }
|
|
public int hashCode() { return s.hashCode(); }
|
|
public boolean equals(Object o) { return o == this || s.equals(o); }
|
|
public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
|
|
public boolean removeAll(Collection<?> c) {return s.removeAll(c);}
|
|
public boolean retainAll(Collection<?> c) {return s.retainAll(c);}
|
|
// addAll is the only inherited implementation
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
s.forEach(action);
|
|
}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
return s.removeIf(filter);
|
|
}
|
|
|
|
@Override
|
|
public Spliterator<E> spliterator() {return s.spliterator();}
|
|
@Override
|
|
public Stream<E> stream() {return s.stream();}
|
|
@Override
|
|
public Stream<E> parallelStream() {return s.parallelStream();}
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 2454657854757543876L;
|
|
|
|
@java.io.Serial
|
|
private void readObject(java.io.ObjectInputStream stream)
|
|
throws IOException, ClassNotFoundException
|
|
{
|
|
stream.defaultReadObject();
|
|
s = m.keySet();
|
|
}
|
|
|
|
@java.io.Serial
|
|
private void readObjectNoData() throws java.io.ObjectStreamException {
|
|
throw new java.io.InvalidObjectException("missing SetFromMap data");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a sequenced set backed by the specified map. The resulting set displays
|
|
* the same ordering, concurrency, and performance characteristics as the
|
|
* backing map. In essence, this factory method provides a {@link SequencedSet}
|
|
* implementation corresponding to any {@link SequencedMap} implementation.
|
|
*
|
|
* <p>Each method invocation on the set returned by this method results in
|
|
* exactly one method invocation on the backing map or its {@code keySet}
|
|
* view, with one exception. The {@code addAll} method is implemented
|
|
* as a sequence of {@code put} invocations on the backing map.
|
|
*
|
|
* <p>The specified map must be empty at the time this method is invoked,
|
|
* and should not be accessed directly after this method returns. These
|
|
* conditions are ensured if the map is created empty, passed directly
|
|
* to this method, and no reference to the map is retained.
|
|
*
|
|
* @apiNote
|
|
* The following example code creates a {@code SequencedSet} from a
|
|
* {@code LinkedHashMap}. This differs from a {@code LinkedHashSet}
|
|
* in that the map's {@code removeEldestEntry} is overridden to provide
|
|
* an eviction policy, which is not possible with a {@code LinkedHashSet}.
|
|
*
|
|
* {@snippet :
|
|
* SequencedSet<String> set = Collections.newSequencedSetFromMap(
|
|
* new LinkedHashMap<String, Boolean>() {
|
|
* protected boolean removeEldestEntry(Map.Entry<String, Boolean> e) {
|
|
* return this.size() > 5;
|
|
* }
|
|
* });
|
|
* }
|
|
*
|
|
* @param <E> the class of the map keys and of the objects in the
|
|
* returned set
|
|
* @param map the backing map
|
|
* @return the set backed by the map
|
|
* @throws IllegalArgumentException if {@code map} is not empty
|
|
* @since 21
|
|
*/
|
|
public static <E> SequencedSet<E> newSequencedSetFromMap(SequencedMap<E, Boolean> map) {
|
|
if (! map.isEmpty()) // implicit null check
|
|
throw new IllegalArgumentException("Map is non-empty");
|
|
return new SequencedSetFromMap<>(map);
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
private static class SequencedSetFromMap<E> extends SetFromMap<E> implements SequencedSet<E> {
|
|
private E nsee(Map.Entry<E, Boolean> e) {
|
|
if (e == null) {
|
|
throw new NoSuchElementException();
|
|
} else {
|
|
return e.getKey();
|
|
}
|
|
}
|
|
|
|
private SequencedMap<E, Boolean> map() {
|
|
return (SequencedMap<E, Boolean>) super.m;
|
|
}
|
|
|
|
SequencedSetFromMap(SequencedMap<E, Boolean> map) {
|
|
super(map);
|
|
}
|
|
|
|
// Even though this wrapper class is serializable, the reversed view is effectively
|
|
// not serializable because it points to the reversed map view, which usually isn't
|
|
// serializable.
