1697 lines
70 KiB
Java
1697 lines
70 KiB
Java
/*
|
|
* Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* (C) Copyright Taligent, Inc. 1996 - All Rights Reserved
|
|
* (C) Copyright IBM Corp. 1996 - All Rights Reserved
|
|
*
|
|
* The original version of this source code and documentation is copyrighted
|
|
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
|
|
* materials are provided under terms of a License Agreement between Taligent
|
|
* and Sun. This technology is protected by multiple US and International
|
|
* patents. This notice and attribution to Taligent may not be removed.
|
|
* Taligent is a registered trademark of Taligent, Inc.
|
|
*
|
|
*/
|
|
|
|
package java.util;
|
|
|
|
import java.io.ObjectInputStream;
|
|
import java.io.ObjectOutputStream;
|
|
import java.io.IOException;
|
|
import java.io.InvalidObjectException;
|
|
import sun.util.calendar.CalendarSystem;
|
|
import sun.util.calendar.CalendarUtils;
|
|
import sun.util.calendar.BaseCalendar;
|
|
import sun.util.calendar.Gregorian;
|
|
|
|
/**
|
|
* {@code SimpleTimeZone} is a concrete subclass of {@code TimeZone}
|
|
* that represents a time zone for use with a Gregorian calendar.
|
|
* The class holds an offset from GMT, called <em>raw offset</em>, and start
|
|
* and end rules for a daylight saving time schedule. Since it only holds
|
|
* single values for each, it cannot handle historical changes in the offset
|
|
* from GMT and the daylight saving schedule, except that the {@link
|
|
* #setStartYear setStartYear} method can specify the year when the daylight
|
|
* saving time schedule starts in effect.
|
|
* <p>
|
|
* To construct a {@code SimpleTimeZone} with a daylight saving time
|
|
* schedule, the schedule can be described with a set of rules,
|
|
* <em>start-rule</em> and <em>end-rule</em>. A day when daylight saving time
|
|
* starts or ends is specified by a combination of <em>month</em>,
|
|
* <em>day-of-month</em>, and <em>day-of-week</em> values. The <em>month</em>
|
|
* value is represented by a Calendar {@link Calendar#MONTH MONTH} field
|
|
* value, such as {@link Calendar#MARCH}. The <em>day-of-week</em> value is
|
|
* represented by a Calendar {@link Calendar#DAY_OF_WEEK DAY_OF_WEEK} value,
|
|
* such as {@link Calendar#SUNDAY SUNDAY}. The meanings of value combinations
|
|
* are as follows.
|
|
*
|
|
* <ul>
|
|
* <li><b>Exact day of month</b><br>
|
|
* To specify an exact day of month, set the <em>month</em> and
|
|
* <em>day-of-month</em> to an exact value, and <em>day-of-week</em> to zero. For
|
|
* example, to specify March 1, set the <em>month</em> to {@link Calendar#MARCH
|
|
* MARCH}, <em>day-of-month</em> to 1, and <em>day-of-week</em> to 0.</li>
|
|
*
|
|
* <li><b>Day of week on or after day of month</b><br>
|
|
* To specify a day of week on or after an exact day of month, set the
|
|
* <em>month</em> to an exact month value, <em>day-of-month</em> to the day on
|
|
* or after which the rule is applied, and <em>day-of-week</em> to a negative {@link
|
|
* Calendar#DAY_OF_WEEK DAY_OF_WEEK} field value. For example, to specify the
|
|
* second Sunday of April, set <em>month</em> to {@link Calendar#APRIL APRIL},
|
|
* <em>day-of-month</em> to 8, and <em>day-of-week</em> to {@code -}{@link
|
|
* Calendar#SUNDAY SUNDAY}.</li>
|
|
*
|
|
* <li><b>Day of week on or before day of month</b><br>
|
|
* To specify a day of the week on or before an exact day of the month, set
|
|
* <em>day-of-month</em> and <em>day-of-week</em> to a negative value. For
|
|
* example, to specify the last Wednesday on or before the 21st of March, set
|
|
* <em>month</em> to {@link Calendar#MARCH MARCH}, <em>day-of-month</em> is -21
|
|
* and <em>day-of-week</em> is {@code -}{@link Calendar#WEDNESDAY WEDNESDAY}. </li>
|
|
*
|
|
* <li><b>Last day-of-week of month</b><br>
|
|
* To specify, the last day-of-week of the month, set <em>day-of-week</em> to a
|
|
* {@link Calendar#DAY_OF_WEEK DAY_OF_WEEK} value and <em>day-of-month</em> to
|
|
* -1. For example, to specify the last Sunday of October, set <em>month</em>
|
|
* to {@link Calendar#OCTOBER OCTOBER}, <em>day-of-week</em> to {@link
|
|
* Calendar#SUNDAY SUNDAY} and <em>day-of-month</em> to -1. </li>
|
|
*
|
|
* </ul>
|
|
* The time of the day at which daylight saving time starts or ends is
|
|
* specified by a millisecond value within the day. There are three kinds of
|
|
* <em>mode</em>s to specify the time: {@link #WALL_TIME}, {@link
|
|
* #STANDARD_TIME} and {@link #UTC_TIME}. For example, if daylight
|
|
* saving time ends
|
|
* at 2:00 am in the wall clock time, it can be specified by 7200000
|
|
* milliseconds in the {@link #WALL_TIME} mode. In this case, the wall clock time
|
|
* for an <em>end-rule</em> means the same thing as the daylight time.
|
|
* <p>
|
|
* The following are examples of parameters for constructing time zone objects.
|
|
* <pre><code>
|
|
* // Base GMT offset: -8:00
|
|
* // DST starts: at 2:00am in standard time
|
|
* // on the first Sunday in April
|
|
* // DST ends: at 2:00am in daylight time
|
|
* // on the last Sunday in October
|
|
* // Save: 1 hour
|
|
* SimpleTimeZone(-28800000,
|
|
* "America/Los_Angeles",
|
|
* Calendar.APRIL, 1, -Calendar.SUNDAY,
|
|
* 7200000,
|
|
* Calendar.OCTOBER, -1, Calendar.SUNDAY,
|
|
* 7200000,
|
|
* 3600000)
|
|
*
|
|
* // Base GMT offset: +1:00
|
|
* // DST starts: at 1:00am in UTC time
|
|
* // on the last Sunday in March
|
|
* // DST ends: at 1:00am in UTC time
|
|
* // on the last Sunday in October
|
|
* // Save: 1 hour
|
|
* SimpleTimeZone(3600000,
|
|
* "Europe/Paris",
|
|
* Calendar.MARCH, -1, Calendar.SUNDAY,
|
|
* 3600000, SimpleTimeZone.UTC_TIME,
|
|
* Calendar.OCTOBER, -1, Calendar.SUNDAY,
|
|
* 3600000, SimpleTimeZone.UTC_TIME,
|
|
* 3600000)
|
|
* </code></pre>
|
|
* These parameter rules are also applicable to the set rule methods, such as
|
|
* {@code setStartRule}.
|
|
*
|
|
* @since 1.1
|
|
* @see Calendar
|
|
* @see GregorianCalendar
|
|
* @see TimeZone
|
|
* @author David Goldsmith, Mark Davis, Chen-Lieh Huang, Alan Liu
|
|
*/
|
|
|
|
public class SimpleTimeZone extends TimeZone {
|
|
/**
|
|
* Constructs a SimpleTimeZone with the given base time zone offset from GMT
|
|
* and time zone ID with no daylight saving time schedule.
|
|
*
|
|
* @param rawOffset The base time zone offset in milliseconds to GMT.
|
|
* @param ID The time zone name that is given to this instance.
|
|
*/
|
|
public SimpleTimeZone(int rawOffset, String ID)
|
|
{
|
|
this.rawOffset = rawOffset;
|
|
setID (ID);
|
|
dstSavings = millisPerHour; // In case user sets rules later
|
|
}
|
|
|
|
/**
|
|
* Constructs a SimpleTimeZone with the given base time zone offset from
|
|
* GMT, time zone ID, and rules for starting and ending the daylight
|
|
* time.
|
|
* Both {@code startTime} and {@code endTime} are specified to be
|
|
* represented in the wall clock time. The amount of daylight saving is
|
|
* assumed to be 3600000 milliseconds (i.e., one hour). This constructor is
|
|
* equivalent to:
|
|
* <pre><code>
|
|
* SimpleTimeZone(rawOffset,
|
|
* ID,
|
|
* startMonth,
|
|
* startDay,
|
|
* startDayOfWeek,
|
|
* startTime,
|
|
* SimpleTimeZone.{@link #WALL_TIME},
|
|
* endMonth,
|
|
* endDay,
|
|
* endDayOfWeek,
|
|
* endTime,
|
|
* SimpleTimeZone.{@link #WALL_TIME},
|
|
* 3600000)
|
|
* </code></pre>
|
|
*
|
|
* @param rawOffset The given base time zone offset from GMT.
