2586 lines
97 KiB
Java
2586 lines
97 KiB
Java
/*
|
|
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify itA
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.util;
|
|
|
|
import java.io.IOException;
|
|
import java.io.InvalidObjectException;
|
|
import java.io.ObjectInputStream;
|
|
import java.io.Serializable;
|
|
import java.lang.reflect.ParameterizedType;
|
|
import java.lang.reflect.Type;
|
|
import java.util.function.BiConsumer;
|
|
import java.util.function.BiFunction;
|
|
import java.util.function.Consumer;
|
|
import java.util.function.Function;
|
|
|
|
/**
|
|
* Hash table based implementation of the {@code Map} interface. This
|
|
* implementation provides all of the optional map operations, and permits
|
|
* {@code null} values and the {@code null} key. (The {@code HashMap}
|
|
* class is roughly equivalent to {@code Hashtable}, except that it is
|
|
* unsynchronized and permits nulls.) This class makes no guarantees as to
|
|
* the order of the map; in particular, it does not guarantee that the order
|
|
* will remain constant over time.
|
|
*
|
|
* <p>This implementation provides constant-time performance for the basic
|
|
* operations ({@code get} and {@code put}), assuming the hash function
|
|
* disperses the elements properly among the buckets. Iteration over
|
|
* collection views requires time proportional to the "capacity" of the
|
|
* {@code HashMap} instance (the number of buckets) plus its size (the number
|
|
* of key-value mappings). Thus, it's very important not to set the initial
|
|
* capacity too high (or the load factor too low) if iteration performance is
|
|
* important.
|
|
*
|
|
* <p>An instance of {@code HashMap} has two parameters that affect its
|
|
* performance: <i>initial capacity</i> and <i>load factor</i>. The
|
|
* <i>capacity</i> is the number of buckets in the hash table, and the initial
|
|
* capacity is simply the capacity at the time the hash table is created. The
|
|
* <i>load factor</i> is a measure of how full the hash table is allowed to
|
|
* get before its capacity is automatically increased. When the number of
|
|
* entries in the hash table exceeds the product of the load factor and the
|
|
* current capacity, the hash table is <i>rehashed</i> (that is, internal data
|
|
* structures are rebuilt) so that the hash table has approximately twice the
|
|
* number of buckets.
|
|
*
|
|
* <p>As a general rule, the default load factor (.75) offers a good
|
|
* tradeoff between time and space costs. Higher values decrease the
|
|
* space overhead but increase the lookup cost (reflected in most of
|
|
* the operations of the {@code HashMap} class, including
|
|
* {@code get} and {@code put}). The expected number of entries in
|
|
* the map and its load factor should be taken into account when
|
|
* setting its initial capacity, so as to minimize the number of
|
|
* rehash operations. If the initial capacity is greater than the
|
|
* maximum number of entries divided by the load factor, no rehash
|
|
* operations will ever occur.
|
|
*
|
|
* <p>If many mappings are to be stored in a {@code HashMap}
|
|
* instance, creating it with a sufficiently large capacity will allow
|
|
* the mappings to be stored more efficiently than letting it perform
|
|
* automatic rehashing as needed to grow the table. Note that using
|
|
* many keys with the same {@code hashCode()} is a sure way to slow
|
|
* down performance of any hash table. To ameliorate impact, when keys
|
|
* are {@link Comparable}, this class may use comparison order among
|
|
* keys to help break ties.
|
|
*
|
|
* <p><strong>Note that this implementation is not synchronized.</strong>
|
|
* If multiple threads access a hash map concurrently, and at least one of
|
|
* the threads modifies the map structurally, it <i>must</i> be
|
|
* synchronized externally. (A structural modification is any operation
|
|
* that adds or deletes one or more mappings; merely changing the value
|
|
* associated with a key that an instance already contains is not a
|
|
* structural modification.) This is typically accomplished by
|
|
* synchronizing on some object that naturally encapsulates the map.
|
|
*
|
|
* If no such object exists, the map should be "wrapped" using the
|
|
* {@link Collections#synchronizedMap Collections.synchronizedMap}
|
|
* method. This is best done at creation time, to prevent accidental
|
|
* unsynchronized access to the map:<pre>
|
|
* Map m = Collections.synchronizedMap(new HashMap(...));</pre>
|
|
*
|
|
* <p>The iterators returned by all of this class's "collection view methods"
|
|
* are <i>fail-fast</i>: if the map is structurally modified at any time after
|
|
* the iterator is created, in any way except through the iterator's own
|
|
* {@code remove} method, the iterator will throw a
|
|
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
|
|
* modification, the iterator fails quickly and cleanly, rather than risking
|
|
* arbitrary, non-deterministic behavior at an undetermined time in the
|
|
* future.
|
|
*
|
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
|
|
* as it is, generally speaking, impossible to make any hard guarantees in the
|
|
* presence of unsynchronized concurrent modification. Fail-fast iterators
|
|
* throw {@code ConcurrentModificationException} on a best-effort basis.
|
|
* Therefore, it would be wrong to write a program that depended on this
|
|
* exception for its correctness: <i>the fail-fast behavior of iterators
|
|
* should be used only to detect bugs.</i>
|
|
*
|
|
* <p>This class is a member of the
|
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
|
* Java Collections Framework</a>.
|
|
*
|
|
* @param <K> the type of keys maintained by this map
|
|
* @param <V> the type of mapped values
|
|
*
|
|
* @author Doug Lea
|
|
* @author Josh Bloch
|
|
* @author Arthur van Hoff
|
|
* @author Neal Gafter
|
|
* @see Object#hashCode()
|
|
* @see Collection
|
|
* @see Map
|
|
* @see TreeMap
|
|
* @see Hashtable
|
|
* @since 1.2
|
|
*/
|
|
public class HashMap<K,V> extends AbstractMap<K,V>
|
|
implements Map<K,V>, Cloneable, Serializable {
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 362498820763181265L;
|
|
|
|
/*
|
|
* Implementation notes.
|
|
*
|
|
* This map usually acts as a binned (bucketed) hash table, but
|
|
* when bins get too large, they are transformed into bins of
|
|
* TreeNodes, each structured similarly to those in
|
|
* java.util.TreeMap. Most methods try to use normal bins, but
|
|
* relay to TreeNode methods when applicable (simply by checking
|
|
* instanceof a node). Bins of TreeNodes may be traversed and
|
|
* used like any others, but additionally support faster lookup
|
|
* when overpopulated. However, since the vast majority of bins in
|
|
* normal use are not overpopulated, checking for existence of
|
|
* tree bins may be delayed in the course of table methods.
|
|
*
|
|
* Tree bins (i.e., bins whose elements are all TreeNodes) are
|
|
* ordered primarily by hashCode, but in the case of ties, if two
|
|
* elements are of the same "class C implements Comparable<C>",
|
|
* type then their compareTo method is used for ordering. (We
|
|
* conservatively check generic types via reflection to validate
|
|
* this -- see method comparableClassFor). The added complexity
|
|
* of tree bins is worthwhile in providing worst-case O(log n)
|
|
* operations when keys either have distinct hashes or are
|
|
* orderable, Thus, performance degrades gracefully under
|
|
* accidental or malicious usages in which hashCode() methods
|
|
* return values that are poorly distributed, as well as those in
|
|
* which many keys share a hashCode, so long as they are also
|
|
* Comparable. (If neither of these apply, we may waste about a
|
|
* factor of two in time and space compared to taking no
|
|
* precautions. But the only known cases stem from poor user
|
|
* programming practices that are already so slow that this makes
|
|
* little difference.)
|
|
*
|
|
* Because TreeNodes are about twice the size of regular nodes, we
|
|
* use them only when bins contain enough nodes to warrant use
|
|
* (see TREEIFY_THRESHOLD). And when they become too small (due to
|
|
* removal or resizing) they are converted back to plain bins. In
|
|
* usages with well-distributed user hashCodes, tree bins are
|
|
* rarely used. Ideally, under random hashCodes, the frequency of
|
|
* nodes in bins follows a Poisson distribution
|
|
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
|
|
* parameter of about 0.5 on average for the default resizing
|
|
* threshold of 0.75, although with a large variance because of
|
|
* resizing granularity. Ignoring variance, the expected
|
|
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
|
|
* factorial(k)). The first values are:
|
|
*
|
|
* 0: 0.60653066
|
|
* 1: 0.30326533
|
|
* 2: 0.07581633
|
|
* 3: 0.01263606
|
|
* 4: 0.00157952
|
|
* 5: 0.00015795
|
|
* 6: 0.00001316
|
|
* 7: 0.00000094
|
|
* 8: 0.00000006
|
|
* more: less than 1 in ten million
|
|
*
|
|
* The root of a tree bin is normally its first node. However,
|
|
* sometimes (currently only upon Iterator.remove), the root might
|
|
* be elsewhere, but can be recovered following parent links
|
|
* (method TreeNode.root()).
|
|
*
|
|
* All applicable internal methods accept a hash code as an
|
|
* argument (as normally supplied from a public method), allowing
|
|
* them to call each other without recomputing user hashCodes.
|
|
* Most internal methods also accept a "tab" argument, that is
|
|
* normally the current table, but may be a new or old one when
|
|
* resizing or converting.
|
|
*
|
|
* When bin lists are treeified, split, or untreeified, we keep
|
|
* them in the same relative access/traversal order (i.e., field
|
|
* Node.next) to better preserve locality, and to slightly
|
|
* simplify handling of splits and traversals that invoke
|
|
* iterator.remove. When using comparators on insertion, to keep a
|
|
* total ordering (or as close as is required here) across
|
|
* rebalancings, we compare classes and identityHashCodes as
|
|
* tie-breakers.
|
|
*
|
|
* The use and transitions among plain vs tree modes is
|
|
* complicated by the existence of subclass LinkedHashMap. See
|
|
* below for hook methods defined to be invoked upon insertion,
|
|
* removal and access that allow LinkedHashMap internals to
|
|
* otherwise remain independent of these mechanics. (This also
|
|
* requires that a map instance be passed to some utility methods
|
|
* that may create new nodes.)
|
|
*
|
|
* The concurrent-programming-like SSA-based coding style helps
|
|
* avoid aliasing errors amid all of the twisty pointer operations.
|
|
*/
|
|
|
|
/**
|
|
* The default initial capacity - MUST be a power of two.
|
|
*/
|
|
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
|
|
|
|
/**
|
|
* The maximum capacity, used if a higher value is implicitly specified
|
|
* by either of the constructors with arguments.
|
|
* MUST be a power of two <= 1<<30.
|
|
*/
|
|
static final int MAXIMUM_CAPACITY = 1 << 30;
|
|
|
|
/**
|
|
* The load factor used when none specified in constructor.
