3403 lines
122 KiB
Java
3403 lines
122 KiB
Java
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.util;
|
|
|
|
import java.io.Serializable;
|
|
import java.util.function.BiConsumer;
|
|
import java.util.function.BiFunction;
|
|
import java.util.function.Consumer;
|
|
import java.util.function.Function;
|
|
|
|
/**
|
|
* A Red-Black tree based {@link NavigableMap} implementation.
|
|
* The map is sorted according to the {@linkplain Comparable natural
|
|
* ordering} of its keys, or by a {@link Comparator} provided at map
|
|
* creation time, depending on which constructor is used.
|
|
*
|
|
* <p>This implementation provides guaranteed log(n) time cost for the
|
|
* {@code containsKey}, {@code get}, {@code put} and {@code remove}
|
|
* operations. Algorithms are adaptations of those in Cormen, Leiserson, and
|
|
* Rivest's <em>Introduction to Algorithms</em>.
|
|
*
|
|
* <p>Note that the ordering maintained by a tree map, like any sorted map, and
|
|
* whether or not an explicit comparator is provided, must be <em>consistent
|
|
* with {@code equals}</em> if this sorted map is to correctly implement the
|
|
* {@code Map} interface. (See {@code Comparable} or {@code Comparator} for a
|
|
* precise definition of <em>consistent with equals</em>.) This is so because
|
|
* the {@code Map} interface is defined in terms of the {@code equals}
|
|
* operation, but a sorted map performs all key comparisons using its {@code
|
|
* compareTo} (or {@code compare}) method, so two keys that are deemed equal by
|
|
* this method are, from the standpoint of the sorted map, equal. The behavior
|
|
* of a sorted map <em>is</em> well-defined even if its ordering is
|
|
* inconsistent with {@code equals}; it just fails to obey the general contract
|
|
* of the {@code Map} interface.
|
|
*
|
|
* <p><strong>Note that this implementation is not synchronized.</strong>
|
|
* If multiple threads access a map concurrently, and at least one of the
|
|
* threads modifies the map structurally, it <em>must</em> be synchronized
|
|
* externally. (A structural modification is any operation that adds or
|
|
* deletes one or more mappings; merely changing the value associated
|
|
* with an existing key is not a structural modification.) This is
|
|
* typically accomplished by synchronizing on some object that naturally
|
|
* encapsulates the map.
|
|
* If no such object exists, the map should be "wrapped" using the
|
|
* {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
|
|
* method. This is best done at creation time, to prevent accidental
|
|
* unsynchronized access to the map: <pre>
|
|
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
|
|
*
|
|
* <p>The iterators returned by the {@code iterator} method of the collections
|
|
* returned by all of this class's "collection view methods" are
|
|
* <em>fail-fast</em>: if the map is structurally modified at any time after
|
|
* the iterator is created, in any way except through the iterator's own
|
|
* {@code remove} method, the iterator will throw a {@link
|
|
* ConcurrentModificationException}. Thus, in the face of concurrent
|
|
* modification, the iterator fails quickly and cleanly, rather than risking
|
|
* arbitrary, non-deterministic behavior at an undetermined time in the future.
|
|
*
|
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
|
|
* as it is, generally speaking, impossible to make any hard guarantees in the
|
|
* presence of unsynchronized concurrent modification. Fail-fast iterators
|
|
* throw {@code ConcurrentModificationException} on a best-effort basis.
|
|
* Therefore, it would be wrong to write a program that depended on this
|
|
* exception for its correctness: <em>the fail-fast behavior of iterators
|
|
* should be used only to detect bugs.</em>
|
|
*
|
|
* <p>The methods
|
|
* {@link #ceilingEntry},
|
|
* {@link #firstEntry},
|
|
* {@link #floorEntry},
|
|
* {@link #higherEntry},
|
|
* {@link #lastEntry},
|
|
* {@link #lowerEntry},
|
|
* {@link #pollFirstEntry}, and
|
|
* {@link #pollLastEntry}
|
|
* return {@link Map.Entry} instances that represent snapshots of mappings as
|
|
* of the time of the call. They do <em>not</em> support mutation of the
|
|
* underlying map via the optional {@link Map.Entry#setValue setValue} method.
|
|
*
|
|
* <p>The {@link #putFirst putFirst} and {@link #putLast putLast} methods of this class
|
|
* throw {@code UnsupportedOperationException}. The encounter order of mappings is determined
|
|
* by the comparison method; therefore, explicit positioning is not supported.
|
|
*
|
|
* <p>This class is a member of the
|
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
|
* Java Collections Framework</a>.
|
|
*
|
|
* @param <K> the type of keys maintained by this map
|
|
* @param <V> the type of mapped values
|
|
*
|
|
* @author Josh Bloch and Doug Lea
|
|
* @see Map
|
|
* @see HashMap
|
|
* @see Hashtable
|
|
* @see Comparable
|
|
* @see Comparator
|
|
* @see Collection
|
|
* @since 1.2
|
|
*/
|
|
|
|
public class TreeMap<K,V>
|
|
extends AbstractMap<K,V>
|
|
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
|
|
{
|
|
/**
|
|
* The comparator used to maintain order in this tree map, or
|
|
* null if it uses the natural ordering of its keys.
|
|
*
|
|
* @serial
|
|
*/
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final Comparator<? super K> comparator;
|
|
|
|
private transient TreeMapEntry<K,V> root;
|
|
|
|
/**
|
|
* The number of entries in the tree
|
|
*/
|
|
private transient int size = 0;
|
|
|
|
/**
|
|
* The number of structural modifications to the tree.
|
|
*/
|
|
private transient int modCount = 0;
|
|
|
|
/**
|
|
* Constructs a new, empty tree map, using the natural ordering of its
|
|
* keys. All keys inserted into the map must implement the {@link
|
|
* Comparable} interface. Furthermore, all such keys must be
|
|
* <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
|
|
* a {@code ClassCastException} for any keys {@code k1} and
|
|
* {@code k2} in the map. If the user attempts to put a key into the
|
|
* map that violates this constraint (for example, the user attempts to
|
|
* put a string key into a map whose keys are integers), the
|
|
* {@code put(Object key, Object value)} call will throw a
|
|
* {@code ClassCastException}.
|
|
*/
|
|
public TreeMap() {
|
|
comparator = null;
|
|
}
|
|
|
|
/**
|
|
* Constructs a new, empty tree map, ordered according to the given
|
|
* comparator. All keys inserted into the map must be <em>mutually
|
|
* comparable</em> by the given comparator: {@code comparator.compare(k1,
|
|
* k2)} must not throw a {@code ClassCastException} for any keys
|
|
* {@code k1} and {@code k2} in the map. If the user attempts to put
|
|
* a key into the map that violates this constraint, the {@code put(Object
|
|
* key, Object value)} call will throw a
|
|
* {@code ClassCastException}.