|
|
* @param ID The time zone ID which is given to this object.
|
|
* @param startMonth The daylight saving time starting month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field value (0-based. e.g., 0
|
|
* for January).
|
|
* @param startDay The day of the month on which the daylight saving time starts.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startDayOfWeek The daylight saving time starting day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startTime The daylight saving time starting time in local wall clock
|
|
* time (in milliseconds within the day), which is local
|
|
* standard time in this case.
|
|
* @param endMonth The daylight saving time ending month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 9 for October).
|
|
* @param endDay The day of the month on which the daylight saving time ends.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endDayOfWeek The daylight saving time ending day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endTime The daylight saving ending time in local wall clock time,
|
|
* (in milliseconds within the day) which is local daylight
|
|
* time in this case.
|
|
* @throws IllegalArgumentException if the month, day, dayOfWeek, or time
|
|
* parameters are out of range for the start or end rule
|
|
*/
|
|
public SimpleTimeZone(int rawOffset, String ID,
|
|
int startMonth, int startDay, int startDayOfWeek, int startTime,
|
|
int endMonth, int endDay, int endDayOfWeek, int endTime)
|
|
{
|
|
this(rawOffset, ID,
|
|
startMonth, startDay, startDayOfWeek, startTime, WALL_TIME,
|
|
endMonth, endDay, endDayOfWeek, endTime, WALL_TIME,
|
|
millisPerHour);
|
|
}
|
|
|
|
/**
|
|
* Constructs a SimpleTimeZone with the given base time zone offset from
|
|
* GMT, time zone ID, and rules for starting and ending the daylight
|
|
* time.
|
|
* Both {@code startTime} and {@code endTime} are assumed to be
|
|
* represented in the wall clock time. This constructor is equivalent to:
|
|
* <pre><code>
|
|
* SimpleTimeZone(rawOffset,
|
|
* ID,
|
|
* startMonth,
|
|
* startDay,
|
|
* startDayOfWeek,
|
|
* startTime,
|
|
* SimpleTimeZone.{@link #WALL_TIME},
|
|
* endMonth,
|
|
* endDay,
|
|
* endDayOfWeek,
|
|
* endTime,
|
|
* SimpleTimeZone.{@link #WALL_TIME},
|
|
* dstSavings)
|
|
* </code></pre>
|
|
*
|
|
* @param rawOffset The given base time zone offset from GMT.
|
|
* @param ID The time zone ID which is given to this object.
|
|
* @param startMonth The daylight saving time starting month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 0 for January).
|
|
* @param startDay The day of the month on which the daylight saving time starts.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startDayOfWeek The daylight saving time starting day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startTime The daylight saving time starting time in local wall clock
|
|
* time, which is local standard time in this case.
|
|
* @param endMonth The daylight saving time ending month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 9 for October).
|
|
* @param endDay The day of the month on which the daylight saving time ends.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endDayOfWeek The daylight saving time ending day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endTime The daylight saving ending time in local wall clock time,
|
|
* which is local daylight time in this case.
|
|
* @param dstSavings The amount of time in milliseconds saved during
|
|
* daylight saving time.
|
|
* @throws IllegalArgumentException if the month, day, dayOfWeek, or time
|
|
* parameters are out of range for the start or end rule
|
|
* @since 1.2
|
|
*/
|
|
public SimpleTimeZone(int rawOffset, String ID,
|
|
int startMonth, int startDay, int startDayOfWeek, int startTime,
|
|
int endMonth, int endDay, int endDayOfWeek, int endTime,
|
|
int dstSavings)
|
|
{
|
|
this(rawOffset, ID,
|
|
startMonth, startDay, startDayOfWeek, startTime, WALL_TIME,
|
|
endMonth, endDay, endDayOfWeek, endTime, WALL_TIME,
|
|
dstSavings);
|
|
}
|
|
|
|
/**
|
|
* Constructs a SimpleTimeZone with the given base time zone offset from
|
|
* GMT, time zone ID, and rules for starting and ending the daylight
|
|
* time.
|
|
* This constructor takes the full set of the start and end rules
|
|
* parameters, including modes of {@code startTime} and
|
|
* {@code endTime}. The mode specifies either {@link #WALL_TIME wall
|
|
* time} or {@link #STANDARD_TIME standard time} or {@link #UTC_TIME UTC
|
|
* time}.
|
|
*
|
|
* @param rawOffset The given base time zone offset from GMT.
|
|
* @param ID The time zone ID which is given to this object.
|
|
* @param startMonth The daylight saving time starting month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 0 for January).
|
|
* @param startDay The day of the month on which the daylight saving time starts.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startDayOfWeek The daylight saving time starting day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startTime The daylight saving time starting time in the time mode
|
|
* specified by {@code startTimeMode}.
|
|
* @param startTimeMode The mode of the start time specified by startTime.
|
|
* @param endMonth The daylight saving time ending month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 9 for October).
|
|
* @param endDay The day of the month on which the daylight saving time ends.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endDayOfWeek The daylight saving time ending day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endTime The daylight saving ending time in time mode
|
|
* specified by {@code endTimeMode}.
|
|
* @param endTimeMode The mode of the end time specified by endTime
|
|
* @param dstSavings The amount of time in milliseconds saved during
|
|
* daylight saving time.
|
|
*
|
|
* @throws IllegalArgumentException if the month, day, dayOfWeek, time more, or
|
|
* time parameters are out of range for the start or end rule, or if a time mode
|
|
* value is invalid.
|
|
*
|
|
* @see #WALL_TIME
|
|
* @see #STANDARD_TIME
|
|
* @see #UTC_TIME
|
|
*
|
|
* @since 1.4
|
|
*/
|
|
public SimpleTimeZone(int rawOffset, String ID,
|
|
int startMonth, int startDay, int startDayOfWeek,
|
|
int startTime, int startTimeMode,
|
|
int endMonth, int endDay, int endDayOfWeek,
|
|
int endTime, int endTimeMode,
|
|
int dstSavings) {
|
|
|
|
setID(ID);
|
|
this.rawOffset = rawOffset;
|
|
this.startMonth = startMonth;
|
|
this.startDay = startDay;
|
|
this.startDayOfWeek = startDayOfWeek;
|
|
this.startTime = startTime;
|
|
this.startTimeMode = startTimeMode;
|
|
this.endMonth = endMonth;
|
|
this.endDay = endDay;
|
|
this.endDayOfWeek = endDayOfWeek;
|
|
this.endTime = endTime;
|
|
this.endTimeMode = endTimeMode;
|
|
this.dstSavings = dstSavings;
|
|
|
|
// this.useDaylight is set by decodeRules
|
|
decodeRules();
|
|
if (dstSavings <= 0) {
|
|
throw new IllegalArgumentException("Illegal daylight saving value: " + dstSavings);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time starting year.
|
|
*
|
|
* @param year The daylight saving starting year.
|
|
*/
|
|
public void setStartYear(int year)
|
|
{
|
|
startYear = year;
|
|
invalidateCache();
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time start rule. For example, if daylight saving
|
|
* time starts on the first Sunday in April at 2 am in local wall clock
|
|
* time, you can set the start rule by calling:
|
|
* <pre>{@code setStartRule(Calendar.APRIL, 1, Calendar.SUNDAY, 2*60*60*1000);}</pre>
|
|
*
|
|
* @param startMonth The daylight saving time starting month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 0 for January).
|
|
* @param startDay The day of the month on which the daylight saving time starts.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startDayOfWeek The daylight saving time starting day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param startTime The daylight saving time starting time in local wall clock
|
|
* time, which is local standard time in this case.
|
|
* @throws IllegalArgumentException if the {@code startMonth}, {@code startDay},
|
|
* {@code startDayOfWeek}, or {@code startTime} parameters are out of range
|
|
*/
|
|
public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime)
|
|
{
|
|
this.startMonth = startMonth;
|
|
this.startDay = startDay;
|
|
this.startDayOfWeek = startDayOfWeek;
|
|
this.startTime = startTime;
|
|
startTimeMode = WALL_TIME;
|
|
decodeStartRule();
|
|
invalidateCache();
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time start rule to a fixed date within a month.
|
|
* This method is equivalent to:
|
|
* <pre>{@code setStartRule(startMonth, startDay, 0, startTime)}</pre>
|
|
*
|
|
* @param startMonth The daylight saving time starting month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 0 for January).