|
|
*/
|
|
static final float DEFAULT_LOAD_FACTOR = 0.75f;
|
|
|
|
/**
|
|
* The bin count threshold for using a tree rather than list for a
|
|
* bin. Bins are converted to trees when adding an element to a
|
|
* bin with at least this many nodes. The value must be greater
|
|
* than 2 and should be at least 8 to mesh with assumptions in
|
|
* tree removal about conversion back to plain bins upon
|
|
* shrinkage.
|
|
*/
|
|
static final int TREEIFY_THRESHOLD = 8;
|
|
|
|
/**
|
|
* The bin count threshold for untreeifying a (split) bin during a
|
|
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
|
|
* most 6 to mesh with shrinkage detection under removal.
|
|
*/
|
|
static final int UNTREEIFY_THRESHOLD = 6;
|
|
|
|
/**
|
|
* The smallest table capacity for which bins may be treeified.
|
|
* (Otherwise the table is resized if too many nodes in a bin.)
|
|
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
|
|
* between resizing and treeification thresholds.
|
|
*/
|
|
static final int MIN_TREEIFY_CAPACITY = 64;
|
|
|
|
/**
|
|
* Basic hash bin node, used for most entries. (See below for
|
|
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
|
|
*/
|
|
static class Node<K,V> implements Map.Entry<K,V> {
|
|
final int hash;
|
|
final K key;
|
|
V value;
|
|
Node<K,V> next;
|
|
|
|
Node(int hash, K key, V value, Node<K,V> next) {
|
|
this.hash = hash;
|
|
this.key = key;
|
|
this.value = value;
|
|
this.next = next;
|
|
}
|
|
|
|
public final K getKey() { return key; }
|
|
public final V getValue() { return value; }
|
|
public final String toString() { return key + "=" + value; }
|
|
|
|
public final int hashCode() {
|
|
return Objects.hashCode(key) ^ Objects.hashCode(value);
|
|
}
|
|
|
|
public final V setValue(V newValue) {
|
|
V oldValue = value;
|
|
value = newValue;
|
|
return oldValue;
|
|
}
|
|
|
|
public final boolean equals(Object o) {
|
|
if (o == this)
|
|
return true;
|
|
|
|
return o instanceof Map.Entry<?, ?> e
|
|
&& Objects.equals(key, e.getKey())
|
|
&& Objects.equals(value, e.getValue());
|
|
}
|
|
}
|
|
|
|
/* ---------------- Static utilities -------------- */
|
|
|
|
/**
|
|
* Computes key.hashCode() and spreads (XORs) higher bits of hash
|
|
* to lower. Because the table uses power-of-two masking, sets of
|
|
* hashes that vary only in bits above the current mask will
|
|
* always collide. (Among known examples are sets of Float keys
|
|
* holding consecutive whole numbers in small tables.) So we
|
|
* apply a transform that spreads the impact of higher bits
|
|
* downward. There is a tradeoff between speed, utility, and
|
|
* quality of bit-spreading. Because many common sets of hashes
|
|
* are already reasonably distributed (so don't benefit from
|
|
* spreading), and because we use trees to handle large sets of
|
|
* collisions in bins, we just XOR some shifted bits in the
|
|
* cheapest possible way to reduce systematic lossage, as well as
|
|
* to incorporate impact of the highest bits that would otherwise
|
|
* never be used in index calculations because of table bounds.
|
|
*/
|
|
static final int hash(Object key) {
|
|
int h;
|
|
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
|
|
}
|
|
|
|
/**
|
|
* Returns x's Class if it is of the form "class C implements
|
|
* Comparable<C>", else null.
|
|
*/
|
|
static Class<?> comparableClassFor(Object x) {
|
|
if (x instanceof Comparable) {
|
|
Class<?> c; Type[] ts, as; ParameterizedType p;
|
|
if ((c = x.getClass()) == String.class) // bypass checks
|
|
return c;
|
|
if ((ts = c.getGenericInterfaces()) != null) {
|
|
for (Type t : ts) {
|
|
if ((t instanceof ParameterizedType) &&
|
|
((p = (ParameterizedType) t).getRawType() ==
|
|
Comparable.class) &&
|
|
(as = p.getActualTypeArguments()) != null &&
|
|
as.length == 1 && as[0] == c) // type arg is c
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns k.compareTo(x) if x matches kc (k's screened comparable
|
|
* class), else 0.
|
|
*/
|
|
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
|
|
static int compareComparables(Class<?> kc, Object k, Object x) {
|
|
return (x == null || x.getClass() != kc ? 0 :
|
|
((Comparable)k).compareTo(x));
|
|
}
|
|
|
|
/**
|
|
* Returns a power of two size for the given target capacity.
|
|
*/
|
|
static final int tableSizeFor(int cap) {
|
|
int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
|
|
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
|
|
}
|
|
|
|
/* ---------------- Fields -------------- */
|
|
|
|
/**
|
|
* The table, initialized on first use, and resized as
|
|
* necessary. When allocated, length is always a power of two.
|
|
* (We also tolerate length zero in some operations to allow
|
|
* bootstrapping mechanics that are currently not needed.)
|
|
*/
|
|
transient Node<K,V>[] table;
|
|
|
|
/**
|
|
* Holds cached entrySet(). Note that AbstractMap fields are used
|
|
* for keySet() and values().
|
|
*/
|
|
transient Set<Map.Entry<K,V>> entrySet;
|
|
|
|
/**
|
|
* The number of key-value mappings contained in this map.
|
|
*/
|
|
transient int size;
|
|
|
|
/**
|
|
* The number of times this HashMap has been structurally modified
|
|
* Structural modifications are those that change the number of mappings in
|
|
* the HashMap or otherwise modify its internal structure (e.g.,
|
|
* rehash). This field is used to make iterators on Collection-views of
|
|
* the HashMap fail-fast. (See ConcurrentModificationException).
|
|
*/
|
|
transient int modCount;
|
|
|
|
/**
|
|
* The next size value at which to resize (capacity * load factor).
|
|
*
|
|
* @serial
|
|
*/
|
|
// (The javadoc description is true upon serialization.
|
|
// Additionally, if the table array has not been allocated, this
|
|
// field holds the initial array capacity, or zero signifying
|
|
// DEFAULT_INITIAL_CAPACITY.)
|
|
int threshold;
|
|
|
|
/**
|
|
* The load factor for the hash table.
|
|
*
|
|
* @serial
|
|
*/
|
|
final float loadFactor;
|
|
|
|
/* ---------------- Public operations -------------- */
|
|
|
|
/**
|
|
* Constructs an empty {@code HashMap} with the specified initial
|
|
* capacity and load factor.
|
|
*
|
|
* @apiNote
|
|
* To create a {@code HashMap} with an initial capacity that accommodates
|
|
* an expected number of mappings, use {@link #newHashMap(int) newHashMap}.
|
|
*
|
|
* @param initialCapacity the initial capacity
|
|
* @param loadFactor the load factor
|
|
* @throws IllegalArgumentException if the initial capacity is negative
|
|
* or the load factor is nonpositive
|
|
*/
|
|
public HashMap(int initialCapacity, float loadFactor) {
|
|
if (initialCapacity < 0)
|
|
throw new IllegalArgumentException("Illegal initial capacity: " +
|
|
initialCapacity);
|
|
if (initialCapacity > MAXIMUM_CAPACITY)
|
|
initialCapacity = MAXIMUM_CAPACITY;
|
|
if (loadFactor <= 0 || Float.isNaN(loadFactor))
|
|
throw new IllegalArgumentException("Illegal load factor: " +
|
|
loadFactor);
|
|
this.loadFactor = loadFactor;
|
|
this.threshold = tableSizeFor(initialCapacity);
|
|
}
|
|
|
|
/**
|
|
* Constructs an empty {@code HashMap} with the specified initial
|
|
* capacity and the default load factor (0.75).
|
|
*
|
|
* @apiNote
|
|
* To create a {@code HashMap} with an initial capacity that accommodates
|
|
* an expected number of mappings, use {@link #newHashMap(int) newHashMap}.
|
|
*
|
|
* @param initialCapacity the initial capacity.
|
|
* @throws IllegalArgumentException if the initial capacity is negative.
|
|
*/
|
|
public HashMap(int initialCapacity) {
|
|
this(initialCapacity, DEFAULT_LOAD_FACTOR);
|
|
}
|
|
|
|
/**
|
|
* Constructs an empty {@code HashMap} with the default initial capacity
|
|
* (16) and the default load factor (0.75).
|
|
*/
|
|
public HashMap() {
|
|
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
|
|
}
|
|
|
|
/**
|
|
* Constructs a new {@code HashMap} with the same mappings as the
|
|
* specified {@code Map}. The {@code HashMap} is created with
|
|
* default load factor (0.75) and an initial capacity sufficient to
|
|
* hold the mappings in the specified {@code Map}.
|
|
*
|
|
* @param m the map whose mappings are to be placed in this map
|
|
* @throws NullPointerException if the specified map is null
|
|
*/
|
|
public HashMap(Map<? extends K, ? extends V> m) {
|
|
this.loadFactor = DEFAULT_LOAD_FACTOR;
|
|
putMapEntries(m, false);
|
|
}
|
|
|
|
/**
|
|
* Implements Map.putAll and Map constructor.
|
|
*
|
|
* @param m the map
|
|
* @param evict false when initially constructing this map, else
|
|
* true (relayed to method afterNodeInsertion).
|
|
*/
|
|
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
|
|
int s = m.size();
|
|
if (s > 0) {
|
|
if (table == null) { // pre-size
|
|
double dt = Math.ceil(s / (double)loadFactor);
|
|
int t = ((dt < (double)MAXIMUM_CAPACITY) ?
|
|
(int)dt : MAXIMUM_CAPACITY);
|
|
if (t > threshold)
|
|
threshold = tableSizeFor(t);
|
|
} else {
|
|
// Because of linked-list bucket constraints, we cannot
|
|
// expand all at once, but can reduce total resize
|
|
// effort by repeated doubling now vs later
|
|
while (s > threshold && table.length < MAXIMUM_CAPACITY)
|
|
resize();
|
|
}
|
|
|
|
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
|
|
K key = e.getKey();
|
|
V value = e.getValue();
|
|
putVal(hash(key), key, value, false, evict);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the number of key-value mappings in this map.
|
|
*
|
|
* @return the number of key-value mappings in this map
|
|
*/
|
|
public int size() {
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this map contains no key-value mappings.