|
|
*
|
|
* @param comparator the comparator that will be used to order this map.
|
|
* If {@code null}, the {@linkplain Comparable natural
|
|
* ordering} of the keys will be used.
|
|
*/
|
|
public TreeMap(Comparator<? super K> comparator) {
|
|
this.comparator = comparator;
|
|
}
|
|
|
|
/**
|
|
* Constructs a new tree map containing the same mappings as the given
|
|
* map, ordered according to the <em>natural ordering</em> of its keys.
|
|
* All keys inserted into the new map must implement the {@link
|
|
* Comparable} interface. Furthermore, all such keys must be
|
|
* <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
|
|
* a {@code ClassCastException} for any keys {@code k1} and
|
|
* {@code k2} in the map. This method runs in n*log(n) time.
|
|
*
|
|
* @param m the map whose mappings are to be placed in this map
|
|
* @throws ClassCastException if the keys in m are not {@link Comparable},
|
|
* or are not mutually comparable
|
|
* @throws NullPointerException if the specified map is null
|
|
*/
|
|
public TreeMap(Map<? extends K, ? extends V> m) {
|
|
comparator = null;
|
|
putAll(m);
|
|
}
|
|
|
|
/**
|
|
* Constructs a new tree map containing the same mappings and
|
|
* using the same ordering as the specified sorted map. This
|
|
* method runs in linear time.
|
|
*
|
|
* @param m the sorted map whose mappings are to be placed in this map,
|
|
* and whose comparator is to be used to sort this map
|
|
* @throws NullPointerException if the specified map is null
|
|
*/
|
|
public TreeMap(SortedMap<K, ? extends V> m) {
|
|
comparator = m.comparator();
|
|
try {
|
|
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
|
|
} catch (java.io.IOException | ClassNotFoundException cannotHappen) {
|
|
}
|
|
}
|
|
|
|
|
|
// Query Operations
|
|
|
|
/**
|
|
* Returns the number of key-value mappings in this map.
|
|
*
|
|
* @return the number of key-value mappings in this map
|
|
*/
|
|
public int size() {
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this map contains a mapping for the specified
|
|
* key.
|
|
*
|
|
* @param key key whose presence in this map is to be tested
|
|
* @return {@code true} if this map contains a mapping for the
|
|
* specified key
|
|
* @throws ClassCastException if the specified key cannot be compared
|
|
* with the keys currently in the map
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
*/
|
|
public boolean containsKey(Object key) {
|
|
return getEntry(key) != null;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this map maps one or more keys to the
|
|
* specified value. More formally, returns {@code true} if and only if
|
|
* this map contains at least one mapping to a value {@code v} such
|
|
* that {@code (value==null ? v==null : value.equals(v))}. This
|
|
* operation will probably require time linear in the map size for
|
|
* most implementations.
|
|
*
|
|
* @param value value whose presence in this map is to be tested
|
|
* @return {@code true} if a mapping to {@code value} exists;
|
|
* {@code false} otherwise
|
|
* @since 1.2
|
|
*/
|
|
public boolean containsValue(Object value) {
|
|
for (TreeMapEntry<K,V> e = getFirstEntry(); e != null; e = successor(e))
|
|
if (valEquals(value, e.value))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns the value to which the specified key is mapped,
|
|
* or {@code null} if this map contains no mapping for the key.
|
|
*
|
|
* <p>More formally, if this map contains a mapping from a key
|
|
* {@code k} to a value {@code v} such that {@code key} compares
|
|
* equal to {@code k} according to the map's ordering, then this
|
|
* method returns {@code v}; otherwise it returns {@code null}.
|
|
* (There can be at most one such mapping.)
|
|
*
|
|
* <p>A return value of {@code null} does not <em>necessarily</em>
|
|
* indicate that the map contains no mapping for the key; it's also
|
|
* possible that the map explicitly maps the key to {@code null}.
|
|
* The {@link #containsKey containsKey} operation may be used to
|
|
* distinguish these two cases.
|
|
*
|
|
* @throws ClassCastException if the specified key cannot be compared
|
|
* with the keys currently in the map
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
*/
|
|
public V get(Object key) {
|
|
TreeMapEntry<K,V> p = getEntry(key);
|
|
return (p==null ? null : p.value);
|
|
}
|
|
|
|
public Comparator<? super K> comparator() {
|
|
return comparator;
|
|
}
|
|
|
|
/**
|
|
* @throws NoSuchElementException {@inheritDoc}
|
|
*/
|
|
public K firstKey() {
|
|
return key(getFirstEntry());
|
|
}
|
|
|
|
/**
|
|
* @throws NoSuchElementException {@inheritDoc}
|
|
*/
|
|
public K lastKey() {
|
|
return key(getLastEntry());
|
|
}
|
|
|
|
/**
|
|
* Throws {@code UnsupportedOperationException}. The encounter order induced by this
|
|
* map's comparison method determines the position of mappings, so explicit positioning
|
|
* is not supported.
|
|
*
|
|
* @throws UnsupportedOperationException always
|
|
* @since 21
|
|
*/
|
|
public V putFirst(K k, V v) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
/**
|
|
* Throws {@code UnsupportedOperationException}. The encounter order induced by this
|
|
* map's comparison method determines the position of mappings, so explicit positioning
|
|
* is not supported.
|
|
*
|
|
* @throws UnsupportedOperationException always
|
|
* @since 21
|
|
*/
|
|
public V putLast(K k, V v) {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
/**
|
|
* Copies all of the mappings from the specified map to this map.
|
|
* These mappings replace any mappings that this map had for any
|
|
* of the keys currently in the specified map.
|
|
*
|
|
* @param map mappings to be stored in this map
|
|
* @throws ClassCastException if the class of a key or value in
|
|
* the specified map prevents it from being stored in this map
|
|
* @throws NullPointerException if the specified map is null or
|
|
* the specified map contains a null key and this map does not
|
|
* permit null keys
|
|
*/
|
|
public void putAll(Map<? extends K, ? extends V> map) {
|
|
int mapSize = map.size();
|
|
if (size==0 && mapSize!=0 && map instanceof SortedMap) {
|
|
if (Objects.equals(comparator, ((SortedMap<?,?>)map).comparator())) {
|
|
++modCount;
|
|
try {
|
|
buildFromSorted(mapSize, map.entrySet().iterator(),
|
|
null, null);
|
|
} catch (java.io.IOException | ClassNotFoundException cannotHappen) {
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
super.putAll(map);
|
|
}
|
|
|
|
/**
|
|
* Returns this map's entry for the given key, or {@code null} if the map
|
|
* does not contain an entry for the key.