|
|
public SequencedSet<E> reversed() { return new SequencedSetFromMap<>(map().reversed()); }
|
|
|
|
public void addFirst(E e) { map().putFirst(e, Boolean.TRUE); }
|
|
public void addLast(E e) { map().putLast(e, Boolean.TRUE); }
|
|
public E getFirst() { return nsee(map().firstEntry()); }
|
|
public E getLast() { return nsee(map().lastEntry()); }
|
|
public E removeFirst() { return nsee(map().pollFirstEntry()); }
|
|
public E removeLast() { return nsee(map().pollLastEntry()); }
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -3943479744841433802L;
|
|
}
|
|
|
|
/**
|
|
* Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
|
|
* {@link Queue}. Method {@code add} is mapped to {@code push},
|
|
* {@code remove} is mapped to {@code pop} and so on. This
|
|
* view can be useful when you would like to use a method
|
|
* requiring a {@code Queue} but you need Lifo ordering.
|
|
*
|
|
* <p>Each method invocation on the queue returned by this method
|
|
* results in exactly one method invocation on the backing deque, with
|
|
* one exception. The {@link Queue#addAll addAll} method is
|
|
* implemented as a sequence of {@link Deque#addFirst addFirst}
|
|
* invocations on the backing deque.
|
|
*
|
|
* @apiNote
|
|
* This method provides a view that inverts the sense of certain operations,
|
|
* but it doesn't reverse the encounter order. To obtain a reverse-ordered
|
|
* view, use the {@link Deque#reversed Deque.reversed} method.
|
|
*
|
|
* @param <T> the class of the objects in the deque
|
|
* @param deque the deque
|
|
* @return the queue
|
|
* @since 1.6
|
|
*/
|
|
public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
|
|
return new AsLIFOQueue<>(Objects.requireNonNull(deque));
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static class AsLIFOQueue<E> extends AbstractQueue<E>
|
|
implements Queue<E>, Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 1802017725587941708L;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final Deque<E> q;
|
|
AsLIFOQueue(Deque<E> q) { this.q = q; }
|
|
public boolean add(E e) { q.addFirst(e); return true; }
|
|
public boolean offer(E e) { return q.offerFirst(e); }
|
|
public E poll() { return q.pollFirst(); }
|
|
public E remove() { return q.removeFirst(); }
|
|
public E peek() { return q.peekFirst(); }
|
|
public E element() { return q.getFirst(); }
|
|
public void clear() { q.clear(); }
|
|
public int size() { return q.size(); }
|
|
public boolean isEmpty() { return q.isEmpty(); }
|
|
public boolean contains(Object o) { return q.contains(o); }
|
|
public boolean remove(Object o) { return q.remove(o); }
|
|
public Iterator<E> iterator() { return q.iterator(); }
|
|
public Object[] toArray() { return q.toArray(); }
|
|
public <T> T[] toArray(T[] a) { return q.toArray(a); }
|
|
public <T> T[] toArray(IntFunction<T[]> f) { return q.toArray(f); }
|
|
public String toString() { return q.toString(); }
|
|
public boolean containsAll(Collection<?> c) { return q.containsAll(c); }
|
|
public boolean removeAll(Collection<?> c) { return q.removeAll(c); }
|
|
public boolean retainAll(Collection<?> c) { return q.retainAll(c); }
|
|
// We use inherited addAll; forwarding addAll would be wrong
|
|
|
|
// Override default methods in Collection
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {q.forEach(action);}
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
return q.removeIf(filter);
|
|
}
|
|
@Override
|
|
public Spliterator<E> spliterator() {return q.spliterator();}
|
|
@Override
|
|
public Stream<E> stream() {return q.stream();}
|
|
@Override
|
|
public Stream<E> parallelStream() {return q.parallelStream();}
|
|
}
|
|
}
|