|
|
*
|
|
* @return {@code true} if this map contains no key-value mappings
|
|
*/
|
|
public boolean isEmpty() {
|
|
return size == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the value to which the specified key is mapped,
|
|
* or {@code null} if this map contains no mapping for the key.
|
|
*
|
|
* <p>More formally, if this map contains a mapping from a key
|
|
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
|
|
* key.equals(k))}, then this method returns {@code v}; otherwise
|
|
* it returns {@code null}. (There can be at most one such mapping.)
|
|
*
|
|
* <p>A return value of {@code null} does not <i>necessarily</i>
|
|
* indicate that the map contains no mapping for the key; it's also
|
|
* possible that the map explicitly maps the key to {@code null}.
|
|
* The {@link #containsKey containsKey} operation may be used to
|
|
* distinguish these two cases.
|
|
*
|
|
* @see #put(Object, Object)
|
|
*/
|
|
public V get(Object key) {
|
|
Node<K,V> e;
|
|
return (e = getNode(key)) == null ? null : e.value;
|
|
}
|
|
|
|
/**
|
|
* Implements Map.get and related methods.
|
|
*
|
|
* @param key the key
|
|
* @return the node, or null if none
|
|
*/
|
|
final Node<K,V> getNode(Object key) {
|
|
Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k;
|
|
if ((tab = table) != null && (n = tab.length) > 0 &&
|
|
(first = tab[(n - 1) & (hash = hash(key))]) != null) {
|
|
if (first.hash == hash && // always check first node
|
|
((k = first.key) == key || (key != null && key.equals(k))))
|
|
return first;
|
|
if ((e = first.next) != null) {
|
|
if (first instanceof TreeNode)
|
|
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
|
|
do {
|
|
if (e.hash == hash &&
|
|
((k = e.key) == key || (key != null && key.equals(k))))
|
|
return e;
|
|
} while ((e = e.next) != null);
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this map contains a mapping for the
|
|
* specified key.
|
|
*
|
|
* @param key The key whose presence in this map is to be tested
|
|
* @return {@code true} if this map contains a mapping for the specified
|
|
* key.
|
|
*/
|
|
public boolean containsKey(Object key) {
|
|
return getNode(key) != null;
|
|
}
|
|
|
|
/**
|
|
* Associates the specified value with the specified key in this map.
|
|
* If the map previously contained a mapping for the key, the old
|
|
* value is replaced.
|
|
*
|
|
* @param key key with which the specified value is to be associated
|
|
* @param value value to be associated with the specified key
|
|
* @return the previous value associated with {@code key}, or
|
|
* {@code null} if there was no mapping for {@code key}.
|
|
* (A {@code null} return can also indicate that the map
|
|
* previously associated {@code null} with {@code key}.)
|
|
*/
|
|
public V put(K key, V value) {
|
|
return putVal(hash(key), key, value, false, true);
|
|
}
|
|
|
|
/**
|
|
* Implements Map.put and related methods.
|
|
*
|
|
* @param hash hash for key
|
|
* @param key the key
|
|
* @param value the value to put
|
|
* @param onlyIfAbsent if true, don't change existing value
|
|
* @param evict if false, the table is in creation mode.
|
|
* @return previous value, or null if none
|
|
*/
|
|
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
|
|
boolean evict) {
|
|
Node<K,V>[] tab; Node<K,V> p; int n, i;
|
|
if ((tab = table) == null || (n = tab.length) == 0)
|
|
n = (tab = resize()).length;
|
|
if ((p = tab[i = (n - 1) & hash]) == null)
|
|
tab[i] = newNode(hash, key, value, null);
|
|
else {
|
|
Node<K,V> e; K k;
|
|
if (p.hash == hash &&
|
|
((k = p.key) == key || (key != null && key.equals(k))))
|
|
e = p;
|
|
else if (p instanceof TreeNode)
|
|
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
|
|
else {
|
|
for (int binCount = 0; ; ++binCount) {
|
|
if ((e = p.next) == null) {
|
|
p.next = newNode(hash, key, value, null);
|
|
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
|
|
treeifyBin(tab, hash);
|
|
break;
|
|
}
|
|
if (e.hash == hash &&
|
|
((k = e.key) == key || (key != null && key.equals(k))))
|
|
break;
|
|
p = e;
|
|
}
|
|
}
|
|
if (e != null) { // existing mapping for key
|
|
V oldValue = e.value;
|
|
if (!onlyIfAbsent || oldValue == null)
|
|
e.value = value;
|
|
afterNodeAccess(e);
|
|
return oldValue;
|
|
}
|
|
}
|
|
++modCount;
|
|
if (++size > threshold)
|
|
resize();
|
|
afterNodeInsertion(evict);
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Initializes or doubles table size. If null, allocates in
|
|
* accord with initial capacity target held in field threshold.
|
|
* Otherwise, because we are using power-of-two expansion, the
|
|
* elements from each bin must either stay at same index, or move
|
|
* with a power of two offset in the new table.
|
|
*
|
|
* @return the table
|
|
*/
|
|
final Node<K,V>[] resize() {
|
|
Node<K,V>[] oldTab = table;
|
|
int oldCap = (oldTab == null) ? 0 : oldTab.length;
|
|
int oldThr = threshold;
|
|
int newCap, newThr = 0;
|
|
if (oldCap > 0) {
|
|
if (oldCap >= MAXIMUM_CAPACITY) {
|
|
threshold = Integer.MAX_VALUE;
|
|
return oldTab;
|
|
}
|
|
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
|
|
oldCap >= DEFAULT_INITIAL_CAPACITY)
|
|
newThr = oldThr << 1; // double threshold
|
|
}
|
|
else if (oldThr > 0) // initial capacity was placed in threshold
|
|
newCap = oldThr;
|
|
else { // zero initial threshold signifies using defaults
|
|
newCap = DEFAULT_INITIAL_CAPACITY;
|
|
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
|
|
}
|
|
if (newThr == 0) {
|
|
float ft = (float)newCap * loadFactor;
|
|
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
|
|
(int)ft : Integer.MAX_VALUE);
|
|
}
|
|
threshold = newThr;
|
|
@SuppressWarnings({"rawtypes","unchecked"})
|
|
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
|
|
table = newTab;
|
|
if (oldTab != null) {
|
|
for (int j = 0; j < oldCap; ++j) {
|
|
Node<K,V> e;
|
|
if ((e = oldTab[j]) != null) {
|
|
oldTab[j] = null;
|
|
if (e.next == null)
|
|
newTab[e.hash & (newCap - 1)] = e;
|
|
else if (e instanceof TreeNode)
|
|
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
|
|
else { // preserve order
|
|
Node<K,V> loHead = null, loTail = null;
|
|
Node<K,V> hiHead = null, hiTail = null;
|
|
Node<K,V> next;
|
|
do {
|
|
next = e.next;
|
|
if ((e.hash & oldCap) == 0) {
|
|
if (loTail == null)
|
|
loHead = e;
|
|
else
|
|
loTail.next = e;
|
|
loTail = e;
|
|
}
|
|
else {
|
|
if (hiTail == null)
|
|
hiHead = e;
|
|
else
|
|
hiTail.next = e;
|
|
hiTail = e;
|
|
}
|
|
} while ((e = next) != null);
|
|
if (loTail != null) {
|
|
loTail.next = null;
|
|
newTab[j] = loHead;
|
|
}
|
|
if (hiTail != null) {
|
|
hiTail.next = null;
|
|
newTab[j + oldCap] = hiHead;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return newTab;
|
|
}
|
|
|
|
/**
|
|
* Replaces all linked nodes in bin at index for given hash unless
|
|
* table is too small, in which case resizes instead.
|
|
*/
|
|
final void treeifyBin(Node<K,V>[] tab, int hash) {
|
|
int n, index; Node<K,V> e;
|
|
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
|
|
resize();
|
|
else if ((e = tab[index = (n - 1) & hash]) != null) {
|
|
TreeNode<K,V> hd = null, tl = null;
|
|
do {
|
|
TreeNode<K,V> p = replacementTreeNode(e, null);
|
|
if (tl == null)
|
|
hd = p;
|
|
else {
|
|
p.prev = tl;
|
|
tl.next = p;
|
|
}
|
|
tl = p;
|
|
} while ((e = e.next) != null);
|
|
if ((tab[index] = hd) != null)
|
|
hd.treeify(tab);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copies all of the mappings from the specified map to this map.
|
|
* These mappings will replace any mappings that this map had for
|
|
* any of the keys currently in the specified map.
|
|
*
|
|
* @param m mappings to be stored in this map
|
|
* @throws NullPointerException if the specified map is null
|
|
*/
|
|
public void putAll(Map<? extends K, ? extends V> m) {
|
|
putMapEntries(m, true);
|
|
}
|
|
|
|
/**
|
|
* Removes the mapping for the specified key from this map if present.
|
|
*
|
|
* @param key key whose mapping is to be removed from the map
|
|
* @return the previous value associated with {@code key}, or
|
|
* {@code null} if there was no mapping for {@code key}.
|
|
* (A {@code null} return can also indicate that the map
|
|
* previously associated {@code null} with {@code key}.)
|
|
*/
|
|
public V remove(Object key) {
|
|
Node<K,V> e;
|
|
return (e = removeNode(hash(key), key, null, false, true)) == null ?
|
|
null : e.value;
|
|
}
|
|
|
|
/**
|
|
* Implements Map.remove and related methods.
|
|
*
|
|
* @param hash hash for key
|
|
* @param key the key
|
|
* @param value the value to match if matchValue, else ignored
|
|
* @param matchValue if true only remove if value is equal
|
|
* @param movable if false do not move other nodes while removing
|
|
* @return the node, or null if none
|
|
*/
|
|
final Node<K,V> removeNode(int hash, Object key, Object value,
|
|
boolean matchValue, boolean movable) {
|
|
Node<K,V>[] tab; Node<K,V> p; int n, index;
|
|
if ((tab = table) != null && (n = tab.length) > 0 &&
|
|
(p = tab[index = (n - 1) & hash]) != null) {
|
|
Node<K,V> node = null, e; K k; V v;
|
|
if (p.hash == hash &&
|
|
((k = p.key) == key || (key != null && key.equals(k))))
|
|
node = p;
|
|
else if ((e = p.next) != null) {
|
|
if (p instanceof TreeNode)
|
|
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
|
|
else {
|
|
do {
|
|
if (e.hash == hash &&
|
|
((k = e.key) == key ||
|
|
(key != null && key.equals(k)))) {
|
|
node = e;
|
|
break;
|
|
}
|
|
p = e;
|
|
} while ((e = e.next) != null);
|
|
}
|
|
}
|
|
if (node != null && (!matchValue || (v = node.value) == value ||
|
|
(value != null && value.equals(v)))) {
|
|
if (node instanceof TreeNode)
|
|
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
|
|
else if (node == p)
|
|
tab[index] = node.next;
|
|
else
|
|
p.next = node.next;
|
|
++modCount;
|
|
--size;
|
|
afterNodeRemoval(node);
|
|
return node;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Removes all of the mappings from this map.