|
|
*
|
|
* @return this map's entry for the given key, or {@code null} if the map
|
|
* does not contain an entry for the key
|
|
* @throws ClassCastException if the specified key cannot be compared
|
|
* with the keys currently in the map
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
*/
|
|
final TreeMapEntry<K,V> getEntry(Object key) {
|
|
// Offload comparator-based version for sake of performance
|
|
if (comparator != null)
|
|
return getEntryUsingComparator(key);
|
|
Objects.requireNonNull(key);
|
|
@SuppressWarnings("unchecked")
|
|
Comparable<? super K> k = (Comparable<? super K>) key;
|
|
TreeMapEntry<K,V> p = root;
|
|
while (p != null) {
|
|
int cmp = k.compareTo(p.key);
|
|
if (cmp < 0)
|
|
p = p.left;
|
|
else if (cmp > 0)
|
|
p = p.right;
|
|
else
|
|
return p;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Version of getEntry using comparator. Split off from getEntry
|
|
* for performance. (This is not worth doing for most methods,
|
|
* that are less dependent on comparator performance, but is
|
|
* worthwhile here.)
|
|
*/
|
|
final TreeMapEntry<K,V> getEntryUsingComparator(Object key) {
|
|
@SuppressWarnings("unchecked")
|
|
K k = (K) key;
|
|
Comparator<? super K> cpr = comparator;
|
|
if (cpr != null) {
|
|
TreeMapEntry<K,V> p = root;
|
|
while (p != null) {
|
|
int cmp = cpr.compare(k, p.key);
|
|
if (cmp < 0)
|
|
p = p.left;
|
|
else if (cmp > 0)
|
|
p = p.right;
|
|
else
|
|
return p;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Gets the entry corresponding to the specified key; if no such entry
|
|
* exists, returns the entry for the least key greater than the specified
|
|
* key; if no such entry exists (i.e., the greatest key in the Tree is less
|
|
* than the specified key), returns {@code null}.
|
|
*/
|
|
final TreeMapEntry<K,V> getCeilingEntry(K key) {
|
|
TreeMapEntry<K,V> p = root;
|
|
while (p != null) {
|
|
int cmp = compare(key, p.key);
|
|
if (cmp < 0) {
|
|
if (p.left != null)
|
|
p = p.left;
|
|
else
|
|
return p;
|
|
} else if (cmp > 0) {
|
|
if (p.right != null) {
|
|
p = p.right;
|
|
} else {
|
|
TreeMapEntry<K,V> parent = p.parent;
|
|
TreeMapEntry<K,V> ch = p;
|
|
while (parent != null && ch == parent.right) {
|
|
ch = parent;
|
|
parent = parent.parent;
|
|
}
|
|
return parent;
|
|
}
|
|
} else
|
|
return p;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Gets the entry corresponding to the specified key; if no such entry
|
|
* exists, returns the entry for the greatest key less than the specified
|
|
* key; if no such entry exists (i.e., the least key in the Tree is greater
|
|
* than the specified key), returns {@code null}.
|
|
*/
|
|
final TreeMapEntry<K,V> getFloorEntry(K key) {
|
|
TreeMapEntry<K,V> p = root;
|
|
while (p != null) {
|
|
int cmp = compare(key, p.key);
|
|
if (cmp > 0) {
|
|
if (p.right != null)
|
|
p = p.right;
|
|
else
|
|
return p;
|
|
} else if (cmp < 0) {
|
|
if (p.left != null) {
|
|
p = p.left;
|
|
} else {
|
|
TreeMapEntry<K,V> parent = p.parent;
|
|
TreeMapEntry<K,V> ch = p;
|
|
while (parent != null && ch == parent.left) {
|
|
ch = parent;
|
|
parent = parent.parent;
|
|
}
|
|
return parent;
|
|
}
|
|
} else
|
|
return p;
|
|
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns the entry for the least key greater than the specified key; if
|
|
* no such entry exists (i.e., the greatest key in the Tree is less than
|
|
* or equal to the specified key), returns {@code null}.
|
|
*/
|
|
final TreeMapEntry<K,V> getHigherEntry(K key) {
|
|
TreeMapEntry<K,V> p = root;
|
|
while (p != null) {
|
|
int cmp = compare(key, p.key);
|
|
if (cmp < 0) {
|
|
if (p.left != null)
|
|
p = p.left;
|
|
else
|
|
return p;
|
|
} else {
|
|
if (p.right != null) {
|
|
p = p.right;
|
|
} else {
|
|
TreeMapEntry<K,V> parent = p.parent;
|
|
TreeMapEntry<K,V> ch = p;
|
|
while (parent != null && ch == parent.right) {
|
|
ch = parent;
|
|
parent = parent.parent;
|
|
}
|
|
return parent;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns the entry for the greatest key less than the specified key; if
|
|
* no such entry exists (i.e., the least key in the Tree is greater than
|
|
* or equal to the specified key), returns {@code null}.
|
|
*/
|
|
final TreeMapEntry<K,V> getLowerEntry(K key) {
|
|
TreeMapEntry<K,V> p = root;
|
|
while (p != null) {
|
|
int cmp = compare(key, p.key);
|
|
if (cmp > 0) {
|
|
if (p.right != null)
|
|
p = p.right;
|
|
else
|
|
return p;
|
|
} else {
|
|
if (p.left != null) {
|
|
p = p.left;
|
|
} else {
|
|
TreeMapEntry<K,V> parent = p.parent;
|
|
TreeMapEntry<K,V> ch = p;
|
|
while (parent != null && ch == parent.left) {
|
|
ch = parent;
|
|
parent = parent.parent;
|
|
}
|
|
return parent;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Associates the specified value with the specified key in this map.
|
|
* If the map previously contained a mapping for the key, the old
|
|
* value is replaced.
|
|
*
|
|
* @param key key with which the specified value is to be associated
|
|
* @param value value to be associated with the specified key
|
|
*
|
|
* @return the previous value associated with {@code key}, or
|
|
* {@code null} if there was no mapping for {@code key}.
|
|
* (A {@code null} return can also indicate that the map
|
|
* previously associated {@code null} with {@code key}.)