|
|
* @param startDay The day of the month on which the daylight saving time starts.
|
|
* @param startTime The daylight saving time starting time in local wall clock
|
|
* time, which is local standard time in this case.
|
|
* See the class description for the special cases of this parameter.
|
|
* @throws IllegalArgumentException if the {@code startMonth},
|
|
* {@code startDayOfMonth}, or {@code startTime} parameters are out of range
|
|
* @since 1.2
|
|
*/
|
|
public void setStartRule(int startMonth, int startDay, int startTime) {
|
|
setStartRule(startMonth, startDay, 0, startTime);
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time start rule to a weekday before or after the given date within
|
|
* a month, e.g., the first Monday on or after the 8th.
|
|
*
|
|
* @param startMonth The daylight saving time starting month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 0 for January).
|
|
* @param startDay The day of the month on which the daylight saving time starts.
|
|
* @param startDayOfWeek The daylight saving time starting day-of-week.
|
|
* @param startTime The daylight saving time starting time in local wall clock
|
|
* time, which is local standard time in this case.
|
|
* @param after If true, this rule selects the first {@code dayOfWeek} on or
|
|
* <em>after</em> {@code dayOfMonth}. If false, this rule
|
|
* selects the last {@code dayOfWeek} on or <em>before</em>
|
|
* {@code dayOfMonth}.
|
|
* @throws IllegalArgumentException if the {@code startMonth}, {@code startDay},
|
|
* {@code startDayOfWeek}, or {@code startTime} parameters are out of range
|
|
* @since 1.2
|
|
*/
|
|
public void setStartRule(int startMonth, int startDay, int startDayOfWeek,
|
|
int startTime, boolean after)
|
|
{
|
|
// TODO: this method doesn't check the initial values of dayOfMonth or dayOfWeek.
|
|
if (after) {
|
|
setStartRule(startMonth, startDay, -startDayOfWeek, startTime);
|
|
} else {
|
|
setStartRule(startMonth, -startDay, -startDayOfWeek, startTime);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time end rule. For example, if daylight saving time
|
|
* ends on the last Sunday in October at 2 am in wall clock time,
|
|
* you can set the end rule by calling:
|
|
* {@code setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY, 2*60*60*1000);}
|
|
*
|
|
* @param endMonth The daylight saving time ending month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 9 for October).
|
|
* @param endDay The day of the month on which the daylight saving time ends.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endDayOfWeek The daylight saving time ending day-of-week.
|
|
* See the class description for the special cases of this parameter.
|
|
* @param endTime The daylight saving ending time in local wall clock time,
|
|
* (in milliseconds within the day) which is local daylight
|
|
* time in this case.
|
|
* @throws IllegalArgumentException if the {@code endMonth}, {@code endDay},
|
|
* {@code endDayOfWeek}, or {@code endTime} parameters are out of range
|
|
*/
|
|
public void setEndRule(int endMonth, int endDay, int endDayOfWeek,
|
|
int endTime)
|
|
{
|
|
this.endMonth = endMonth;
|
|
this.endDay = endDay;
|
|
this.endDayOfWeek = endDayOfWeek;
|
|
this.endTime = endTime;
|
|
this.endTimeMode = WALL_TIME;
|
|
decodeEndRule();
|
|
invalidateCache();
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time end rule to a fixed date within a month.
|
|
* This method is equivalent to:
|
|
* <pre>{@code setEndRule(endMonth, endDay, 0, endTime)}</pre>
|
|
*
|
|
* @param endMonth The daylight saving time ending month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 9 for October).
|
|
* @param endDay The day of the month on which the daylight saving time ends.
|
|
* @param endTime The daylight saving ending time in local wall clock time,
|
|
* (in milliseconds within the day) which is local daylight
|
|
* time in this case.
|
|
* @throws IllegalArgumentException the {@code endMonth}, {@code endDay},
|
|
* or {@code endTime} parameters are out of range
|
|
* @since 1.2
|
|
*/
|
|
public void setEndRule(int endMonth, int endDay, int endTime)
|
|
{
|
|
setEndRule(endMonth, endDay, 0, endTime);
|
|
}
|
|
|
|
/**
|
|
* Sets the daylight saving time end rule to a weekday before or after the given date within
|
|
* a month, e.g., the first Monday on or after the 8th.
|
|
*
|
|
* @param endMonth The daylight saving time ending month. Month is
|
|
* a {@link Calendar#MONTH MONTH} field
|
|
* value (0-based. e.g., 9 for October).
|
|
* @param endDay The day of the month on which the daylight saving time ends.
|
|
* @param endDayOfWeek The daylight saving time ending day-of-week.
|
|
* @param endTime The daylight saving ending time in local wall clock time,
|
|
* (in milliseconds within the day) which is local daylight
|
|
* time in this case.
|
|
* @param after If true, this rule selects the first {@code endDayOfWeek} on
|
|
* or <em>after</em> {@code endDay}. If false, this rule
|
|
* selects the last {@code endDayOfWeek} on or before
|
|
* {@code endDay} of the month.
|
|
* @throws IllegalArgumentException the {@code endMonth}, {@code endDay},
|
|
* {@code endDayOfWeek}, or {@code endTime} parameters are out of range
|
|
* @since 1.2
|
|
*/
|
|
public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime, boolean after)
|
|
{
|
|
if (after) {
|
|
setEndRule(endMonth, endDay, -endDayOfWeek, endTime);
|
|
} else {
|
|
setEndRule(endMonth, -endDay, -endDayOfWeek, endTime);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the offset of this time zone from UTC at the given
|
|
* time. If daylight saving time is in effect at the given time,
|
|
* the offset value is adjusted with the amount of daylight
|
|
* saving.
|
|
*
|
|
* @param date the time at which the time zone offset is found
|
|
* @return the amount of time in milliseconds to add to UTC to get
|
|
* local time.
|
|
* @since 1.4
|
|
*/
|
|
public int getOffset(long date) {
|
|
return getOffsets(date, null);
|
|
}
|
|
|
|
/**
|
|
* @see TimeZone#getOffsets
|
|
*/
|
|
int getOffsets(long date, int[] offsets) {
|
|
int offset = rawOffset;
|
|
|
|
computeOffset:
|
|
if (useDaylight) {
|
|
Cache cache = this.cache;
|
|
if (cache != null) {
|
|
if (date >= cache.start && date < cache.end) {
|
|
offset += dstSavings;
|
|
break computeOffset;
|
|
}
|
|
}
|
|
BaseCalendar cal = date >= GregorianCalendar.DEFAULT_GREGORIAN_CUTOVER ?
|
|
gcal : (BaseCalendar) CalendarSystem.forName("julian");
|
|
BaseCalendar.Date cdate = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
|
|
// Get the year in local time
|
|
cal.getCalendarDate(date + rawOffset, cdate);
|
|
int year = cdate.getNormalizedYear();
|
|
if (year >= startYear) {
|
|
// Clear time elements for the transition calculations
|
|
cdate.setTimeOfDay(0, 0, 0, 0);
|
|
offset = getOffset(cal, cdate, year, date);
|
|
}
|
|
}
|
|
|
|
if (offsets != null) {
|
|
offsets[0] = rawOffset;
|
|
offsets[1] = offset - rawOffset;
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
/**
|
|
* Returns the difference in milliseconds between local time and
|
|
* UTC, taking into account both the raw offset and the effect of
|
|
* daylight saving, for the specified date and time. This method
|
|
* assumes that the start and end month are distinct. It also
|
|
* uses a default {@link GregorianCalendar} object as its
|
|
* underlying calendar, such as for determining leap years. Do
|
|
* not use the result of this method with a calendar other than a
|
|
* default {@code GregorianCalendar}.
|
|
*
|
|
* <p><em>Note: In general, clients should use
|
|
* {@code Calendar.get(ZONE_OFFSET) + Calendar.get(DST_OFFSET)}
|
|
* instead of calling this method.</em>
|
|
*
|
|
* @param era The era of the given date.
|
|
* @param year The year in the given date.
|
|
* @param month The month in the given date. Month is 0-based. e.g.,
|
|
* 0 for January.
|
|
* @param day The day-in-month of the given date.
|
|
* @param dayOfWeek The day-of-week of the given date.
|
|
* @param millis The milliseconds in day in <em>standard</em> local time.
|
|
* @return The milliseconds to add to UTC to get local time.