|
|
* The map will be empty after this call returns.
|
|
*/
|
|
public void clear() {
|
|
Node<K,V>[] tab;
|
|
modCount++;
|
|
if ((tab = table) != null && size > 0) {
|
|
size = 0;
|
|
for (int i = 0; i < tab.length; ++i)
|
|
tab[i] = null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this map maps one or more keys to the
|
|
* specified value.
|
|
*
|
|
* @param value value whose presence in this map is to be tested
|
|
* @return {@code true} if this map maps one or more keys to the
|
|
* specified value
|
|
*/
|
|
public boolean containsValue(Object value) {
|
|
Node<K,V>[] tab; V v;
|
|
if ((tab = table) != null && size > 0) {
|
|
for (Node<K,V> e : tab) {
|
|
for (; e != null; e = e.next) {
|
|
if ((v = e.value) == value ||
|
|
(value != null && value.equals(v)))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns a {@link Set} view of the keys contained in this map.
|
|
* The set is backed by the map, so changes to the map are
|
|
* reflected in the set, and vice-versa. If the map is modified
|
|
* while an iteration over the set is in progress (except through
|
|
* the iterator's own {@code remove} operation), the results of
|
|
* the iteration are undefined. The set supports element removal,
|
|
* which removes the corresponding mapping from the map, via the
|
|
* {@code Iterator.remove}, {@code Set.remove},
|
|
* {@code removeAll}, {@code retainAll}, and {@code clear}
|
|
* operations. It does not support the {@code add} or {@code addAll}
|
|
* operations.
|
|
*
|
|
* @return a set view of the keys contained in this map
|
|
*/
|
|
public Set<K> keySet() {
|
|
Set<K> ks = keySet;
|
|
if (ks == null) {
|
|
ks = new KeySet();
|
|
keySet = ks;
|
|
}
|
|
return ks;
|
|
}
|
|
|
|
/**
|
|
* Prepares the array for {@link Collection#toArray(Object[])} implementation.
|
|
* If supplied array is smaller than this map size, a new array is allocated.
|
|
* If supplied array is bigger than this map size, a null is written at size index.
|
|
*
|
|
* @param a an original array passed to {@code toArray()} method
|
|
* @param <T> type of array elements
|
|
* @return an array ready to be filled and returned from {@code toArray()} method.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
final <T> T[] prepareArray(T[] a) {
|
|
int size = this.size;
|
|
if (a.length < size) {
|
|
return (T[]) java.lang.reflect.Array
|
|
.newInstance(a.getClass().getComponentType(), size);
|
|
}
|
|
if (a.length > size) {
|
|
a[size] = null;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* Fills an array with this map keys and returns it. This method assumes
|
|
* that input array is big enough to fit all the keys. Use
|
|
* {@link #prepareArray(Object[])} to ensure this.
|
|
*
|
|
* @param a an array to fill
|
|
* @param <T> type of array elements
|
|
* @return supplied array
|
|
*/
|
|
<T> T[] keysToArray(T[] a) {
|
|
Object[] r = a;
|
|
Node<K,V>[] tab;
|
|
int idx = 0;
|
|
if (size > 0 && (tab = table) != null) {
|
|
for (Node<K,V> e : tab) {
|
|
for (; e != null; e = e.next) {
|
|
r[idx++] = e.key;
|
|
}
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* Fills an array with this map values and returns it. This method assumes
|
|
* that input array is big enough to fit all the values. Use
|
|
* {@link #prepareArray(Object[])} to ensure this.
|
|
*
|
|
* @param a an array to fill
|
|
* @param <T> type of array elements
|
|
* @return supplied array
|
|
*/
|
|
<T> T[] valuesToArray(T[] a) {
|
|
Object[] r = a;
|
|
Node<K,V>[] tab;
|
|
int idx = 0;
|
|
if (size > 0 && (tab = table) != null) {
|
|
for (Node<K,V> e : tab) {
|
|
for (; e != null; e = e.next) {
|
|
r[idx++] = e.value;
|
|
}
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
final class KeySet extends AbstractSet<K> {
|
|
public final int size() { return size; }
|
|
public final void clear() { HashMap.this.clear(); }
|
|
public final Iterator<K> iterator() { return new KeyIterator(); }
|
|
public final boolean contains(Object o) { return containsKey(o); }
|
|
public final boolean remove(Object key) {
|
|
return removeNode(hash(key), key, null, false, true) != null;
|
|
}
|
|
public final Spliterator<K> spliterator() {
|
|
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
|
|
}
|
|
|
|
public Object[] toArray() {
|
|
return keysToArray(new Object[size]);
|
|
}
|
|
|
|
public <T> T[] toArray(T[] a) {
|
|
return keysToArray(prepareArray(a));
|
|
}
|
|
|
|
public final void forEach(Consumer<? super K> action) {
|
|
Node<K,V>[] tab;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (size > 0 && (tab = table) != null) {
|
|
int mc = modCount;
|
|
// Android-changed: Detect changes to modCount early.
|
|
for (int i = 0; (i < tab.length && modCount == mc); ++i) {
|
|
for (Node<K,V> e = tab[i]; e != null; e = e.next)
|
|
action.accept(e.key);
|
|
}
|
|
if (modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a {@link Collection} view of the values contained in this map.
|
|
* The collection is backed by the map, so changes to the map are
|
|
* reflected in the collection, and vice-versa. If the map is
|
|
* modified while an iteration over the collection is in progress
|
|
* (except through the iterator's own {@code remove} operation),
|
|
* the results of the iteration are undefined. The collection
|
|
* supports element removal, which removes the corresponding
|
|
* mapping from the map, via the {@code Iterator.remove},
|
|
* {@code Collection.remove}, {@code removeAll},
|
|
* {@code retainAll} and {@code clear} operations. It does not
|
|
* support the {@code add} or {@code addAll} operations.
|
|
*
|
|
* @return a view of the values contained in this map
|
|
*/
|
|
public Collection<V> values() {
|
|
Collection<V> vs = values;
|
|
if (vs == null) {
|
|
vs = new Values();
|
|
values = vs;
|
|
}
|
|
return vs;
|
|
}
|
|
|
|
final class Values extends AbstractCollection<V> {
|
|
public final int size() { return size; }
|
|
public final void clear() { HashMap.this.clear(); }
|
|
public final Iterator<V> iterator() { return new ValueIterator(); }
|
|
public final boolean contains(Object o) { return containsValue(o); }
|
|
public final Spliterator<V> spliterator() {
|
|
return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
|
|
}
|
|
|
|
public Object[] toArray() {
|
|
return valuesToArray(new Object[size]);
|
|
}
|
|
|
|
public <T> T[] toArray(T[] a) {
|
|
return valuesToArray(prepareArray(a));
|
|
}
|
|
|
|
public final void forEach(Consumer<? super V> action) {
|
|
Node<K,V>[] tab;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (size > 0 && (tab = table) != null) {
|
|
int mc = modCount;
|
|
// Android-changed: Detect changes to modCount early.
|
|
for (int i = 0; (i < tab.length && modCount == mc); ++i) {
|
|
for (Node<K,V> e = tab[i]; e != null; e = e.next)
|
|
action.accept(e.value);
|
|
}
|
|
if (modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a {@link Set} view of the mappings contained in this map.
|
|
* The set is backed by the map, so changes to the map are
|
|
* reflected in the set, and vice-versa. If the map is modified
|
|
* while an iteration over the set is in progress (except through
|
|
* the iterator's own {@code remove} operation, or through the
|
|
* {@code setValue} operation on a map entry returned by the
|
|
* iterator) the results of the iteration are undefined. The set
|
|
* supports element removal, which removes the corresponding
|
|
* mapping from the map, via the {@code Iterator.remove},
|
|
* {@code Set.remove}, {@code removeAll}, {@code retainAll} and
|
|
* {@code clear} operations. It does not support the
|
|
* {@code add} or {@code addAll} operations.
|
|
*
|
|
* @return a set view of the mappings contained in this map
|
|
*/
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
Set<Map.Entry<K,V>> es;
|
|
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
|
|
}
|
|
|
|
final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
|
|
public final int size() { return size; }
|
|
public final void clear() { HashMap.this.clear(); }
|
|
public final Iterator<Map.Entry<K,V>> iterator() {
|
|
return new EntryIterator();
|
|
}
|
|
public final boolean contains(Object o) {
|
|
if (!(o instanceof Map.Entry<?, ?> e))
|
|
return false;
|
|
Object key = e.getKey();
|
|
Node<K,V> candidate = getNode(key);
|
|
return candidate != null && candidate.equals(e);
|
|
}
|
|
public final boolean remove(Object o) {
|
|
if (o instanceof Map.Entry<?, ?> e) {
|
|
Object key = e.getKey();
|
|
Object value = e.getValue();
|
|
return removeNode(hash(key), key, value, true, true) != null;
|
|
}
|
|
return false;
|
|
}
|
|
public final Spliterator<Map.Entry<K,V>> spliterator() {
|
|
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
|
|
}
|
|
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
|
|
Node<K,V>[] tab;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (size > 0 && (tab = table) != null) {
|
|
int mc = modCount;
|
|
// Android-changed: Detect changes to modCount early.