|
|
* @throws ClassCastException if the specified key cannot be compared
|
|
* with the keys currently in the map
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
*/
|
|
public V put(K key, V value) {
|
|
return put(key, value, true);
|
|
}
|
|
|
|
@Override
|
|
public V putIfAbsent(K key, V value) {
|
|
return put(key, value, false);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* mapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* mapping function modified this map
|
|
*/
|
|
@Override
|
|
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
|
|
Objects.requireNonNull(mappingFunction);
|
|
V newValue;
|
|
TreeMapEntry<K,V> t = root;
|
|
if (t == null) {
|
|
newValue = callMappingFunctionWithCheck(key, mappingFunction);
|
|
if (newValue != null) {
|
|
addEntryToEmptyMap(key, newValue);
|
|
return newValue;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
int cmp;
|
|
TreeMapEntry<K,V> parent;
|
|
// split comparator and comparable paths
|
|
Comparator<? super K> cpr = comparator;
|
|
if (cpr != null) {
|
|
do {
|
|
parent = t;
|
|
cmp = cpr.compare(key, t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else {
|
|
if (t.value == null) {
|
|
t.value = callMappingFunctionWithCheck(key, mappingFunction);
|
|
}
|
|
return t.value;
|
|
}
|
|
} while (t != null);
|
|
} else {
|
|
Objects.requireNonNull(key);
|
|
@SuppressWarnings("unchecked")
|
|
Comparable<? super K> k = (Comparable<? super K>) key;
|
|
do {
|
|
parent = t;
|
|
cmp = k.compareTo(t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else {
|
|
if (t.value == null) {
|
|
t.value = callMappingFunctionWithCheck(key, mappingFunction);
|
|
}
|
|
return t.value;
|
|
}
|
|
} while (t != null);
|
|
}
|
|
newValue = callMappingFunctionWithCheck(key, mappingFunction);
|
|
if (newValue != null) {
|
|
addEntry(key, newValue, parent, cmp < 0);
|
|
return newValue;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* remapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* remapping function modified this map
|
|
*/
|
|
@Override
|
|
public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
Objects.requireNonNull(remappingFunction);
|
|
TreeMapEntry<K,V> oldEntry = getEntry(key);
|
|
if (oldEntry != null && oldEntry.value != null) {
|
|
return remapValue(oldEntry, key, remappingFunction);
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* remapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* remapping function modified this map
|
|
*/
|
|
@Override
|
|
public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
Objects.requireNonNull(remappingFunction);
|
|
V newValue;
|
|
TreeMapEntry<K,V> t = root;
|
|
if (t == null) {
|
|
newValue = callRemappingFunctionWithCheck(key, null, remappingFunction);
|
|
if (newValue != null) {
|
|
addEntryToEmptyMap(key, newValue);
|
|
return newValue;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
int cmp;
|
|
TreeMapEntry<K,V> parent;
|
|
// split comparator and comparable paths
|
|
Comparator<? super K> cpr = comparator;
|
|
if (cpr != null) {
|
|
do {
|
|
parent = t;
|
|
cmp = cpr.compare(key, t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else
|
|
return remapValue(t, key, remappingFunction);
|
|
} while (t != null);
|
|
} else {
|
|
Objects.requireNonNull(key);
|
|
@SuppressWarnings("unchecked")
|
|
Comparable<? super K> k = (Comparable<? super K>) key;
|
|
do {
|
|
parent = t;
|
|
cmp = k.compareTo(t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else
|
|
return remapValue(t, key, remappingFunction);
|
|
} while (t != null);
|
|
}
|
|
newValue = callRemappingFunctionWithCheck(key, null, remappingFunction);
|
|
if (newValue != null) {
|
|
addEntry(key, newValue, parent, cmp < 0);
|
|
return newValue;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* <p>This method will, on a best-effort basis, throw a
|
|
* {@link ConcurrentModificationException} if it is detected that the
|
|
* remapping function modifies this map during computation.
|
|
*
|
|
* @throws ConcurrentModificationException if it is detected that the
|
|
* remapping function modified this map
|
|
*/
|
|
@Override
|
|
public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
Objects.requireNonNull(remappingFunction);
|
|
Objects.requireNonNull(value);
|
|
TreeMapEntry<K,V> t = root;
|
|
if (t == null) {
|
|
addEntryToEmptyMap(key, value);
|
|
return value;
|
|
}
|
|
int cmp;
|
|
TreeMapEntry<K,V> parent;
|
|
// split comparator and comparable paths
|
|
Comparator<? super K> cpr = comparator;
|
|
if (cpr != null) {
|
|
do {
|
|
parent = t;
|
|
cmp = cpr.compare(key, t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else return mergeValue(t, value, remappingFunction);
|
|
} while (t != null);
|
|
} else {
|
|
Objects.requireNonNull(key);
|
|
@SuppressWarnings("unchecked")
|
|
Comparable<? super K> k = (Comparable<? super K>) key;
|
|
do {
|
|
parent = t;
|
|
cmp = k.compareTo(t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else return mergeValue(t, value, remappingFunction);
|
|
} while (t != null);
|
|
}
|
|
addEntry(key, value, parent, cmp < 0);
|
|
return value;
|
|
}
|
|
|
|
private V callMappingFunctionWithCheck(K key, Function<? super K, ? extends V> mappingFunction) {
|
|
int mc = modCount;
|
|
V newValue = mappingFunction.apply(key);
|
|
if (mc != modCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
return newValue;
|
|
}
|
|
|
|
private V callRemappingFunctionWithCheck(K key, V oldValue, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
int mc = modCount;
|
|
V newValue = remappingFunction.apply(key, oldValue);
|
|
if (mc != modCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
return newValue;
|
|
}
|
|
|
|
private void addEntry(K key, V value, TreeMapEntry<K, V> parent, boolean addToLeft) {
|
|
TreeMapEntry<K,V> e = new TreeMapEntry<>(key, value, parent);
|
|
if (addToLeft)
|
|
parent.left = e;
|
|
else
|
|
parent.right = e;
|
|
fixAfterInsertion(e);
|
|
size++;
|
|
modCount++;
|
|
}
|
|
|
|
private void addEntryToEmptyMap(K key, V value) {
|
|
compare(key, key); // type (and possibly null) check
|
|
root = new TreeMapEntry<>(key, value, null);
|
|
size = 1;
|
|
modCount++;
|
|
}
|
|
|
|
private V put(K key, V value, boolean replaceOld) {
|
|
TreeMapEntry<K,V> t = root;
|
|
if (t == null) {
|
|
addEntryToEmptyMap(key, value);
|
|
return null;
|
|
}
|
|
int cmp;
|
|
TreeMapEntry<K,V> parent;
|
|
// split comparator and comparable paths
|
|
Comparator<? super K> cpr = comparator;
|
|
if (cpr != null) {
|
|
do {
|
|
parent = t;
|
|
cmp = cpr.compare(key, t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else {
|
|
V oldValue = t.value;
|
|
if (replaceOld || oldValue == null) {
|
|
t.value = value;
|
|
}
|
|
return oldValue;
|
|
}
|
|
} while (t != null);
|
|
} else {
|
|
Objects.requireNonNull(key);
|
|
@SuppressWarnings("unchecked")
|
|
Comparable<? super K> k = (Comparable<? super K>) key;
|
|
do {
|
|
parent = t;
|
|
cmp = k.compareTo(t.key);
|
|
if (cmp < 0)
|
|
t = t.left;
|
|
else if (cmp > 0)
|
|
t = t.right;
|
|
else {
|
|
V oldValue = t.value;
|
|
if (replaceOld || oldValue == null) {
|
|
t.value = value;
|
|
}
|
|
return oldValue;
|
|
}
|
|
} while (t != null);
|
|
}
|
|
addEntry(key, value, parent, cmp < 0);
|
|
return null;
|
|
}
|
|
|
|
private V remapValue(TreeMapEntry<K,V> t, K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
V newValue = callRemappingFunctionWithCheck(key, t.value, remappingFunction);
|
|
if (newValue == null) {
|
|
deleteEntry(t);
|
|
return null;
|
|
} else {
|
|
// replace old mapping
|
|
t.value = newValue;
|
|
return newValue;
|
|
}
|
|
}
|
|
|
|
private V mergeValue(TreeMapEntry<K,V> t, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
V oldValue = t.value;
|
|
V newValue;
|
|
if (t.value == null) {
|
|
newValue = value;
|
|
} else {
|
|
int mc = modCount;
|
|
newValue = remappingFunction.apply(oldValue, value);
|
|
if (mc != modCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
if (newValue == null) {
|
|
deleteEntry(t);
|
|
return null;
|
|
} else {
|
|
// replace old mapping
|
|
t.value = newValue;
|
|
return newValue;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Removes the mapping for this key from this TreeMap if present.