|
|
* @throws IllegalArgumentException the {@code era},
|
|
* {@code month}, {@code day}, {@code dayOfWeek},
|
|
* or {@code millis} parameters are out of range
|
|
*/
|
|
public int getOffset(int era, int year, int month, int day, int dayOfWeek,
|
|
int millis)
|
|
{
|
|
if (era != GregorianCalendar.AD && era != GregorianCalendar.BC) {
|
|
throw new IllegalArgumentException("Illegal era " + era);
|
|
}
|
|
|
|
int y = year;
|
|
if (era == GregorianCalendar.BC) {
|
|
// adjust y with the GregorianCalendar-style year numbering.
|
|
y = 1 - y;
|
|
}
|
|
|
|
// If the year isn't representable with the 64-bit long
|
|
// integer in milliseconds, convert the year to an
|
|
// equivalent year. This is required to pass some JCK test cases
|
|
// which are actually useless though because the specified years
|
|
// can't be supported by the Java time system.
|
|
if (y >= 292278994) {
|
|
y = 2800 + y % 2800;
|
|
} else if (y <= -292269054) {
|
|
// y %= 28 also produces an equivalent year, but positive
|
|
// year numbers would be convenient to use the UNIX cal
|
|
// command.
|
|
y = (int) CalendarUtils.mod((long) y, 28);
|
|
}
|
|
|
|
// convert year to its 1-based month value
|
|
int m = month + 1;
|
|
|
|
// First, calculate time as a Gregorian date.
|
|
BaseCalendar cal = gcal;
|
|
BaseCalendar.Date cdate = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
|
|
cdate.setDate(y, m, day);
|
|
long time = cal.getTime(cdate); // normalize cdate
|
|
time += millis - rawOffset; // UTC time
|
|
|
|
// If the time value represents a time before the default
|
|
// Gregorian cutover, recalculate time using the Julian
|
|
// calendar system. For the Julian calendar system, the
|
|
// normalized year numbering is ..., -2 (BCE 2), -1 (BCE 1),
|
|
// 1, 2 ... which is different from the GregorianCalendar
|
|
// style year numbering (..., -1, 0 (BCE 1), 1, 2, ...).
|
|
if (time < GregorianCalendar.DEFAULT_GREGORIAN_CUTOVER) {
|
|
cal = (BaseCalendar) CalendarSystem.forName("julian");
|
|
cdate = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
|
|
cdate.setNormalizedDate(y, m, day);
|
|
time = cal.getTime(cdate) + millis - rawOffset;
|
|
}
|
|
|
|
if ((cdate.getNormalizedYear() != y)
|
|
|| (cdate.getMonth() != m)
|
|
|| (cdate.getDayOfMonth() != day)
|
|
// The validation should be cdate.getDayOfWeek() ==
|
|
// dayOfWeek. However, we don't check dayOfWeek for
|
|
// compatibility.
|
|
|| (dayOfWeek < Calendar.SUNDAY || dayOfWeek > Calendar.SATURDAY)
|
|
|| (millis < 0 || millis >= (24*60*60*1000))) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
|
|
if (!useDaylight || year < startYear || era != GregorianCalendar.CE) {
|
|
return rawOffset;
|
|
}
|
|
|
|
return getOffset(cal, cdate, y, time);
|
|
}
|
|
|
|
private int getOffset(BaseCalendar cal, BaseCalendar.Date cdate, int year, long time) {
|
|
Cache cache = this.cache;
|
|
if (cache != null) {
|
|
if (time >= cache.start && time < cache.end) {
|
|
return rawOffset + dstSavings;
|
|
}
|
|
if (year == cache.year) {
|
|
return rawOffset;
|
|
}
|
|
}
|
|
|
|
long start = getStart(cal, cdate, year);
|
|
long end = getEnd(cal, cdate, year);
|
|
int offset = rawOffset;
|
|
if (start <= end) {
|
|
if (time >= start && time < end) {
|
|
offset += dstSavings;
|
|
}
|
|
this.cache = new Cache(year, start, end);
|
|
} else {
|
|
if (time < end) {
|
|
// TODO: support Gregorian cutover. The previous year
|
|
// may be in the other calendar system.
|
|
start = getStart(cal, cdate, year - 1);
|
|
if (time >= start) {
|
|
offset += dstSavings;
|
|
}
|
|
} else if (time >= start) {
|
|
// TODO: support Gregorian cutover. The next year
|
|
// may be in the other calendar system.
|
|
end = getEnd(cal, cdate, year + 1);
|
|
if (time < end) {
|
|
offset += dstSavings;
|
|
}
|
|
}
|
|
if (start <= end) {
|
|
this.cache = new Cache((long) startYear - 1, start, end);
|
|
}
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
private long getStart(BaseCalendar cal, BaseCalendar.Date cdate, int year) {
|
|
int time = startTime;
|
|
if (startTimeMode != UTC_TIME) {
|
|
time -= rawOffset;
|
|
}
|
|
return getTransition(cal, cdate, startMode, year, startMonth, startDay,
|
|
startDayOfWeek, time);
|
|
}
|
|
|
|
private long getEnd(BaseCalendar cal, BaseCalendar.Date cdate, int year) {
|
|
int time = endTime;
|
|
if (endTimeMode != UTC_TIME) {
|
|
time -= rawOffset;
|
|
}
|
|
if (endTimeMode == WALL_TIME) {
|
|
time -= dstSavings;
|
|
}
|
|
return getTransition(cal, cdate, endMode, year, endMonth, endDay,
|
|
endDayOfWeek, time);
|
|
}
|
|
|
|
private long getTransition(BaseCalendar cal, BaseCalendar.Date cdate,
|
|
int mode, int year, int month, int dayOfMonth,
|
|
int dayOfWeek, int timeOfDay) {
|
|
cdate.setNormalizedYear(year);
|
|
cdate.setMonth(month + 1);
|
|
switch (mode) {
|
|
case DOM_MODE -> cdate.setDayOfMonth(dayOfMonth);
|
|
case DOW_IN_MONTH_MODE -> {
|
|
cdate.setDayOfMonth(1);
|
|
if (dayOfMonth < 0) {
|
|
cdate.setDayOfMonth(cal.getMonthLength(cdate));
|
|
}
|
|
cdate = (BaseCalendar.Date) cal.getNthDayOfWeek(dayOfMonth, dayOfWeek, cdate);
|
|
}
|
|
case DOW_GE_DOM_MODE -> {
|
|
cdate.setDayOfMonth(dayOfMonth);
|
|
cdate = (BaseCalendar.Date) cal.getNthDayOfWeek(1, dayOfWeek, cdate);
|
|
}
|
|
case DOW_LE_DOM_MODE -> {
|
|
cdate.setDayOfMonth(dayOfMonth);
|
|
cdate = (BaseCalendar.Date) cal.getNthDayOfWeek(-1, dayOfWeek, cdate);
|
|
}
|
|
}
|
|
return cal.getTime(cdate) + timeOfDay;
|
|
}
|
|
|
|
/**
|
|
* Gets the GMT offset for this time zone.
|
|
* @return the GMT offset value in milliseconds
|
|
* @see #setRawOffset
|
|
*/
|
|
public int getRawOffset()
|
|
{
|
|
// The given date will be taken into account while
|
|
// we have the historical time zone data in place.
|
|
return rawOffset;
|
|
}
|
|
|
|
/**
|
|
* Sets the base time zone offset to GMT.
|
|
* This is the offset to add to UTC to get local time.
|
|
* @see #getRawOffset
|
|
*/
|
|
public void setRawOffset(int offsetMillis)
|
|
{
|
|
this.rawOffset = offsetMillis;
|
|
}
|
|
|
|
/**
|
|
* Sets the amount of time in milliseconds that the clock is advanced
|
|
* during daylight saving time.
|
|
* @param millisSavedDuringDST the number of milliseconds the time is
|
|
* advanced with respect to standard time when the daylight saving time rules
|
|
* are in effect. A positive number, typically one hour (3600000).
|
|
* @see #getDSTSavings
|
|
* @since 1.2
|
|
*/
|
|
public void setDSTSavings(int millisSavedDuringDST) {
|
|
if (millisSavedDuringDST <= 0) {
|
|
throw new IllegalArgumentException("Illegal daylight saving value: "
|
|
+ millisSavedDuringDST);
|
|
}
|
|
dstSavings = millisSavedDuringDST;
|
|
}
|
|
|
|
/**
|
|
* Returns the amount of time in milliseconds that the clock is
|
|
* advanced during daylight saving time.
|
|
*
|
|
* @return the number of milliseconds the time is advanced with
|
|
* respect to standard time when the daylight saving rules are in
|
|
* effect, or 0 (zero) if this time zone doesn't observe daylight
|
|
* saving time.