|
|
for (int i = 0; (i < tab.length && modCount == mc); ++i) {
|
|
for (Node<K,V> e = tab[i]; e != null; e = e.next)
|
|
action.accept(e);
|
|
}
|
|
if (modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Overrides of JDK8 Map extension methods
|
|
|
|
@Override
|
|
public V getOrDefault(Object key, V defaultValue) {
|
|
Node<K,V> e;
|
|
return (e = getNode(key)) == null ? defaultValue : e.value;
|
|
}
|
|
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
return putVal(hash(key), key, value, true, true);
|
|
}
|
|
|
|
@Override
|
|
public boolean remove(Object key, Object value) {
|
|
return removeNode(hash(key), key, value, true, true) != null;
|
|
}
|
|
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
Node<K,V> e; V v;
|
|
if ((e = getNode(key)) != null &&
|
|
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
|
|
e.value = newValue;
|
|
afterNodeAccess(e);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
Node<K,V> e;
|
|
if ((e = getNode(key)) != null) {
|
|
V oldValue = e.value;
|
|
e.value = value;
|
|
afterNodeAccess(e);
|
|
return oldValue;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* mapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* mapping function modified this map
|
|
*/
|
|
@Override
|
|
public V computeIfAbsent(K key,
|
|
Function<? super K, ? extends V> mappingFunction) {
|
|
if (mappingFunction == null)
|
|
throw new NullPointerException();
|
|
int hash = hash(key);
|
|
Node<K,V>[] tab; Node<K,V> first; int n, i;
|
|
int binCount = 0;
|
|
TreeNode<K,V> t = null;
|
|
Node<K,V> old = null;
|
|
if (size > threshold || (tab = table) == null ||
|
|
(n = tab.length) == 0)
|
|
n = (tab = resize()).length;
|
|
if ((first = tab[i = (n - 1) & hash]) != null) {
|
|
if (first instanceof TreeNode)
|
|
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
|
|
else {
|
|
Node<K,V> e = first; K k;
|
|
do {
|
|
if (e.hash == hash &&
|
|
((k = e.key) == key || (key != null && key.equals(k)))) {
|
|
old = e;
|
|
break;
|
|
}
|
|
++binCount;
|
|
} while ((e = e.next) != null);
|
|
}
|
|
V oldValue;
|
|
if (old != null && (oldValue = old.value) != null) {
|
|
afterNodeAccess(old);
|
|
return oldValue;
|
|
}
|
|
}
|
|
int mc = modCount;
|
|
V v = mappingFunction.apply(key);
|
|
if (mc != modCount) { throw new ConcurrentModificationException(); }
|
|
if (v == null) {
|
|
return null;
|
|
} else if (old != null) {
|
|
old.value = v;
|
|
afterNodeAccess(old);
|
|
return v;
|
|
}
|
|
else if (t != null)
|
|
t.putTreeVal(this, tab, hash, key, v);
|
|
else {
|
|
tab[i] = newNode(hash, key, v, first);
|
|
if (binCount >= TREEIFY_THRESHOLD - 1)
|
|
treeifyBin(tab, hash);
|
|
}
|
|
modCount = mc + 1;
|
|
++size;
|
|
afterNodeInsertion(true);
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* remapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* remapping function modified this map
|
|
*/
|
|
@Override
|
|
public V computeIfPresent(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
if (remappingFunction == null)
|
|
throw new NullPointerException();
|
|
Node<K,V> e; V oldValue;
|
|
if ((e = getNode(key)) != null &&
|
|
(oldValue = e.value) != null) {
|
|
int mc = modCount;
|
|
V v = remappingFunction.apply(key, oldValue);
|
|
if (mc != modCount) { throw new ConcurrentModificationException(); }
|
|
if (v != null) {
|
|
e.value = v;
|
|
afterNodeAccess(e);
|
|
return v;
|
|
}
|
|
else {
|
|
int hash = hash(key);
|
|
removeNode(hash, key, null, false, true);
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* remapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* remapping function modified this map
|
|
*/
|
|
@Override
|
|
public V compute(K key,
|
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
if (remappingFunction == null)
|
|
throw new NullPointerException();
|
|
int hash = hash(key);
|
|
Node<K,V>[] tab; Node<K,V> first; int n, i;
|
|
int binCount = 0;
|
|
TreeNode<K,V> t = null;
|
|
Node<K,V> old = null;
|
|
if (size > threshold || (tab = table) == null ||
|
|
(n = tab.length) == 0)
|
|
n = (tab = resize()).length;
|
|
if ((first = tab[i = (n - 1) & hash]) != null) {
|
|
if (first instanceof TreeNode)
|
|
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
|
|
else {
|
|
Node<K,V> e = first; K k;
|
|
do {
|
|
if (e.hash == hash &&
|
|
((k = e.key) == key || (key != null && key.equals(k)))) {
|
|
old = e;
|
|
break;
|
|
}
|
|
++binCount;
|
|
} while ((e = e.next) != null);
|
|
}
|
|
}
|
|
V oldValue = (old == null) ? null : old.value;
|
|
int mc = modCount;
|
|
V v = remappingFunction.apply(key, oldValue);
|
|
if (mc != modCount) { throw new ConcurrentModificationException(); }
|
|
if (old != null) {
|
|
if (v != null) {
|
|
old.value = v;
|
|
afterNodeAccess(old);
|
|
}
|
|
else
|
|
removeNode(hash, key, null, false, true);
|
|
}
|
|
else if (v != null) {
|
|
if (t != null)
|
|
t.putTreeVal(this, tab, hash, key, v);
|
|
else {
|
|
tab[i] = newNode(hash, key, v, first);
|
|
if (binCount >= TREEIFY_THRESHOLD - 1)
|
|
treeifyBin(tab, hash);
|
|
}
|
|
modCount = mc + 1;
|
|
++size;
|
|
afterNodeInsertion(true);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* remapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* remapping function modified this map
|
|
*/
|
|
@Override
|
|
public V merge(K key, V value,
|
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
if (value == null || remappingFunction == null)
|
|
throw new NullPointerException();
|
|
int hash = hash(key);
|
|
Node<K,V>[] tab; Node<K,V> first; int n, i;
|
|
int binCount = 0;
|
|
TreeNode<K,V> t = null;
|
|
Node<K,V> old = null;
|
|
if (size > threshold || (tab = table) == null ||
|
|
(n = tab.length) == 0)
|
|
n = (tab = resize()).length;
|
|
if ((first = tab[i = (n - 1) & hash]) != null) {
|
|
if (first instanceof TreeNode)
|
|
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
|
|
else {
|
|
Node<K,V> e = first; K k;
|
|
do {
|
|
if (e.hash == hash &&
|
|
((k = e.key) == key || (key != null && key.equals(k)))) {
|
|
old = e;
|
|
break;
|
|
}
|
|
++binCount;
|
|
} while ((e = e.next) != null);
|
|
}
|
|
}
|
|
if (old != null) {
|
|
V v;
|
|
if (old.value != null) {
|
|
int mc = modCount;
|
|
v = remappingFunction.apply(old.value, value);
|
|
if (mc != modCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
} else {
|
|
v = value;
|
|
}
|
|
if (v != null) {
|
|
old.value = v;
|
|
afterNodeAccess(old);
|
|
}
|
|
else
|
|
removeNode(hash, key, null, false, true);
|
|
return v;
|
|
} else {
|
|
if (t != null)
|
|
t.putTreeVal(this, tab, hash, key, value);
|
|
else {
|
|
tab[i] = newNode(hash, key, value, first);
|
|
if (binCount >= TREEIFY_THRESHOLD - 1)
|
|
treeifyBin(tab, hash);
|
|
}
|
|
++modCount;
|
|
++size;
|
|
afterNodeInsertion(true);
|
|
return value;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
Node<K,V>[] tab;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (size > 0 && (tab = table) != null) {
|
|
int mc = modCount;
|
|
// Android-changed: Detect changes to modCount early.
|
|
for (int i = 0; (i < tab.length && mc == modCount); ++i) {
|
|
for (Node<K,V> e = tab[i]; e != null; e = e.next)
|
|
action.accept(e.key, e.value);
|
|
}
|
|
if (modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
Node<K,V>[] tab;
|
|
if (function == null)
|
|
throw new NullPointerException();
|
|
if (size > 0 && (tab = table) != null) {
|
|
int mc = modCount;
|
|
for (Node<K,V> e : tab) {
|
|
for (; e != null; e = e.next) {
|
|
e.value = function.apply(e.key, e.value);
|
|
}
|
|
}
|
|
if (modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------ */
|
|
// Cloning and serialization
|
|
|
|
/**
|
|
* Returns a shallow copy of this {@code HashMap} instance: the keys and
|
|
* values themselves are not cloned.
|
|
*
|
|
* @return a shallow copy of this map
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
@Override
|
|
public Object clone() {
|
|
HashMap<K,V> result;
|
|
try {
|
|
result = (HashMap<K,V>)super.clone();
|
|
} catch (CloneNotSupportedException e) {
|
|
// this shouldn't happen, since we are Cloneable
|
|
throw new InternalError(e);
|
|
}
|
|
result.reinitialize();
|
|
result.putMapEntries(this, false);
|
|
return result;
|
|
}
|
|
|
|
// These methods are also used when serializing HashSets
|
|
final float loadFactor() { return loadFactor; }
|
|
final int capacity() {
|
|
return (table != null) ? table.length :
|
|
(threshold > 0) ? threshold :
|
|
DEFAULT_INITIAL_CAPACITY;
|
|
}
|
|
|
|
/**
|
|
* Saves this map to a stream (that is, serializes it).
|
|
*
|
|
* @param s the stream
|
|
* @throws IOException if an I/O error occurs
|
|
* @serialData The <i>capacity</i> of the HashMap (the length of the
|
|
* bucket array) is emitted (int), followed by the
|
|
* <i>size</i> (an int, the number of key-value
|
|
* mappings), followed by the key (Object) and value (Object)
|
|
* for each key-value mapping. The key-value mappings are
|
|
* emitted in no particular order.
|
|
*/
|
|
@java.io.Serial
|
|
private void writeObject(java.io.ObjectOutputStream s)
|
|
throws IOException {
|
|
int buckets = capacity();
|
|
// Write out the threshold, loadfactor, and any hidden stuff
|
|
s.defaultWriteObject();
|
|
s.writeInt(buckets);
|
|
s.writeInt(size);
|
|
internalWriteEntries(s);
|
|
}
|
|
|
|
/**
|
|
* Reconstitute the {@code HashMap} instance from a stream (i.e.,
|
|
* deserialize it).
|
|
*/
|
|
private void readObject(java.io.ObjectInputStream s)
|
|
throws IOException, ClassNotFoundException {
|
|
|
|
ObjectInputStream.GetField fields = s.readFields();
|
|
|
|
// Read loadFactor (ignore threshold)
|
|
float lf = fields.get("loadFactor", 0.75f);
|
|
if (lf <= 0 || Float.isNaN(lf))
|
|
throw new InvalidObjectException("Illegal load factor: " + lf);
|
|
|
|
lf = Math.clamp(lf, 0.25f, 4.0f);
|
|
HashMap.UnsafeHolder.putLoadFactor(this, lf);
|
|
|
|
reinitialize();
|
|
if (loadFactor <= 0 || Float.isNaN(loadFactor))
|
|
throw new InvalidObjectException("Illegal load factor: " +
|
|
loadFactor);
|
|
s.readInt(); // Read and ignore number of buckets
|
|
int mappings = s.readInt(); // Read number of mappings (size)
|
|
|
|
if (mappings < 0) {
|
|
throw new InvalidObjectException("Illegal mappings count: " + mappings);
|
|
} else if (mappings == 0) {
|
|
// use defaults
|
|
} else if (mappings > 0) {
|
|
double dc = Math.ceil(mappings / (double)lf);
|
|
int cap = ((dc < DEFAULT_INITIAL_CAPACITY) ?