|
|
*
|
|
* @param key key for which mapping should be removed
|
|
* @return the previous value associated with {@code key}, or
|
|
* {@code null} if there was no mapping for {@code key}.
|
|
* (A {@code null} return can also indicate that the map
|
|
* previously associated {@code null} with {@code key}.)
|
|
* @throws ClassCastException if the specified key cannot be compared
|
|
* with the keys currently in the map
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
*/
|
|
public V remove(Object key) {
|
|
TreeMapEntry<K,V> p = getEntry(key);
|
|
if (p == null)
|
|
return null;
|
|
|
|
V oldValue = p.value;
|
|
deleteEntry(p);
|
|
return oldValue;
|
|
}
|
|
|
|
/**
|
|
* Removes all of the mappings from this map.
|
|
* The map will be empty after this call returns.
|
|
*/
|
|
public void clear() {
|
|
modCount++;
|
|
size = 0;
|
|
root = null;
|
|
}
|
|
|
|
/**
|
|
* Returns a shallow copy of this {@code TreeMap} instance. (The keys and
|
|
* values themselves are not cloned.)
|
|
*
|
|
* @return a shallow copy of this map
|
|
*/
|
|
public Object clone() {
|
|
TreeMap<?,?> clone;
|
|
try {
|
|
clone = (TreeMap<?,?>) super.clone();
|
|
} catch (CloneNotSupportedException e) {
|
|
throw new InternalError(e);
|
|
}
|
|
|
|
// Put clone into "virgin" state (except for comparator)
|
|
clone.root = null;
|
|
clone.size = 0;
|
|
clone.modCount = 0;
|
|
clone.entrySet = null;
|
|
clone.navigableKeySet = null;
|
|
clone.descendingMap = null;
|
|
|
|
// Initialize clone with our mappings
|
|
try {
|
|
clone.buildFromSorted(size, entrySet().iterator(), null, null);
|
|
} catch (java.io.IOException | ClassNotFoundException cannotHappen) {
|
|
}
|
|
|
|
return clone;
|
|
}
|
|
|
|
// NavigableMap API methods
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> firstEntry() {
|
|
return exportEntry(getFirstEntry());
|
|
}
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> lastEntry() {
|
|
return exportEntry(getLastEntry());
|
|
}
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> pollFirstEntry() {
|
|
TreeMapEntry<K,V> p = getFirstEntry();
|
|
Map.Entry<K,V> result = exportEntry(p);
|
|
if (p != null)
|
|
deleteEntry(p);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> pollLastEntry() {
|
|
TreeMapEntry<K,V> p = getLastEntry();
|
|
Map.Entry<K,V> result = exportEntry(p);
|
|
if (p != null)
|
|
deleteEntry(p);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> lowerEntry(K key) {
|
|
return exportEntry(getLowerEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public K lowerKey(K key) {
|
|
return keyOrNull(getLowerEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> floorEntry(K key) {
|
|
return exportEntry(getFloorEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public K floorKey(K key) {
|
|
return keyOrNull(getFloorEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> ceilingEntry(K key) {
|
|
return exportEntry(getCeilingEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public K ceilingKey(K key) {
|
|
return keyOrNull(getCeilingEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public Map.Entry<K,V> higherEntry(K key) {
|
|
return exportEntry(getHigherEntry(key));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if the specified key is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @since 1.6
|
|
*/
|
|
public K higherKey(K key) {
|
|
return keyOrNull(getHigherEntry(key));
|
|
}
|
|
|
|
// Views
|
|
|
|
/**
|
|
* Fields initialized to contain an instance of the entry set view
|
|
* the first time this view is requested. Views are stateless, so
|
|
* there's no reason to create more than one.
|
|
*/
|
|
private transient EntrySet entrySet;
|
|
private transient KeySet<K> navigableKeySet;
|
|
private transient NavigableMap<K,V> descendingMap;
|
|
|
|
/**
|
|
* Returns a {@link Set} view of the keys contained in this map.
|
|
*
|
|
* <p>The set's iterator returns the keys in ascending order.
|
|
* The set's spliterator is
|
|
* <em><a href="Spliterator.html#binding">late-binding</a></em>,
|
|
* <em>fail-fast</em>, and additionally reports {@link Spliterator#SORTED}
|
|
* and {@link Spliterator#ORDERED} with an encounter order that is ascending
|
|
* key order. The spliterator's comparator (see
|
|
* {@link java.util.Spliterator#getComparator()}) is {@code null} if
|
|
* the tree map's comparator (see {@link #comparator()}) is {@code null}.
|
|
* Otherwise, the spliterator's comparator is the same as or imposes the
|
|
* same total ordering as the tree map's comparator.
|
|
*
|
|
* <p>The set is backed by the map, so changes to the map are
|
|
* reflected in the set, and vice-versa. If the map is modified
|
|
* while an iteration over the set is in progress (except through
|
|
* the iterator's own {@code remove} operation), the results of
|
|
* the iteration are undefined. The set supports element removal,
|
|
* which removes the corresponding mapping from the map, via the
|
|
* {@code Iterator.remove}, {@code Set.remove},
|
|
* {@code removeAll}, {@code retainAll}, and {@code clear}
|
|
* operations. It does not support the {@code add} or {@code addAll}
|
|
* operations.