|
|
*
|
|
* @see #setDSTSavings
|
|
* @since 1.2
|
|
*/
|
|
public int getDSTSavings() {
|
|
return useDaylight ? dstSavings : 0;
|
|
}
|
|
|
|
/**
|
|
* Queries if this time zone uses daylight saving time.
|
|
* @return true if this time zone uses daylight saving time;
|
|
* false otherwise.
|
|
*/
|
|
public boolean useDaylightTime()
|
|
{
|
|
return useDaylight;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this {@code SimpleTimeZone} observes
|
|
* Daylight Saving Time. This method is equivalent to {@link
|
|
* #useDaylightTime()}.
|
|
*
|
|
* @return {@code true} if this {@code SimpleTimeZone} observes
|
|
* Daylight Saving Time; {@code false} otherwise.
|
|
* @since 1.7
|
|
*/
|
|
@Override
|
|
public boolean observesDaylightTime() {
|
|
return useDaylightTime();
|
|
}
|
|
|
|
/**
|
|
* Queries if the given date is in daylight saving time.
|
|
* @return true if daylight saving time is in effective at the
|
|
* given date; false otherwise.
|
|
*/
|
|
public boolean inDaylightTime(Date date)
|
|
{
|
|
return (getOffset(date.getTime()) != rawOffset);
|
|
}
|
|
|
|
/**
|
|
* Returns a clone of this {@code SimpleTimeZone} instance.
|
|
* @return a clone of this instance.
|
|
*/
|
|
public Object clone()
|
|
{
|
|
return super.clone();
|
|
}
|
|
|
|
/**
|
|
* Generates the hash code for the SimpleDateFormat object.
|
|
* @return the hash code for this object
|
|
*/
|
|
public int hashCode()
|
|
{
|
|
return startMonth ^ startDay ^ startDayOfWeek ^ startTime ^
|
|
endMonth ^ endDay ^ endDayOfWeek ^ endTime ^ rawOffset;
|
|
}
|
|
|
|
/**
|
|
* Compares the equality of two {@code SimpleTimeZone} objects.
|
|
*
|
|
* @param obj The {@code SimpleTimeZone} object to be compared with.
|
|
* @return True if the given {@code obj} is the same as this
|
|
* {@code SimpleTimeZone} object; false otherwise.
|
|
*/
|
|
public boolean equals(Object obj) {
|
|
if (this == obj) {
|
|
return true;
|
|
}
|
|
|
|
return obj instanceof SimpleTimeZone that
|
|
&& getID().equals(that.getID())
|
|
&& hasSameRules(that);
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this zone has the same rules and offset as another zone.
|
|
* @param other the TimeZone object to be compared with
|
|
* @return {@code true} if the given zone is a SimpleTimeZone and has the
|
|
* same rules and offset as this one
|
|
* @since 1.2
|
|
*/
|
|
public boolean hasSameRules(TimeZone other) {
|
|
if (this == other) {
|
|
return true;
|
|
}
|
|
return other instanceof SimpleTimeZone that
|
|
&& rawOffset == that.rawOffset
|
|
&& useDaylight == that.useDaylight
|
|
&& (!useDaylight ||
|
|
// Only check rules if using DST
|
|
(dstSavings == that.dstSavings
|
|
&& startMode == that.startMode
|
|
&& startMonth == that.startMonth
|
|
&& startDay == that.startDay
|
|
&& startDayOfWeek == that.startDayOfWeek
|
|
&& startTime == that.startTime
|
|
&& startTimeMode == that.startTimeMode
|
|
&& endMode == that.endMode
|
|
&& endMonth == that.endMonth
|
|
&& endDay == that.endDay
|
|
&& endDayOfWeek == that.endDayOfWeek
|
|
&& endTime == that.endTime
|
|
&& endTimeMode == that.endTimeMode
|
|
&& startYear == that.startYear)
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of this time zone.
|
|
* @return a string representation of this time zone.
|
|
*/
|
|
public String toString() {
|
|
return getClass().getName() +
|
|
"[id=" + getID() +
|
|
",offset=" + rawOffset +
|
|
",dstSavings=" + dstSavings +
|
|
",useDaylight=" + useDaylight +
|
|
",startYear=" + startYear +
|
|
",startMode=" + startMode +
|
|
",startMonth=" + startMonth +
|
|
",startDay=" + startDay +
|
|
",startDayOfWeek=" + startDayOfWeek +
|
|
",startTime=" + startTime +
|
|
",startTimeMode=" + startTimeMode +
|
|
",endMode=" + endMode +
|
|
",endMonth=" + endMonth +
|
|
",endDay=" + endDay +
|
|
",endDayOfWeek=" + endDayOfWeek +
|
|
",endTime=" + endTime +
|
|
",endTimeMode=" + endTimeMode + ']';
|
|
}
|
|
|
|
// =======================privates===============================
|
|
|
|
/**
|
|
* The month in which daylight saving time starts. This value must be
|
|
* between {@code Calendar.JANUARY} and
|
|
* {@code Calendar.DECEMBER} inclusive. This value must not equal
|
|
* {@code endMonth}.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int startMonth;
|
|
|
|
/**
|
|
* This field has two possible interpretations:
|
|
* <dl>
|
|
* <dt>{@code startMode == DOW_IN_MONTH}</dt>
|
|
* <dd>
|
|
* {@code startDay} indicates the day of the month of
|
|
* {@code startMonth} on which daylight
|
|
* saving time starts, from 1 to 28, 30, or 31, depending on the
|
|
* {@code startMonth}.
|
|
* </dd>
|
|
* <dt>{@code startMode != DOW_IN_MONTH}</dt>
|
|
* <dd>
|
|
* {@code startDay} indicates which {@code startDayOfWeek} in the
|
|
* month {@code startMonth} daylight
|
|
* saving time starts on. For example, a value of +1 and a
|
|
* {@code startDayOfWeek} of {@code Calendar.SUNDAY} indicates the
|
|
* first Sunday of {@code startMonth}. Likewise, +2 would indicate the
|
|
* second Sunday, and -1 the last Sunday. A value of 0 is illegal.
|
|
* </dd>
|
|
* </dl>
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int startDay;
|
|
|
|
/**
|
|
* The day of the week on which daylight saving time starts. This value
|
|
* must be between {@code Calendar.SUNDAY} and
|
|
* {@code Calendar.SATURDAY} inclusive.
|
|
* <p>If {@code useDaylight} is false or
|
|
* {@code startMode == DAY_OF_MONTH}, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int startDayOfWeek;
|
|
|
|
/**
|
|
* The time in milliseconds after midnight at which daylight saving
|
|
* time starts. This value is expressed as wall time, standard time,
|
|
* or UTC time, depending on the setting of {@code startTimeMode}.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int startTime;
|
|
|
|
/**
|
|
* The format of startTime, either WALL_TIME, STANDARD_TIME, or UTC_TIME.
|
|
* @serial
|
|
* @since 1.3
|
|
*/
|
|
private int startTimeMode;
|
|
|
|
/**
|
|
* The month in which daylight saving time ends. This value must be
|
|
* between {@code Calendar.JANUARY} and
|
|
* {@code Calendar.UNDECIMBER}. This value must not equal
|
|
* {@code startMonth}.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int endMonth;
|
|
|
|
/**
|
|
* This field has two possible interpretations:
|
|
* <dl>
|
|
* <dt>{@code endMode == DOW_IN_MONTH}</dt>
|
|
* <dd>
|
|
* {@code endDay} indicates the day of the month of
|
|
* {@code endMonth} on which daylight
|
|
* saving time ends, from 1 to 28, 30, or 31, depending on the
|
|
* {@code endMonth}.
|
|
* </dd>
|
|
* <dt>{@code endMode != DOW_IN_MONTH}</dt>
|
|
* <dd>
|
|
* {@code endDay} indicates which {@code endDayOfWeek} in th
|
|
* month {@code endMonth} daylight
|
|
* saving time ends on. For example, a value of +1 and a
|
|
* {@code endDayOfWeek} of {@code Calendar.SUNDAY} indicates the
|
|
* first Sunday of {@code endMonth}. Likewise, +2 would indicate the
|
|
* second Sunday, and -1 the last Sunday. A value of 0 is illegal.
|
|
* </dd>
|
|
* </dl>
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int endDay;
|
|
|
|
/**
|
|
* The day of the week on which daylight saving time ends. This value
|
|
* must be between {@code Calendar.SUNDAY} and
|
|
* {@code Calendar.SATURDAY} inclusive.
|
|
* <p>If {@code useDaylight} is false or
|
|
* {@code endMode == DAY_OF_MONTH}, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int endDayOfWeek;
|
|
|
|
/**
|
|
* The time in milliseconds after midnight at which daylight saving
|
|
* time ends. This value is expressed as wall time, standard time,
|
|
* or UTC time, depending on the setting of {@code endTimeMode}.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int endTime;
|
|
|
|
/**
|
|
* The format of endTime, either {@code WALL_TIME},
|
|
* {@code STANDARD_TIME}, or {@code UTC_TIME}.