|
|
DEFAULT_INITIAL_CAPACITY :
|
|
(dc >= MAXIMUM_CAPACITY) ?
|
|
MAXIMUM_CAPACITY :
|
|
tableSizeFor((int)dc));
|
|
float ft = (float)cap * lf;
|
|
threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
|
|
(int)ft : Integer.MAX_VALUE);
|
|
@SuppressWarnings({"rawtypes","unchecked"})
|
|
Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
|
|
table = tab;
|
|
|
|
// Read the keys and values, and put the mappings in the HashMap
|
|
for (int i = 0; i < mappings; i++) {
|
|
@SuppressWarnings("unchecked")
|
|
K key = (K) s.readObject();
|
|
@SuppressWarnings("unchecked")
|
|
V value = (V) s.readObject();
|
|
putVal(hash(key), key, value, false, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Support for resetting final field during deserializing
|
|
private static final class UnsafeHolder {
|
|
private UnsafeHolder() { throw new InternalError(); }
|
|
private static final jdk.internal.misc.Unsafe unsafe
|
|
= jdk.internal.misc.Unsafe.getUnsafe();
|
|
private static final long LF_OFFSET
|
|
= unsafe.objectFieldOffset(HashMap.class, "loadFactor");
|
|
static void putLoadFactor(HashMap<?, ?> map, float lf) {
|
|
unsafe.putFloat(map, LF_OFFSET, lf);
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------ */
|
|
// iterators
|
|
|
|
abstract class HashIterator {
|
|
Node<K,V> next; // next entry to return
|
|
Node<K,V> current; // current entry
|
|
int expectedModCount; // for fast-fail
|
|
int index; // current slot
|
|
|
|
HashIterator() {
|
|
expectedModCount = modCount;
|
|
Node<K,V>[] t = table;
|
|
current = next = null;
|
|
index = 0;
|
|
if (t != null && size > 0) { // advance to first entry
|
|
do {} while (index < t.length && (next = t[index++]) == null);
|
|
}
|
|
}
|
|
|
|
public final boolean hasNext() {
|
|
return next != null;
|
|
}
|
|
|
|
final Node<K,V> nextNode() {
|
|
Node<K,V>[] t;
|
|
Node<K,V> e = next;
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
if (e == null)
|
|
throw new NoSuchElementException();
|
|
if ((next = (current = e).next) == null && (t = table) != null) {
|
|
do {} while (index < t.length && (next = t[index++]) == null);
|
|
}
|
|
return e;
|
|
}
|
|
|
|
public final void remove() {
|
|
Node<K,V> p = current;
|
|
if (p == null)
|
|
throw new IllegalStateException();
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
current = null;
|
|
removeNode(p.hash, p.key, null, false, false);
|
|
expectedModCount = modCount;
|
|
}
|
|
}
|
|
|
|
final class KeyIterator extends HashIterator
|
|
implements Iterator<K> {
|
|
public final K next() { return nextNode().key; }
|
|
}
|
|
|
|
final class ValueIterator extends HashIterator
|
|
implements Iterator<V> {
|
|
public final V next() { return nextNode().value; }
|
|
}
|
|
|
|
final class EntryIterator extends HashIterator
|
|
implements Iterator<Map.Entry<K,V>> {
|
|
public final Map.Entry<K,V> next() { return nextNode(); }
|
|
}
|
|
|
|
/* ------------------------------------------------------------ */
|
|
// spliterators
|
|
|
|
static class HashMapSpliterator<K,V> {
|
|
final HashMap<K,V> map;
|
|
Node<K,V> current; // current node
|
|
int index; // current index, modified on advance/split
|
|
int fence; // one past last index
|
|
int est; // size estimate
|
|
int expectedModCount; // for comodification checks
|
|
|
|
HashMapSpliterator(HashMap<K,V> m, int origin,
|
|
int fence, int est,
|
|
int expectedModCount) {
|
|
this.map = m;
|
|
this.index = origin;
|
|
this.fence = fence;
|
|
this.est = est;
|
|
this.expectedModCount = expectedModCount;
|
|
}
|
|
|
|
final int getFence() { // initialize fence and size on first use
|
|
int hi;
|
|
if ((hi = fence) < 0) {
|
|
HashMap<K,V> m = map;
|
|
est = m.size;
|
|
expectedModCount = m.modCount;
|
|
Node<K,V>[] tab = m.table;
|
|
hi = fence = (tab == null) ? 0 : tab.length;
|
|
}
|
|
return hi;
|
|
}
|
|
|
|
public final long estimateSize() {
|
|
getFence(); // force init
|
|
return (long) est;
|
|
}
|
|
}
|
|
|
|
static final class KeySpliterator<K,V>
|
|
extends HashMapSpliterator<K,V>
|
|
implements Spliterator<K> {
|
|
KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
|
|
int expectedModCount) {
|
|
super(m, origin, fence, est, expectedModCount);
|
|
}
|
|
|
|
public KeySpliterator<K,V> trySplit() {
|
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
|
|
return (lo >= mid || current != null) ? null :
|
|
new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
|
|
expectedModCount);
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super K> action) {
|
|
int i, hi, mc;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
HashMap<K,V> m = map;
|
|
Node<K,V>[] tab = m.table;
|
|
if ((hi = fence) < 0) {
|
|
mc = expectedModCount = m.modCount;
|
|
hi = fence = (tab == null) ? 0 : tab.length;
|
|
}
|
|
else
|
|
mc = expectedModCount;
|
|
if (tab != null && tab.length >= hi &&
|
|
(i = index) >= 0 && (i < (index = hi) || current != null)) {
|
|
Node<K,V> p = current;
|
|
current = null;
|
|
do {
|
|
if (p == null)
|
|
p = tab[i++];
|
|
else {
|
|
action.accept(p.key);
|
|
p = p.next;
|
|
}
|
|
} while (p != null || i < hi);
|
|
if (m.modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super K> action) {
|
|
int hi;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
Node<K,V>[] tab = map.table;
|
|
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
|
|
while (current != null || index < hi) {
|
|
if (current == null)
|
|
current = tab[index++];
|
|
else {
|
|
K k = current.key;
|
|
current = current.next;
|
|
action.accept(k);
|
|
if (map.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
|
|
Spliterator.DISTINCT;
|
|
}
|
|
}
|
|
|
|
static final class ValueSpliterator<K,V>
|
|
extends HashMapSpliterator<K,V>
|
|
implements Spliterator<V> {
|
|
ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
|
|
int expectedModCount) {
|
|
super(m, origin, fence, est, expectedModCount);
|
|
}
|
|
|
|
public ValueSpliterator<K,V> trySplit() {
|
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
|
|
return (lo >= mid || current != null) ? null :
|
|
new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
|
|
expectedModCount);
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super V> action) {
|
|
int i, hi, mc;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
HashMap<K,V> m = map;
|
|
Node<K,V>[] tab = m.table;
|
|
if ((hi = fence) < 0) {
|
|
mc = expectedModCount = m.modCount;
|
|
hi = fence = (tab == null) ? 0 : tab.length;
|
|
}
|
|
else
|
|
mc = expectedModCount;
|
|
if (tab != null && tab.length >= hi &&
|
|
(i = index) >= 0 && (i < (index = hi) || current != null)) {
|
|
Node<K,V> p = current;
|
|
current = null;
|
|
do {
|
|
if (p == null)
|
|
p = tab[i++];
|
|
else {
|
|
action.accept(p.value);
|
|
p = p.next;
|
|
}
|
|
} while (p != null || i < hi);
|
|
if (m.modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super V> action) {
|
|
int hi;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
Node<K,V>[] tab = map.table;
|
|
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
|
|
while (current != null || index < hi) {
|
|
if (current == null)
|
|
current = tab[index++];
|
|
else {
|
|
V v = current.value;
|
|
current = current.next;
|
|
action.accept(v);
|
|
if (map.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
|
|
}
|
|
}
|
|
|
|
static final class EntrySpliterator<K,V>
|
|
extends HashMapSpliterator<K,V>
|
|
implements Spliterator<Map.Entry<K,V>> {
|
|
EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
|
|
int expectedModCount) {
|
|
super(m, origin, fence, est, expectedModCount);
|
|
}
|
|
|
|
public EntrySpliterator<K,V> trySplit() {
|
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
|
|
return (lo >= mid || current != null) ? null :
|
|
new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
|
|
expectedModCount);
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
|
|
int i, hi, mc;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
HashMap<K,V> m = map;
|
|
Node<K,V>[] tab = m.table;
|
|
if ((hi = fence) < 0) {
|
|
mc = expectedModCount = m.modCount;
|
|
hi = fence = (tab == null) ? 0 : tab.length;
|
|
}
|
|
else
|
|
mc = expectedModCount;
|
|
if (tab != null && tab.length >= hi &&
|
|
(i = index) >= 0 && (i < (index = hi) || current != null)) {
|
|
Node<K,V> p = current;
|
|
current = null;
|
|
do {
|
|
if (p == null)
|
|
p = tab[i++];
|
|
else {
|
|
action.accept(p);
|
|
p = p.next;
|
|
}
|
|
} while (p != null || i < hi);
|
|
if (m.modCount != mc)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
|
|
int hi;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
Node<K,V>[] tab = map.table;
|
|
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
|
|
while (current != null || index < hi) {
|
|
if (current == null)
|
|
current = tab[index++];
|
|
else {
|
|
Node<K,V> e = current;
|
|
current = current.next;
|
|
action.accept(e);
|
|
if (map.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
|
|
Spliterator.DISTINCT;
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------ */
|
|
// LinkedHashMap support
|
|
|
|
|
|
/*
|
|
* The following package-protected methods are designed to be
|
|
* overridden by LinkedHashMap, but not by any other subclass.
|
|
* Nearly all other internal methods are also package-protected
|
|
* but are declared final, so can be used by LinkedHashMap, view
|
|
* classes, and HashSet.
|
|
*/
|
|
|
|
// Create a regular (non-tree) node
|
|
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
|
|
return new Node<>(hash, key, value, next);
|
|
}
|
|
|
|
// For conversion from TreeNodes to plain nodes
|
|
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
|
|
return new Node<>(p.hash, p.key, p.value, next);
|
|
}
|
|
|
|
// Create a tree bin node
|
|
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
|
|
return new TreeNode<>(hash, key, value, next);
|
|
}
|
|
|
|
// For treeifyBin
|
|
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
|
|
return new TreeNode<>(p.hash, p.key, p.value, next);
|
|
}
|
|
|
|
/**
|
|
* Reset to initial default state. Called by clone and readObject.