|
|
*/
|
|
public Set<K> keySet() {
|
|
return navigableKeySet();
|
|
}
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public NavigableSet<K> navigableKeySet() {
|
|
KeySet<K> nks = navigableKeySet;
|
|
return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
|
|
}
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public NavigableSet<K> descendingKeySet() {
|
|
return descendingMap().navigableKeySet();
|
|
}
|
|
|
|
/**
|
|
* Returns a {@link Collection} view of the values contained in this map.
|
|
*
|
|
* <p>The collection's iterator returns the values in ascending order
|
|
* of the corresponding keys. The collection's spliterator is
|
|
* <em><a href="Spliterator.html#binding">late-binding</a></em>,
|
|
* <em>fail-fast</em>, and additionally reports {@link Spliterator#ORDERED}
|
|
* with an encounter order that is ascending order of the corresponding
|
|
* keys.
|
|
*
|
|
* <p>The collection is backed by the map, so changes to the map are
|
|
* reflected in the collection, and vice-versa. If the map is
|
|
* modified while an iteration over the collection is in progress
|
|
* (except through the iterator's own {@code remove} operation),
|
|
* the results of the iteration are undefined. The collection
|
|
* supports element removal, which removes the corresponding
|
|
* mapping from the map, via the {@code Iterator.remove},
|
|
* {@code Collection.remove}, {@code removeAll},
|
|
* {@code retainAll} and {@code clear} operations. It does not
|
|
* support the {@code add} or {@code addAll} operations.
|
|
*/
|
|
public Collection<V> values() {
|
|
Collection<V> vs = values;
|
|
if (vs == null) {
|
|
vs = new Values();
|
|
values = vs;
|
|
}
|
|
return vs;
|
|
}
|
|
|
|
/**
|
|
* Returns a {@link Set} view of the mappings contained in this map.
|
|
*
|
|
* <p>The set's iterator returns the entries in ascending key order. The
|
|
* set's spliterator is
|
|
* <em><a href="Spliterator.html#binding">late-binding</a></em>,
|
|
* <em>fail-fast</em>, and additionally reports {@link Spliterator#SORTED} and
|
|
* {@link Spliterator#ORDERED} with an encounter order that is ascending key
|
|
* order.
|
|
*
|
|
* <p>The set is backed by the map, so changes to the map are
|
|
* reflected in the set, and vice-versa. If the map is modified
|
|
* while an iteration over the set is in progress (except through
|
|
* the iterator's own {@code remove} operation, or through the
|
|
* {@code setValue} operation on a map entry returned by the
|
|
* iterator) the results of the iteration are undefined. The set
|
|
* supports element removal, which removes the corresponding
|
|
* mapping from the map, via the {@code Iterator.remove},
|
|
* {@code Set.remove}, {@code removeAll}, {@code retainAll} and
|
|
* {@code clear} operations. It does not support the
|
|
* {@code add} or {@code addAll} operations.
|
|
*/
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
EntrySet es = entrySet;
|
|
return (es != null) ? es : (entrySet = new EntrySet());
|
|
}
|
|
|
|
/**
|
|
* @since 1.6
|
|
*/
|
|
public NavigableMap<K, V> descendingMap() {
|
|
NavigableMap<K, V> km = descendingMap;
|
|
return (km != null) ? km :
|
|
(descendingMap = new DescendingSubMap<>(this,
|
|
true, null, true,
|
|
true, null, true));
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if {@code fromKey} or {@code toKey} is
|
|
* null and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
* @since 1.6
|
|
*/
|
|
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
|
|
K toKey, boolean toInclusive) {
|
|
return new AscendingSubMap<>(this,
|
|
false, fromKey, fromInclusive,
|
|
false, toKey, toInclusive);
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if {@code toKey} is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
* @since 1.6
|
|
*/
|
|
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
|
|
return new AscendingSubMap<>(this,
|
|
true, null, true,
|
|
false, toKey, inclusive);
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if {@code fromKey} is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
* @since 1.6
|
|
*/
|
|
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
|
|
return new AscendingSubMap<>(this,
|
|
false, fromKey, inclusive,
|
|
true, null, true);
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if {@code fromKey} or {@code toKey} is
|
|
* null and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
return subMap(fromKey, true, toKey, false);
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if {@code toKey} is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public SortedMap<K,V> headMap(K toKey) {
|
|
return headMap(toKey, false);
|
|
}
|
|
|
|
/**
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException if {@code fromKey} is null
|
|
* and this map uses natural ordering, or its comparator
|
|
* does not permit null keys
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public SortedMap<K,V> tailMap(K fromKey) {
|
|
return tailMap(fromKey, true);
|
|
}
|
|
|
|
@Override
|
|
public boolean replace(K key, V oldValue, V newValue) {
|
|
TreeMapEntry<K,V> p = getEntry(key);
|
|
if (p!=null && Objects.equals(oldValue, p.value)) {
|
|
p.value = newValue;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
public V replace(K key, V value) {
|
|
TreeMapEntry<K,V> p = getEntry(key);
|
|
if (p!=null) {
|
|
V oldValue = p.value;
|
|
p.value = value;
|
|
return oldValue;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
@Override
|
|
public void forEach(BiConsumer<? super K, ? super V> action) {
|
|
Objects.requireNonNull(action);
|
|
int expectedModCount = modCount;
|
|
for (TreeMapEntry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
|
|
action.accept(e.key, e.value);
|
|
|
|
if (expectedModCount != modCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
|
|
Objects.requireNonNull(function);
|
|
int expectedModCount = modCount;
|
|
|
|
for (TreeMapEntry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
|
|
e.value = function.apply(e.key, e.value);
|
|
|
|
if (expectedModCount != modCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
// View class support
|
|
|
|
class Values extends AbstractCollection<V> {
|
|
public Iterator<V> iterator() {
|
|
return new ValueIterator(getFirstEntry());
|
|
}
|
|
|
|
public int size() {
|
|
return TreeMap.this.size();
|
|
}
|
|
|
|
public boolean contains(Object o) {
|
|
return TreeMap.this.containsValue(o);
|
|
}
|
|
|
|
public boolean remove(Object o) {
|
|
for (TreeMapEntry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
|
|
if (valEquals(e.getValue(), o)) {
|
|
deleteEntry(e);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public void clear() {
|
|
TreeMap.this.clear();
|
|
}
|
|
|
|
public Spliterator<V> spliterator() {
|
|
return new ValueSpliterator<>(TreeMap.this, null, null, 0, -1, 0);
|
|
}
|
|
}
|
|
|
|
class EntrySet extends AbstractSet<Map.Entry<K,V>> {
|
|
public Iterator<Map.Entry<K,V>> iterator() {
|
|
return new EntryIterator(getFirstEntry());
|
|
}
|
|
|
|
public boolean contains(Object o) {
|
|
if (!(o instanceof Map.Entry<?, ?> entry))
|
|
return false;
|
|
Object value = entry.getValue();
|
|
TreeMapEntry<K,V> p = getEntry(entry.getKey());
|
|
return p != null && valEquals(p.getValue(), value);
|
|
}
|
|
|
|
public boolean remove(Object o) {
|
|
if (!(o instanceof Map.Entry<?, ?> entry))
|
|
return false;
|
|
Object value = entry.getValue();
|
|
TreeMapEntry<K,V> p = getEntry(entry.getKey());
|
|
if (p != null && valEquals(p.getValue(), value)) {
|
|
deleteEntry(p);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public int size() {
|
|
return TreeMap.this.size();
|
|
}
|
|
|
|
public void clear() {
|
|
TreeMap.this.clear();
|
|
}
|
|
|
|
public Spliterator<Map.Entry<K,V>> spliterator() {
|
|
return new EntrySpliterator<>(TreeMap.this, null, null, 0, -1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlike Values and EntrySet, the KeySet class is static,
|
|
* delegating to a NavigableMap to allow use by SubMaps, which
|
|
* outweighs the ugliness of needing type-tests for the following
|
|
* Iterator methods that are defined appropriately in main versus
|
|
* submap classes.