|
|
* @serial
|
|
* @since 1.3
|
|
*/
|
|
private int endTimeMode;
|
|
|
|
/**
|
|
* The year in which daylight saving time is first observed. This is an {@link GregorianCalendar#AD AD}
|
|
* value. If this value is less than 1 then daylight saving time is observed
|
|
* for all {@code AD} years.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
*/
|
|
private int startYear;
|
|
|
|
/**
|
|
* The offset in milliseconds between this zone and GMT. Negative offsets
|
|
* are to the west of Greenwich. To obtain local <em>standard</em> time,
|
|
* add the offset to GMT time. To obtain local wall time it may also be
|
|
* necessary to add {@code dstSavings}.
|
|
* @serial
|
|
*/
|
|
private int rawOffset;
|
|
|
|
/**
|
|
* A boolean value which is true if and only if this zone uses daylight
|
|
* saving time. If this value is false, several other fields are ignored.
|
|
* @serial
|
|
*/
|
|
private boolean useDaylight=false; // indicate if this time zone uses DST
|
|
|
|
private static final int millisPerHour = 60*60*1000;
|
|
private static final int millisPerDay = 24*millisPerHour;
|
|
|
|
/**
|
|
* This field was serialized in JDK 1.1, so we have to keep it that way
|
|
* to maintain serialization compatibility. However, there's no need to
|
|
* recreate the array each time we create a new time zone.
|
|
* @serial An array of bytes containing the values {31, 28, 31, 30, 31, 30,
|
|
* 31, 31, 30, 31, 30, 31}. This is ignored as of the Java 2 platform v1.2, however, it must
|
|
* be streamed out for compatibility with JDK 1.1.
|
|
*/
|
|
private final byte monthLength[] = staticMonthLength;
|
|
private static final byte staticMonthLength[] = {31,28,31,30,31,30,31,31,30,31,30,31};
|
|
private static final byte staticLeapMonthLength[] = {31,29,31,30,31,30,31,31,30,31,30,31};
|
|
|
|
/**
|
|
* Variables specifying the mode of the start rule. Takes the following
|
|
* values:
|
|
* <dl>
|
|
* <dt>{@code DOM_MODE}</dt>
|
|
* <dd>
|
|
* Exact day of week; e.g., March 1.
|
|
* </dd>
|
|
* <dt>{@code DOW_IN_MONTH_MODE}</dt>
|
|
* <dd>
|
|
* Day of week in month; e.g., last Sunday in March.
|
|
* </dd>
|
|
* <dt>{@code DOW_GE_DOM_MODE}</dt>
|
|
* <dd>
|
|
* Day of week after day of month; e.g., Sunday on or after March 15.
|
|
* </dd>
|
|
* <dt>{@code DOW_LE_DOM_MODE}</dt>
|
|
* <dd>
|
|
* Day of week before day of month; e.g., Sunday on or before March 15.
|
|
* </dd>
|
|
* </dl>
|
|
* The setting of this field affects the interpretation of the
|
|
* {@code startDay} field.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
* @since 1.1.4
|
|
*/
|
|
private int startMode;
|
|
|
|
/**
|
|
* Variables specifying the mode of the end rule. Takes the following
|
|
* values:
|
|
* <dl>
|
|
* <dt>{@code DOM_MODE}</dt>
|
|
* <dd>
|
|
* Exact day of week; e.g., March 1.
|
|
* </dd>
|
|
* <dt>{@code DOW_IN_MONTH_MODE}</dt>
|
|
* <dd>
|
|
* Day of week in month; e.g., last Sunday in March.
|
|
* </dd>
|
|
* <dt>{@code DOW_GE_DOM_MODE}</dt>
|
|
* <dd>
|
|
* Day of week after day of month; e.g., Sunday on or after March 15.
|
|
* </dd>
|
|
* <dt>{@code DOW_LE_DOM_MODE}</dt>
|
|
* <dd>
|
|
* Day of week before day of month; e.g., Sunday on or before March 15.
|
|
* </dd>
|
|
* </dl>
|
|
* The setting of this field affects the interpretation of the
|
|
* {@code endDay} field.
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
* @since 1.1.4
|
|
*/
|
|
private int endMode;
|
|
|
|
/**
|
|
* A positive value indicating the amount of time saved during DST in
|
|
* milliseconds.
|
|
* Typically one hour (3600000); sometimes 30 minutes (1800000).
|
|
* <p>If {@code useDaylight} is false, this value is ignored.
|
|
* @serial
|
|
* @since 1.1.4
|
|
*/
|
|
private int dstSavings;
|
|
|
|
private static final Gregorian gcal = CalendarSystem.getGregorianCalendar();
|
|
|
|
/**
|
|
* Cache values representing a single period of daylight saving
|
|
* time. Cache.start is the start time (inclusive) of daylight
|
|
* saving time and Cache.end is the end time (exclusive).
|
|
*
|
|
* Cache.year has a year value if both Cache.start and Cache.end are
|
|
* in the same year. Cache.year is set to startYear - 1 if
|
|
* Cache.start and Cache.end are in different years.
|
|
* Cache.year is a long to support Integer.MIN_VALUE - 1 (JCK requirement).
|
|
*/
|
|
private static final class Cache {
|
|
final long year;
|
|
final long start;
|
|
final long end;
|
|
|
|
Cache(long year, long start, long end) {
|
|
this.year = year;
|
|
this.start = start;
|
|
this.end = end;
|
|
}
|
|
}
|
|
|
|
private transient volatile Cache cache;
|
|
|
|
/**
|
|
* Constants specifying values of startMode and endMode.
|
|
*/
|
|
private static final int DOM_MODE = 1; // Exact day of month, "Mar 1"
|
|
private static final int DOW_IN_MONTH_MODE = 2; // Day of week in month, "lastSun"
|
|
private static final int DOW_GE_DOM_MODE = 3; // Day of week after day of month, "Sun>=15"
|
|
private static final int DOW_LE_DOM_MODE = 4; // Day of week before day of month, "Sun<=21"
|
|
|
|
/**
|
|
* Constant for a mode of start or end time specified as wall clock
|
|
* time. Wall clock time is standard time for the onset rule, and
|
|
* daylight time for the end rule.
|
|
* @since 1.4
|
|
*/
|
|
public static final int WALL_TIME = 0; // Zero for backward compatibility
|
|
|
|
/**
|
|
* Constant for a mode of start or end time specified as standard time.
|
|
* @since 1.4
|
|
*/
|
|
public static final int STANDARD_TIME = 1;
|
|
|
|
/**
|
|
* Constant for a mode of start or end time specified as UTC. European
|
|
* Union rules are specified as UTC time, for example.
|
|
* @since 1.4
|
|
*/
|
|
public static final int UTC_TIME = 2;
|
|
|
|
// Proclaim compatibility with 1.1
|
|
@java.io.Serial
|
|
static final long serialVersionUID = -403250971215465050L;
|
|
|
|
// the internal serial version which says which version was written
|
|
// - 0 (default) for version up to JDK 1.1.3
|
|
// - 1 for version from JDK 1.1.4, which includes 3 new fields
|
|
// - 2 for JDK 1.3, which includes 2 new fields
|
|
static final int currentSerialVersion = 2;
|
|
|
|
/**
|
|
* The version of the serialized data on the stream. Possible values:
|
|
* <dl>
|
|
* <dt><b>0</b> or not present on stream</dt>
|
|
* <dd>
|
|
* JDK 1.1.3 or earlier.
|
|
* </dd>
|
|
* <dt><b>1</b></dt>
|
|
* <dd>
|
|
* JDK 1.1.4 or later. Includes three new fields: {@code startMode},
|
|
* {@code endMode}, and {@code dstSavings}.
|
|
* </dd>
|
|
* <dt><b>2</b></dt>
|
|
* <dd>
|
|
* JDK 1.3 or later. Includes two new fields: {@code startTimeMode}
|
|
* and {@code endTimeMode}.
|
|
* </dd>
|
|
* </dl>
|
|
* When streaming out this class, the most recent format
|
|
* and the highest allowable {@code serialVersionOnStream}
|
|
* is written.
|
|
* @serial
|
|
* @since 1.1.4
|
|
*/
|
|
private int serialVersionOnStream = currentSerialVersion;
|
|
|
|
// Maximum number of rules.