|
|
*/
|
|
void reinitialize() {
|
|
table = null;
|
|
entrySet = null;
|
|
keySet = null;
|
|
values = null;
|
|
modCount = 0;
|
|
threshold = 0;
|
|
size = 0;
|
|
}
|
|
|
|
// Callbacks to allow LinkedHashMap post-actions
|
|
void afterNodeAccess(Node<K,V> p) { }
|
|
void afterNodeInsertion(boolean evict) { }
|
|
void afterNodeRemoval(Node<K,V> p) { }
|
|
|
|
// Called only from writeObject, to ensure compatible ordering.
|
|
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
|
|
Node<K,V>[] tab;
|
|
if (size > 0 && (tab = table) != null) {
|
|
for (Node<K,V> e : tab) {
|
|
for (; e != null; e = e.next) {
|
|
s.writeObject(e.key);
|
|
s.writeObject(e.value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------ */
|
|
// Tree bins
|
|
|
|
/**
|
|
* Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
|
|
* extends Node) so can be used as extension of either regular or
|
|
* linked node.
|
|
*/
|
|
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
|
|
TreeNode<K,V> parent; // red-black tree links
|
|
TreeNode<K,V> left;
|
|
TreeNode<K,V> right;
|
|
TreeNode<K,V> prev; // needed to unlink next upon deletion
|
|
boolean red;
|
|
TreeNode(int hash, K key, V val, Node<K,V> next) {
|
|
super(hash, key, val, next);
|
|
}
|
|
|
|
/**
|
|
* Returns root of tree containing this node.
|
|
*/
|
|
final TreeNode<K,V> root() {
|
|
for (TreeNode<K,V> r = this, p;;) {
|
|
if ((p = r.parent) == null)
|
|
return r;
|
|
r = p;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ensures that the given root is the first node of its bin.
|
|
*/
|
|
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
|
|
int n;
|
|
if (root != null && tab != null && (n = tab.length) > 0) {
|
|
int index = (n - 1) & root.hash;
|
|
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
|
|
if (root != first) {
|
|
Node<K,V> rn;
|
|
tab[index] = root;
|
|
TreeNode<K,V> rp = root.prev;
|
|
if ((rn = root.next) != null)
|
|
((TreeNode<K,V>)rn).prev = rp;
|
|
if (rp != null)
|
|
rp.next = rn;
|
|
if (first != null)
|
|
first.prev = root;
|
|
root.next = first;
|
|
root.prev = null;
|
|
}
|
|
assert checkInvariants(root);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finds the node starting at root p with the given hash and key.
|
|
* The kc argument caches comparableClassFor(key) upon first use
|
|
* comparing keys.
|
|
*/
|
|
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
|
|
TreeNode<K,V> p = this;
|
|
do {
|
|
int ph, dir; K pk;
|
|
TreeNode<K,V> pl = p.left, pr = p.right, q;
|
|
if ((ph = p.hash) > h)
|
|
p = pl;
|
|
else if (ph < h)
|
|
p = pr;
|
|
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
|
|
return p;
|
|
else if (pl == null)
|
|
p = pr;
|
|
else if (pr == null)
|
|
p = pl;
|
|
else if ((kc != null ||
|
|
(kc = comparableClassFor(k)) != null) &&
|
|
(dir = compareComparables(kc, k, pk)) != 0)
|
|
p = (dir < 0) ? pl : pr;
|
|
else if ((q = pr.find(h, k, kc)) != null)
|
|
return q;
|
|
else
|
|
p = pl;
|
|
} while (p != null);
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Calls find for root node.
|
|
*/
|
|
final TreeNode<K,V> getTreeNode(int h, Object k) {
|
|
return ((parent != null) ? root() : this).find(h, k, null);
|
|
}
|
|
|
|
/**
|
|
* Tie-breaking utility for ordering insertions when equal
|
|
* hashCodes and non-comparable. We don't require a total
|
|
* order, just a consistent insertion rule to maintain
|
|
* equivalence across rebalancings. Tie-breaking further than
|
|
* necessary simplifies testing a bit.
|
|
*/
|
|
static int tieBreakOrder(Object a, Object b) {
|
|
int d;
|
|
if (a == null || b == null ||
|
|
(d = a.getClass().getName().
|
|
compareTo(b.getClass().getName())) == 0)
|
|
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
|
|
-1 : 1);
|
|
return d;
|
|
}
|
|
|
|
/**
|
|
* Forms tree of the nodes linked from this node.
|
|
*/
|
|
final void treeify(Node<K,V>[] tab) {
|
|
TreeNode<K,V> root = null;
|
|
for (TreeNode<K,V> x = this, next; x != null; x = next) {
|
|
next = (TreeNode<K,V>)x.next;
|
|
x.left = x.right = null;
|
|
if (root == null) {
|
|
x.parent = null;
|
|
x.red = false;
|
|
root = x;
|
|
}
|
|
else {
|
|
K k = x.key;
|
|
int h = x.hash;
|
|
Class<?> kc = null;
|
|
for (TreeNode<K,V> p = root;;) {
|
|
int dir, ph;
|
|
K pk = p.key;
|
|
if ((ph = p.hash) > h)
|
|
dir = -1;
|
|
else if (ph < h)
|
|
dir = 1;
|
|
else if ((kc == null &&
|
|
(kc = comparableClassFor(k)) == null) ||
|
|
(dir = compareComparables(kc, k, pk)) == 0)
|
|
dir = tieBreakOrder(k, pk);
|
|
|
|
TreeNode<K,V> xp = p;
|
|
if ((p = (dir <= 0) ? p.left : p.right) == null) {
|
|
x.parent = xp;
|
|
if (dir <= 0)
|
|
xp.left = x;
|
|
else
|
|
xp.right = x;
|
|
root = balanceInsertion(root, x);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
moveRootToFront(tab, root);
|
|
}
|
|
|
|
/**
|
|
* Returns a list of non-TreeNodes replacing those linked from
|
|
* this node.
|
|
*/
|
|
final Node<K,V> untreeify(HashMap<K,V> map) {
|
|
Node<K,V> hd = null, tl = null;
|
|
for (Node<K,V> q = this; q != null; q = q.next) {
|
|
Node<K,V> p = map.replacementNode(q, null);
|
|
if (tl == null)
|
|
hd = p;
|
|
else
|
|
tl.next = p;
|
|
tl = p;
|
|
}
|
|
return hd;
|
|
}
|
|
|
|
/**
|
|
* Tree version of putVal.
|
|
*/
|
|
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
|
|
int h, K k, V v) {
|
|
Class<?> kc = null;
|
|
boolean searched = false;
|
|
TreeNode<K,V> root = (parent != null) ? root() : this;
|
|
for (TreeNode<K,V> p = root;;) {
|
|
int dir, ph; K pk;
|
|
if ((ph = p.hash) > h)
|
|
dir = -1;
|
|
else if (ph < h)
|
|
dir = 1;
|
|
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
|
|
return p;
|
|
else if ((kc == null &&
|
|
(kc = comparableClassFor(k)) == null) ||
|
|
(dir = compareComparables(kc, k, pk)) == 0) {
|
|
if (!searched) {
|
|
TreeNode<K,V> q, ch;
|
|
searched = true;
|
|
if (((ch = p.left) != null &&
|
|
(q = ch.find(h, k, kc)) != null) ||
|
|
((ch = p.right) != null &&
|
|
(q = ch.find(h, k, kc)) != null))
|
|
return q;
|
|
}
|
|
dir = tieBreakOrder(k, pk);
|
|
}
|
|
|
|
TreeNode<K,V> xp = p;
|
|
if ((p = (dir <= 0) ? p.left : p.right) == null) {
|
|
Node<K,V> xpn = xp.next;
|
|
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
|
|
if (dir <= 0)
|
|
xp.left = x;
|
|
else
|
|
xp.right = x;
|
|
xp.next = x;
|
|
x.parent = x.prev = xp;
|
|
if (xpn != null)
|
|
((TreeNode<K,V>)xpn).prev = x;
|
|
moveRootToFront(tab, balanceInsertion(root, x));
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Removes the given node, that must be present before this call.
|
|
* This is messier than typical red-black deletion code because we
|
|
* cannot swap the contents of an interior node with a leaf
|
|
* successor that is pinned by "next" pointers that are accessible
|
|
* independently during traversal. So instead we swap the tree
|
|
* linkages. If the current tree appears to have too few nodes,
|
|
* the bin is converted back to a plain bin. (The test triggers
|
|
* somewhere between 2 and 6 nodes, depending on tree structure).
|
|
*/
|
|
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
|
|
boolean movable) {
|
|
int n;
|
|
if (tab == null || (n = tab.length) == 0)
|
|
return;
|
|
int index = (n - 1) & hash;
|
|
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
|
|
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
|
|
if (pred == null)
|
|
tab[index] = first = succ;
|
|
else
|
|
pred.next = succ;
|
|
if (succ != null)
|
|
succ.prev = pred;
|
|
if (first == null)
|
|
return;
|
|
if (root.parent != null)
|
|
root = root.root();
|
|
if (root == null
|
|
|| (movable
|
|
&& (root.right == null
|
|
|| (rl = root.left) == null
|
|
|| rl.left == null))) {
|
|
tab[index] = first.untreeify(map); // too small
|
|
return;
|
|
}
|
|
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
|
|
if (pl != null && pr != null) {
|
|
TreeNode<K,V> s = pr, sl;
|
|
while ((sl = s.left) != null) // find successor
|
|
s = sl;
|
|
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
|
|
TreeNode<K,V> sr = s.right;
|
|
TreeNode<K,V> pp = p.parent;
|
|
if (s == pr) { // p was s's direct parent
|
|
p.parent = s;
|
|
s.right = p;
|
|
}
|
|
else {
|
|
TreeNode<K,V> sp = s.parent;
|
|
if ((p.parent = sp) != null) {
|
|
if (s == sp.left)
|
|
sp.left = p;
|
|
else
|
|
sp.right = p;
|
|
}
|
|
if ((s.right = pr) != null)
|
|
pr.parent = s;
|
|
}
|
|
p.left = null;
|
|
if ((p.right = sr) != null)
|
|
sr.parent = p;
|
|
if ((s.left = pl) != null)
|
|
pl.parent = s;
|
|
if ((s.parent = pp) == null)
|
|
root = s;
|
|
else if (p == pp.left)
|
|
pp.left = s;
|
|
else
|
|
pp.right = s;
|
|
if (sr != null)
|
|
replacement = sr;
|
|
else
|
|
replacement = p;
|
|
}
|
|
else if (pl != null)
|
|
replacement = pl;
|
|
else if (pr != null)
|
|
replacement = pr;
|
|
else
|
|
replacement = p;
|
|
if (replacement != p) {
|
|
TreeNode<K,V> pp = replacement.parent = p.parent;
|
|
if (pp == null)
|
|
(root = replacement).red = false;
|
|
else if (p == pp.left)
|
|
pp.left = replacement;
|
|
else
|
|
pp.right = replacement;
|
|
p.left = p.right = p.parent = null;
|
|
}
|
|
|
|
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
|
|
|
|
if (replacement == p) { // detach
|
|
TreeNode<K,V> pp = p.parent;
|
|
p.parent = null;
|
|
if (pp != null) {
|
|
if (p == pp.left)
|
|
pp.left = null;
|
|
else if (p == pp.right)
|
|
pp.right = null;
|
|
}
|
|
}
|
|
if (movable)
|
|
moveRootToFront(tab, r);
|
|
}
|
|
|
|
/**
|
|
* Splits nodes in a tree bin into lower and upper tree bins,
|
|
* or untreeifies if now too small. Called only from resize;
|
|
* see above discussion about split bits and indices.