|
|
*/
|
|
|
|
Iterator<K> keyIterator() {
|
|
return new KeyIterator(getFirstEntry());
|
|
}
|
|
|
|
Iterator<K> descendingKeyIterator() {
|
|
return new DescendingKeyIterator(getLastEntry());
|
|
}
|
|
|
|
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
|
|
private final NavigableMap<E, ?> m;
|
|
KeySet(NavigableMap<E,?> map) { m = map; }
|
|
|
|
public Iterator<E> iterator() {
|
|
if (m instanceof TreeMap)
|
|
return ((TreeMap<E,?>)m).keyIterator();
|
|
else
|
|
return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
|
|
}
|
|
|
|
public Iterator<E> descendingIterator() {
|
|
if (m instanceof TreeMap)
|
|
return ((TreeMap<E,?>)m).descendingKeyIterator();
|
|
else
|
|
return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
|
|
}
|
|
|
|
public int size() { return m.size(); }
|
|
public boolean isEmpty() { return m.isEmpty(); }
|
|
public boolean contains(Object o) { return m.containsKey(o); }
|
|
public void clear() { m.clear(); }
|
|
public E lower(E e) { return m.lowerKey(e); }
|
|
public E floor(E e) { return m.floorKey(e); }
|
|
public E ceiling(E e) { return m.ceilingKey(e); }
|
|
public E higher(E e) { return m.higherKey(e); }
|
|
public E first() { return m.firstKey(); }
|
|
public E last() { return m.lastKey(); }
|
|
public Comparator<? super E> comparator() { return m.comparator(); }
|
|
public E pollFirst() {
|
|
Map.Entry<E,?> e = m.pollFirstEntry();
|
|
return (e == null) ? null : e.getKey();
|
|
}
|
|
public E pollLast() {
|
|
Map.Entry<E,?> e = m.pollLastEntry();
|
|
return (e == null) ? null : e.getKey();
|
|
}
|
|
public boolean remove(Object o) {
|
|
int oldSize = size();
|
|
m.remove(o);
|
|
return size() != oldSize;
|
|
}
|
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
|
|
E toElement, boolean toInclusive) {
|
|
return new KeySet<>(m.subMap(fromElement, fromInclusive,
|
|
toElement, toInclusive));
|
|
}
|
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
|
|
return new KeySet<>(m.headMap(toElement, inclusive));
|
|
}
|
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
|
|
return new KeySet<>(m.tailMap(fromElement, inclusive));
|
|
}
|
|
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
return subSet(fromElement, true, toElement, false);
|
|
}
|
|
public SortedSet<E> headSet(E toElement) {
|
|
return headSet(toElement, false);
|
|
}
|
|
public SortedSet<E> tailSet(E fromElement) {
|
|
return tailSet(fromElement, true);
|
|
}
|
|
public NavigableSet<E> descendingSet() {
|
|
return new KeySet<>(m.descendingMap());
|
|
}
|
|
|
|
public Spliterator<E> spliterator() {
|
|
return keySpliteratorFor(m);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Base class for TreeMap Iterators
|
|
*/
|
|
abstract class PrivateEntryIterator<T> implements Iterator<T> {
|
|
TreeMapEntry<K,V> next;
|
|
TreeMapEntry<K,V> lastReturned;
|
|
int expectedModCount;
|
|
|
|
PrivateEntryIterator(TreeMapEntry<K,V> first) {
|
|
expectedModCount = modCount;
|
|
lastReturned = null;
|
|
next = first;
|
|
}
|
|
|
|
public final boolean hasNext() {
|
|
return next != null;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> nextEntry() {
|
|
TreeMapEntry<K,V> e = next;
|
|
if (e == null)
|
|
throw new NoSuchElementException();
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
next = successor(e);
|
|
lastReturned = e;
|
|
return e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> prevEntry() {
|
|
TreeMapEntry<K,V> e = next;
|
|
if (e == null)
|
|
throw new NoSuchElementException();
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
next = predecessor(e);
|
|
lastReturned = e;
|
|
return e;
|
|
}
|
|
|
|
public void remove() {
|
|
if (lastReturned == null)
|
|
throw new IllegalStateException();
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
// deleted entries are replaced by their successors
|
|
if (lastReturned.left != null && lastReturned.right != null)
|
|
next = lastReturned;
|
|
deleteEntry(lastReturned);
|
|
expectedModCount = modCount;
|
|
lastReturned = null;
|
|
}
|
|
}
|
|
|
|
final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
|
|
EntryIterator(TreeMapEntry<K,V> first) {
|
|
super(first);
|
|
}
|
|
public Map.Entry<K,V> next() {
|
|
return nextEntry();
|
|
}
|
|
}
|
|
|
|
final class ValueIterator extends PrivateEntryIterator<V> {
|
|
ValueIterator(TreeMapEntry<K,V> first) {
|
|
super(first);
|
|
}
|
|
public V next() {
|
|
return nextEntry().value;
|
|
}
|
|
}
|
|
|
|
final class KeyIterator extends PrivateEntryIterator<K> {
|
|
KeyIterator(TreeMapEntry<K,V> first) {
|
|
super(first);
|
|
}
|
|
public K next() {
|
|
return nextEntry().key;
|
|
}
|
|
}
|
|
|
|
final class DescendingKeyIterator extends PrivateEntryIterator<K> {
|
|
DescendingKeyIterator(TreeMapEntry<K,V> first) {
|
|
super(first);
|
|
}
|
|
public K next() {
|
|
return prevEntry().key;
|
|
}
|
|
public void remove() {
|
|
if (lastReturned == null)
|
|
throw new IllegalStateException();
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
deleteEntry(lastReturned);
|
|
lastReturned = null;
|
|
expectedModCount = modCount;
|
|
}
|
|
}
|
|
|
|
// Little utilities
|
|
|
|
/**
|
|
* Compares two keys using the correct comparison method for this TreeMap.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
final int compare(Object k1, Object k2) {
|
|
return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
|
|
: comparator.compare((K)k1, (K)k2);
|
|
}
|
|
|
|
/**
|
|
* Test two values for equality. Differs from o1.equals(o2) only in
|
|
* that it copes with {@code null} o1 properly.