|
|
private static final int MAX_RULE_NUM = 6;
|
|
|
|
private void invalidateCache() {
|
|
cache = null;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Rule representation
|
|
//
|
|
// We represent the following flavors of rules:
|
|
// 5 the fifth of the month
|
|
// lastSun the last Sunday in the month
|
|
// lastMon the last Monday in the month
|
|
// Sun>=8 first Sunday on or after the eighth
|
|
// Sun<=25 last Sunday on or before the 25th
|
|
// This is further complicated by the fact that we need to remain
|
|
// backward compatible with the 1.1 FCS. Finally, we need to minimize
|
|
// API changes. In order to satisfy these requirements, we support
|
|
// three representation systems, and we translate between them.
|
|
//
|
|
// INTERNAL REPRESENTATION
|
|
// This is the format SimpleTimeZone objects take after construction or
|
|
// streaming in is complete. Rules are represented directly, using an
|
|
// unencoded format. We will discuss the start rule only below; the end
|
|
// rule is analogous.
|
|
// startMode Takes on enumerated values DAY_OF_MONTH,
|
|
// DOW_IN_MONTH, DOW_AFTER_DOM, or DOW_BEFORE_DOM.
|
|
// startDay The day of the month, or for DOW_IN_MONTH mode, a
|
|
// value indicating which DOW, such as +1 for first,
|
|
// +2 for second, -1 for last, etc.
|
|
// startDayOfWeek The day of the week. Ignored for DAY_OF_MONTH.
|
|
//
|
|
// ENCODED REPRESENTATION
|
|
// This is the format accepted by the constructor and by setStartRule()
|
|
// and setEndRule(). It uses various combinations of positive, negative,
|
|
// and zero values to encode the different rules. This representation
|
|
// allows us to specify all the different rule flavors without altering
|
|
// the API.
|
|
// MODE startMonth startDay startDayOfWeek
|
|
// DOW_IN_MONTH_MODE >=0 !=0 >0
|
|
// DOM_MODE >=0 >0 ==0
|
|
// DOW_GE_DOM_MODE >=0 >0 <0
|
|
// DOW_LE_DOM_MODE >=0 <0 <0
|
|
// (no DST) don't care ==0 don't care
|
|
//
|
|
// STREAMED REPRESENTATION
|
|
// We must retain binary compatibility with the 1.1 FCS. The 1.1 code only
|
|
// handles DOW_IN_MONTH_MODE and non-DST mode, the latter indicated by the
|
|
// flag useDaylight. When we stream an object out, we translate into an
|
|
// approximate DOW_IN_MONTH_MODE representation so the object can be parsed
|
|
// and used by 1.1 code. Following that, we write out the full
|
|
// representation separately so that contemporary code can recognize and
|
|
// parse it. The full representation is written in a "packed" format,
|
|
// consisting of a version number, a length, and an array of bytes. Future
|
|
// versions of this class may specify different versions. If they wish to
|
|
// include additional data, they should do so by storing them after the
|
|
// packed representation below.
|
|
//----------------------------------------------------------------------
|
|
|
|
/**
|
|
* Given a set of encoded rules in startDay and startDayOfMonth, decode
|
|
* them and set the startMode appropriately. Do the same for endDay and
|
|
* endDayOfMonth. Upon entry, the day of week variables may be zero or
|
|
* negative, in order to indicate special modes. The day of month
|
|
* variables may also be negative. Upon exit, the mode variables will be
|
|
* set, and the day of week and day of month variables will be positive.
|
|
* This method also recognizes a startDay or endDay of zero as indicating
|
|
* no DST.
|
|
*/
|
|
private void decodeRules()
|
|
{
|
|
decodeStartRule();
|
|
decodeEndRule();
|
|
}
|
|
|
|
/**
|
|
* Decode the start rule and validate the parameters. The parameters are
|
|
* expected to be in encoded form, which represents the various rule modes
|
|
* by negating or zeroing certain values. Representation formats are:
|
|
* <p>
|
|
* <pre>
|
|
* DOW_IN_MONTH DOM DOW>=DOM DOW<=DOM no DST
|
|
* ------------ ----- -------- -------- ----------
|
|
* month 0..11 same same same don't care
|
|
* day -5..5 1..31 1..31 -1..-31 0
|
|
* dayOfWeek 1..7 0 -1..-7 -1..-7 don't care
|
|
* time 0..ONEDAY same same same don't care
|
|
* </pre>
|
|
* The range for month does not include UNDECIMBER since this class is
|
|
* really specific to GregorianCalendar, which does not use that month.
|
|
* The range for time includes ONEDAY (vs. ending at ONEDAY-1) because the
|
|
* end rule is an exclusive limit point. That is, the range of times that
|
|
* are in DST include those >= the start and < the end. For this reason,
|
|
* it should be possible to specify an end of ONEDAY in order to include the
|
|
* entire day. Although this is equivalent to time 0 of the following day,
|
|
* it's not always possible to specify that, for example, on December 31.
|
|
* While arguably the start range should still be 0..ONEDAY-1, we keep
|
|
* the start and end ranges the same for consistency.
|
|
*/
|
|
private void decodeStartRule() {
|
|
useDaylight = (startDay != 0) && (endDay != 0);
|
|
if (startDay != 0) {
|
|
if (startMonth < Calendar.JANUARY || startMonth > Calendar.DECEMBER) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal start month " + startMonth);
|
|
}
|
|
if (startTime < 0 || startTime > millisPerDay) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal start time " + startTime);
|
|
}
|
|
if (startDayOfWeek == 0) {
|
|
startMode = DOM_MODE;
|
|
} else {
|
|
if (startDayOfWeek > 0) {
|
|
startMode = DOW_IN_MONTH_MODE;
|
|
} else {
|
|
startDayOfWeek = -startDayOfWeek;
|
|
if (startDay > 0) {
|
|
startMode = DOW_GE_DOM_MODE;
|
|
} else {
|
|
startDay = -startDay;
|
|
startMode = DOW_LE_DOM_MODE;
|
|
}
|
|
}
|
|
if (startDayOfWeek > Calendar.SATURDAY) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal start day of week " + startDayOfWeek);
|
|
}
|
|
}
|
|
if (startMode == DOW_IN_MONTH_MODE) {
|
|
if (startDay < -5 || startDay > 5) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal start day of week in month " + startDay);
|
|
}
|
|
} else if (startDay < 1 || startDay > staticMonthLength[startMonth]) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal start day " + startDay);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode the end rule and validate the parameters. This method is exactly
|
|
* analogous to decodeStartRule().
|
|
* @see decodeStartRule
|
|
*/
|
|
private void decodeEndRule() {
|
|
useDaylight = (startDay != 0) && (endDay != 0);
|
|
if (endDay != 0) {
|
|
if (endMonth < Calendar.JANUARY || endMonth > Calendar.DECEMBER) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal end month " + endMonth);
|
|
}
|
|
if (endTime < 0 || endTime > millisPerDay) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal end time " + endTime);
|
|
}
|
|
if (endDayOfWeek == 0) {
|
|
endMode = DOM_MODE;
|
|
} else {
|
|
if (endDayOfWeek > 0) {
|
|
endMode = DOW_IN_MONTH_MODE;
|
|
} else {
|
|
endDayOfWeek = -endDayOfWeek;
|
|
if (endDay > 0) {
|
|
endMode = DOW_GE_DOM_MODE;
|
|
} else {
|
|
endDay = -endDay;
|
|
endMode = DOW_LE_DOM_MODE;
|
|
}
|
|
}
|
|
if (endDayOfWeek > Calendar.SATURDAY) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal end day of week " + endDayOfWeek);
|
|
}
|
|
}
|
|
if (endMode == DOW_IN_MONTH_MODE) {
|
|
if (endDay < -5 || endDay > 5) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal end day of week in month " + endDay);
|
|
}
|
|
} else if (endDay < 1 || endDay > staticMonthLength[endMonth]) {
|
|
throw new IllegalArgumentException(
|
|
"Illegal end day " + endDay);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Make rules compatible to 1.1 FCS code. Since 1.1 FCS code only understands
|
|
* day-of-week-in-month rules, we must modify other modes of rules to their
|
|
* approximate equivalent in 1.1 FCS terms. This method is used when streaming
|
|
* out objects of this class. After it is called, the rules will be modified,
|
|
* with a possible loss of information. startMode and endMode will NOT be
|
|
* altered, even though semantically they should be set to DOW_IN_MONTH_MODE,
|
|
* since the rule modification is only intended to be temporary.