|
|
*
|
|
* @param map the map
|
|
* @param tab the table for recording bin heads
|
|
* @param index the index of the table being split
|
|
* @param bit the bit of hash to split on
|
|
*/
|
|
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
|
|
TreeNode<K,V> b = this;
|
|
// Relink into lo and hi lists, preserving order
|
|
TreeNode<K,V> loHead = null, loTail = null;
|
|
TreeNode<K,V> hiHead = null, hiTail = null;
|
|
int lc = 0, hc = 0;
|
|
for (TreeNode<K,V> e = b, next; e != null; e = next) {
|
|
next = (TreeNode<K,V>)e.next;
|
|
e.next = null;
|
|
if ((e.hash & bit) == 0) {
|
|
if ((e.prev = loTail) == null)
|
|
loHead = e;
|
|
else
|
|
loTail.next = e;
|
|
loTail = e;
|
|
++lc;
|
|
}
|
|
else {
|
|
if ((e.prev = hiTail) == null)
|
|
hiHead = e;
|
|
else
|
|
hiTail.next = e;
|
|
hiTail = e;
|
|
++hc;
|
|
}
|
|
}
|
|
|
|
if (loHead != null) {
|
|
if (lc <= UNTREEIFY_THRESHOLD)
|
|
tab[index] = loHead.untreeify(map);
|
|
else {
|
|
tab[index] = loHead;
|
|
if (hiHead != null) // (else is already treeified)
|
|
loHead.treeify(tab);
|
|
}
|
|
}
|
|
if (hiHead != null) {
|
|
if (hc <= UNTREEIFY_THRESHOLD)
|
|
tab[index + bit] = hiHead.untreeify(map);
|
|
else {
|
|
tab[index + bit] = hiHead;
|
|
if (loHead != null)
|
|
hiHead.treeify(tab);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------ */
|
|
// Red-black tree methods, all adapted from CLR
|
|
|
|
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
|
|
TreeNode<K,V> p) {
|
|
TreeNode<K,V> r, pp, rl;
|
|
if (p != null && (r = p.right) != null) {
|
|
if ((rl = p.right = r.left) != null)
|
|
rl.parent = p;
|
|
if ((pp = r.parent = p.parent) == null)
|
|
(root = r).red = false;
|
|
else if (pp.left == p)
|
|
pp.left = r;
|
|
else
|
|
pp.right = r;
|
|
r.left = p;
|
|
p.parent = r;
|
|
}
|
|
return root;
|
|
}
|
|
|
|
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
|
|
TreeNode<K,V> p) {
|
|
TreeNode<K,V> l, pp, lr;
|
|
if (p != null && (l = p.left) != null) {
|
|
if ((lr = p.left = l.right) != null)
|
|
lr.parent = p;
|
|
if ((pp = l.parent = p.parent) == null)
|
|
(root = l).red = false;
|
|
else if (pp.right == p)
|
|
pp.right = l;
|
|
else
|
|
pp.left = l;
|
|
l.right = p;
|
|
p.parent = l;
|
|
}
|
|
return root;
|
|
}
|
|
|
|
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
|
|
TreeNode<K,V> x) {
|
|
x.red = true;
|
|
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
|
|
if ((xp = x.parent) == null) {
|
|
x.red = false;
|
|
return x;
|
|
}
|
|
else if (!xp.red || (xpp = xp.parent) == null)
|
|
return root;
|
|
if (xp == (xppl = xpp.left)) {
|
|
if ((xppr = xpp.right) != null && xppr.red) {
|
|
xppr.red = false;
|
|
xp.red = false;
|
|
xpp.red = true;
|
|
x = xpp;
|
|
}
|
|
else {
|
|
if (x == xp.right) {
|
|
root = rotateLeft(root, x = xp);
|
|
xpp = (xp = x.parent) == null ? null : xp.parent;
|
|
}
|
|
if (xp != null) {
|
|
xp.red = false;
|
|
if (xpp != null) {
|
|
xpp.red = true;
|
|
root = rotateRight(root, xpp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (xppl != null && xppl.red) {
|
|
xppl.red = false;
|
|
xp.red = false;
|
|
xpp.red = true;
|
|
x = xpp;
|
|
}
|
|
else {
|
|
if (x == xp.left) {
|
|
root = rotateRight(root, x = xp);
|
|
xpp = (xp = x.parent) == null ? null : xp.parent;
|
|
}
|
|
if (xp != null) {
|
|
xp.red = false;
|
|
if (xpp != null) {
|
|
xpp.red = true;
|
|
root = rotateLeft(root, xpp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
|
|
TreeNode<K,V> x) {
|
|
for (TreeNode<K,V> xp, xpl, xpr;;) {
|
|
if (x == null || x == root)
|
|
return root;
|
|
else if ((xp = x.parent) == null) {
|
|
x.red = false;
|
|
return x;
|
|
}
|
|
else if (x.red) {
|
|
x.red = false;
|
|
return root;
|
|
}
|
|
else if ((xpl = xp.left) == x) {
|
|
if ((xpr = xp.right) != null && xpr.red) {
|
|
xpr.red = false;
|
|
xp.red = true;
|
|
root = rotateLeft(root, xp);
|
|
xpr = (xp = x.parent) == null ? null : xp.right;
|
|
}
|
|
if (xpr == null)
|
|
x = xp;
|
|
else {
|
|
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
|
|
if ((sr == null || !sr.red) &&
|
|
(sl == null || !sl.red)) {
|
|
xpr.red = true;
|
|
x = xp;
|
|
}
|
|
else {
|
|
if (sr == null || !sr.red) {
|
|
if (sl != null)
|
|
sl.red = false;
|
|
xpr.red = true;
|
|
root = rotateRight(root, xpr);
|
|
xpr = (xp = x.parent) == null ?
|
|
null : xp.right;
|
|
}
|
|
if (xpr != null) {
|
|
xpr.red = (xp == null) ? false : xp.red;
|
|
if ((sr = xpr.right) != null)
|
|
sr.red = false;
|
|
}
|
|
if (xp != null) {
|
|
xp.red = false;
|
|
root = rotateLeft(root, xp);
|
|
}
|
|
x = root;
|
|
}
|
|
}
|
|
}
|
|
else { // symmetric
|
|
if (xpl != null && xpl.red) {
|
|
xpl.red = false;
|
|
xp.red = true;
|
|
root = rotateRight(root, xp);
|
|
xpl = (xp = x.parent) == null ? null : xp.left;
|
|
}
|
|
if (xpl == null)
|
|
x = xp;
|
|
else {
|
|
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
|
|
if ((sl == null || !sl.red) &&
|
|
(sr == null || !sr.red)) {
|
|
xpl.red = true;
|
|
x = xp;
|
|
}
|
|
else {
|
|
if (sl == null || !sl.red) {
|
|
if (sr != null)
|
|
sr.red = false;
|
|
xpl.red = true;
|
|
root = rotateLeft(root, xpl);
|
|
xpl = (xp = x.parent) == null ?
|
|
null : xp.left;
|
|
}
|
|
if (xpl != null) {
|
|
xpl.red = (xp == null) ? false : xp.red;
|
|
if ((sl = xpl.left) != null)
|
|
sl.red = false;
|
|
}
|
|
if (xp != null) {
|
|
xp.red = false;
|
|
root = rotateRight(root, xp);
|
|
}
|
|
x = root;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Recursive invariant check
|
|
*/
|
|
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
|
|
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
|
|
tb = t.prev, tn = (TreeNode<K,V>)t.next;
|
|
if (tb != null && tb.next != t)
|
|
return false;
|
|
if (tn != null && tn.prev != t)
|
|
return false;
|
|
if (tp != null && t != tp.left && t != tp.right)
|
|
return false;
|
|
if (tl != null && (tl.parent != t || tl.hash > t.hash))
|
|
return false;
|
|
if (tr != null && (tr.parent != t || tr.hash < t.hash))
|
|
return false;
|
|
if (t.red && tl != null && tl.red && tr != null && tr.red)
|
|
return false;
|
|
if (tl != null && !checkInvariants(tl))
|
|
return false;
|
|
if (tr != null && !checkInvariants(tr))
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate initial capacity for HashMap based classes, from expected size and default load factor (0.75).
|
|
*
|
|
* @param numMappings the expected number of mappings
|
|
* @return initial capacity for HashMap based classes.
|
|
* @since 19
|
|
*/
|
|
static int calculateHashMapCapacity(int numMappings) {
|
|
return (int) Math.ceil(numMappings / (double) DEFAULT_LOAD_FACTOR);
|
|
}
|
|
|
|
/**
|
|
* Creates a new, empty HashMap suitable for the expected number of mappings.
|
|
* The returned map uses the default load factor of 0.75, and its initial capacity is
|
|
* generally large enough so that the expected number of mappings can be added
|
|
* without resizing the map.
|
|
*
|
|
* @param numMappings the expected number of mappings
|
|
* @param <K> the type of keys maintained by the new map
|
|
* @param <V> the type of mapped values
|
|
* @return the newly created map
|
|
* @throws IllegalArgumentException if numMappings is negative
|
|
* @since 19
|
|
*/
|
|
public static <K, V> HashMap<K, V> newHashMap(int numMappings) {
|
|
if (numMappings < 0) {
|
|
throw new IllegalArgumentException("Negative number of mappings: " + numMappings);
|
|
}
|
|
return new HashMap<>(calculateHashMapCapacity(numMappings));
|
|
}
|
|
|
|
}
|