|
|
*/
|
|
private void makeRulesCompatible()
|
|
{
|
|
switch (startMode) {
|
|
case DOM_MODE:
|
|
startDay = 1 + (startDay / 7);
|
|
startDayOfWeek = Calendar.SUNDAY;
|
|
break;
|
|
|
|
case DOW_GE_DOM_MODE:
|
|
// A day-of-month of 1 is equivalent to DOW_IN_MONTH_MODE
|
|
// that is, Sun>=1 == firstSun.
|
|
if (startDay != 1) {
|
|
startDay = 1 + (startDay / 7);
|
|
}
|
|
break;
|
|
|
|
case DOW_LE_DOM_MODE:
|
|
if (startDay >= 30) {
|
|
startDay = -1;
|
|
} else {
|
|
startDay = 1 + (startDay / 7);
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (endMode) {
|
|
case DOM_MODE:
|
|
endDay = 1 + (endDay / 7);
|
|
endDayOfWeek = Calendar.SUNDAY;
|
|
break;
|
|
|
|
case DOW_GE_DOM_MODE:
|
|
// A day-of-month of 1 is equivalent to DOW_IN_MONTH_MODE
|
|
// that is, Sun>=1 == firstSun.
|
|
if (endDay != 1) {
|
|
endDay = 1 + (endDay / 7);
|
|
}
|
|
break;
|
|
|
|
case DOW_LE_DOM_MODE:
|
|
if (endDay >= 30) {
|
|
endDay = -1;
|
|
} else {
|
|
endDay = 1 + (endDay / 7);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Adjust the start and end times to wall time. This works perfectly
|
|
* well unless it pushes into the next or previous day. If that
|
|
* happens, we attempt to adjust the day rule somewhat crudely. The day
|
|
* rules have been forced into DOW_IN_MONTH mode already, so we change
|
|
* the day of week to move forward or back by a day. It's possible to
|
|
* make a more refined adjustment of the original rules first, but in
|
|
* most cases this extra effort will go to waste once we adjust the day
|
|
* rules anyway.
|
|
*/
|
|
switch (startTimeMode) {
|
|
case UTC_TIME -> startTime += rawOffset;
|
|
}
|
|
while (startTime < 0) {
|
|
startTime += millisPerDay;
|
|
startDayOfWeek = 1 + ((startDayOfWeek+5) % 7); // Back 1 day
|
|
}
|
|
while (startTime >= millisPerDay) {
|
|
startTime -= millisPerDay;
|
|
startDayOfWeek = 1 + (startDayOfWeek % 7); // Forward 1 day
|
|
}
|
|
|
|
switch (endTimeMode) {
|
|
case UTC_TIME -> endTime += rawOffset + dstSavings;
|
|
case STANDARD_TIME -> endTime += dstSavings;
|
|
}
|
|
while (endTime < 0) {
|
|
endTime += millisPerDay;
|
|
endDayOfWeek = 1 + ((endDayOfWeek+5) % 7); // Back 1 day
|
|
}
|
|
while (endTime >= millisPerDay) {
|
|
endTime -= millisPerDay;
|
|
endDayOfWeek = 1 + (endDayOfWeek % 7); // Forward 1 day
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Pack the start and end rules into an array of bytes. Only pack
|
|
* data which is not preserved by makeRulesCompatible.
|
|
*/
|
|
private byte[] packRules()
|
|
{
|
|
byte[] rules = new byte[MAX_RULE_NUM];
|
|
rules[0] = (byte)startDay;
|
|
rules[1] = (byte)startDayOfWeek;
|
|
rules[2] = (byte)endDay;
|
|
rules[3] = (byte)endDayOfWeek;
|
|
|
|
// As of serial version 2, include time modes
|
|
rules[4] = (byte)startTimeMode;
|
|
rules[5] = (byte)endTimeMode;
|
|
|
|
return rules;
|
|
}
|
|
|
|
/**
|
|
* Given an array of bytes produced by packRules, interpret them
|
|
* as the start and end rules.
|
|
*/
|
|
private void unpackRules(byte[] rules)
|
|
{
|
|
startDay = rules[0];
|
|
startDayOfWeek = rules[1];
|
|
endDay = rules[2];
|
|
endDayOfWeek = rules[3];
|
|
|
|
// As of serial version 2, include time modes
|
|
if (rules.length >= MAX_RULE_NUM) {
|
|
startTimeMode = rules[4];
|
|
endTimeMode = rules[5];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Pack the start and end times into an array of bytes. This is required
|
|
* as of serial version 2.
|
|
*/
|
|
private int[] packTimes() {
|
|
int[] times = new int[2];
|
|
times[0] = startTime;
|
|
times[1] = endTime;
|
|
return times;
|
|
}
|
|
|
|
/**
|
|
* Unpack the start and end times from an array of bytes. This is required
|
|
* as of serial version 2.
|
|
*/
|
|
private void unpackTimes(int[] times) {
|
|
startTime = times[0];
|
|
endTime = times[1];
|
|
}
|
|
|
|
/**
|
|
* Save the state of this object to a stream (i.e., serialize it).
|
|
*
|
|
* @serialData We write out two formats, a JDK 1.1 compatible format, using
|
|
* {@code DOW_IN_MONTH_MODE} rules, in the required section, followed
|
|
* by the full rules, in packed format, in the optional section. The
|
|
* optional section will be ignored by JDK 1.1 code upon stream in.
|
|
* <p> Contents of the optional section: The length of a byte array is
|
|
* emitted (int); this is 4 as of this release. The byte array of the given
|
|
* length is emitted. The contents of the byte array are the true values of
|
|
* the fields {@code startDay}, {@code startDayOfWeek},
|
|
* {@code endDay}, and {@code endDayOfWeek}. The values of these
|
|
* fields in the required section are approximate values suited to the rule
|
|
* mode {@code DOW_IN_MONTH_MODE}, which is the only mode recognized by
|
|
* JDK 1.1.
|
|
*/
|
|
@java.io.Serial
|
|
private void writeObject(ObjectOutputStream stream)
|
|
throws IOException
|
|
{
|
|
// Construct a binary rule
|
|
byte[] rules = packRules();
|
|
int[] times = packTimes();
|
|
|
|
// Convert to 1.1 FCS rules. This step may cause us to lose information.
|
|
makeRulesCompatible();
|
|
|
|
// Write out the 1.1 FCS rules
|
|
stream.defaultWriteObject();
|
|
|
|
// Write out the binary rules in the optional data area of the stream.
|
|
stream.writeInt(rules.length);
|
|
stream.write(rules);
|
|
stream.writeObject(times);
|
|
|
|
// Recover the original rules. This recovers the information lost
|
|
// by makeRulesCompatible.
|
|
unpackRules(rules);
|
|
unpackTimes(times);
|
|
}
|
|
|
|
/**
|
|
* Reconstitute this object from a stream (i.e., deserialize it).
|
|
*
|
|
* We handle both JDK 1.1
|
|
* binary formats and full formats with a packed byte array.
|
|
*/
|
|
@java.io.Serial
|
|
private void readObject(ObjectInputStream stream)
|
|
throws IOException, ClassNotFoundException
|
|
{
|
|
stream.defaultReadObject();
|
|
|
|
if (serialVersionOnStream < 1) {
|
|
// Fix a bug in the 1.1 SimpleTimeZone code -- namely,
|
|
// startDayOfWeek and endDayOfWeek were usually uninitialized. We can't do
|
|
// too much, so we assume SUNDAY, which actually works most of the time.
|
|
if (startDayOfWeek == 0) {
|
|
startDayOfWeek = Calendar.SUNDAY;
|
|
}
|
|
if (endDayOfWeek == 0) {
|
|
endDayOfWeek = Calendar.SUNDAY;
|
|
}
|
|
|
|
// The variables dstSavings, startMode, and endMode are post-1.1, so they
|
|
// won't be present if we're reading from a 1.1 stream. Fix them up.
|
|
startMode = endMode = DOW_IN_MONTH_MODE;
|
|
dstSavings = millisPerHour;
|
|
} else {
|
|
// For 1.1.4, in addition to the 3 new instance variables, we also
|
|
// store the actual rules (which have not be made compatible with 1.1)
|
|
// in the optional area. Read them in here and parse them.
|
|
int length = stream.readInt();
|
|
if (length <= MAX_RULE_NUM) {
|
|
byte[] rules = new byte[length];
|
|
stream.readFully(rules);
|
|
unpackRules(rules);
|
|
} else {
|
|
throw new InvalidObjectException("Too many rules: " + length);
|
|
}
|
|
}
|
|
|
|
if (serialVersionOnStream >= 2) {
|
|
int[] times = (int[]) stream.readObject();
|
|
unpackTimes(times);
|
|
}
|
|
|
|
serialVersionOnStream = currentSerialVersion;
|
|
}
|
|
}
|