|
|
*/
|
|
static final boolean valEquals(Object o1, Object o2) {
|
|
return (o1==null ? o2==null : o1.equals(o2));
|
|
}
|
|
|
|
/**
|
|
* Return SimpleImmutableEntry for entry, or null if null
|
|
*/
|
|
static <K,V> Map.Entry<K,V> exportEntry(TreeMapEntry<K,V> e) {
|
|
return (e == null) ? null :
|
|
new AbstractMap.SimpleImmutableEntry<>(e);
|
|
}
|
|
|
|
/**
|
|
* Return key for entry, or null if null
|
|
*/
|
|
static <K,V> K keyOrNull(TreeMapEntry<K,V> e) {
|
|
return (e == null) ? null : e.key;
|
|
}
|
|
|
|
/**
|
|
* Returns the key corresponding to the specified Entry.
|
|
* @throws NoSuchElementException if the Entry is null
|
|
*/
|
|
static <K> K key(TreeMapEntry<K,?> e) {
|
|
if (e==null)
|
|
throw new NoSuchElementException();
|
|
return e.key;
|
|
}
|
|
|
|
|
|
// SubMaps
|
|
|
|
/**
|
|
* Dummy value serving as unmatchable fence key for unbounded
|
|
* SubMapIterators
|
|
*/
|
|
private static final Object UNBOUNDED = new Object();
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
|
|
implements NavigableMap<K,V>, java.io.Serializable {
|
|
// Android-changed: Explicitly add a serialVersionUID so that we're serialization.
|
|
// compatible with the Java-7 version of this class. Several new methods were added
|
|
// in Java-8 but none of them have any bearing on the serialized format of the class
|
|
// or require any additional state to be preserved.
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 2765629423043303731L;
|
|
|
|
/**
|
|
* The backing map.
|
|
*/
|
|
final TreeMap<K,V> m;
|
|
|
|
/**
|
|
* Endpoints are represented as triples (fromStart, lo,
|
|
* loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
|
|
* true, then the low (absolute) bound is the start of the
|
|
* backing map, and the other values are ignored. Otherwise,
|
|
* if loInclusive is true, lo is the inclusive bound, else lo
|
|
* is the exclusive bound. Similarly for the upper bound.
|
|
*/
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final K lo;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final K hi;
|
|
final boolean fromStart, toEnd;
|
|
final boolean loInclusive, hiInclusive;
|
|
|
|
NavigableSubMap(TreeMap<K,V> m,
|
|
boolean fromStart, K lo, boolean loInclusive,
|
|
boolean toEnd, K hi, boolean hiInclusive) {
|
|
if (!fromStart && !toEnd) {
|
|
if (m.compare(lo, hi) > 0)
|
|
throw new IllegalArgumentException("fromKey > toKey");
|
|
} else {
|
|
if (!fromStart) // type check
|
|
m.compare(lo, lo);
|
|
if (!toEnd)
|
|
m.compare(hi, hi);
|
|
}
|
|
|
|
this.m = m;
|
|
this.fromStart = fromStart;
|
|
this.lo = lo;
|
|
this.loInclusive = loInclusive;
|
|
this.toEnd = toEnd;
|
|
this.hi = hi;
|
|
this.hiInclusive = hiInclusive;
|
|
}
|
|
|
|
// internal utilities
|
|
|
|
final boolean tooLow(Object key) {
|
|
if (!fromStart) {
|
|
int c = m.compare(key, lo);
|
|
if (c < 0 || (c == 0 && !loInclusive))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
final boolean tooHigh(Object key) {
|
|
if (!toEnd) {
|
|
int c = m.compare(key, hi);
|
|
if (c > 0 || (c == 0 && !hiInclusive))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
final boolean inRange(Object key) {
|
|
return !tooLow(key) && !tooHigh(key);
|
|
}
|
|
|
|
final boolean inClosedRange(Object key) {
|
|
return (fromStart || m.compare(key, lo) >= 0)
|
|
&& (toEnd || m.compare(hi, key) >= 0);
|
|
}
|
|
|
|
final boolean inRange(Object key, boolean inclusive) {
|
|
return inclusive ? inRange(key) : inClosedRange(key);
|
|
}
|
|
|
|
/*
|
|
* Absolute versions of relation operations.
|
|
* Subclasses map to these using like-named "sub"
|
|
* versions that invert senses for descending maps
|
|
*/
|
|
|
|
final TreeMapEntry<K,V> absLowest() {
|
|
TreeMapEntry<K,V> e =
|
|
(fromStart ? m.getFirstEntry() :
|
|
(loInclusive ? m.getCeilingEntry(lo) :
|
|
m.getHigherEntry(lo)));
|
|
return (e == null || tooHigh(e.key)) ? null : e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> absHighest() {
|
|
TreeMapEntry<K,V> e =
|
|
(toEnd ? m.getLastEntry() :
|
|
(hiInclusive ? m.getFloorEntry(hi) :
|
|
m.getLowerEntry(hi)));
|
|
return (e == null || tooLow(e.key)) ? null : e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> absCeiling(K key) {
|
|
if (tooLow(key))
|
|
return absLowest();
|
|
TreeMapEntry<K,V> e = m.getCeilingEntry(key);
|
|
return (e == null || tooHigh(e.key)) ? null : e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> absHigher(K key) {
|
|
if (tooLow(key))
|
|
return absLowest();
|
|
TreeMapEntry<K,V> e = m.getHigherEntry(key);
|
|
return (e == null || tooHigh(e.key)) ? null : e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> absFloor(K key) {
|
|
if (tooHigh(key))
|
|
return absHighest();
|
|
TreeMapEntry<K,V> e = m.getFloorEntry(key);
|
|
return (e == null || tooLow(e.key)) ? null : e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> absLower(K key) {
|
|
if (tooHigh(key))
|
|
return absHighest();
|
|
TreeMapEntry<K,V> e = m.getLowerEntry(key);
|
|
return (e == null || tooLow(e.key)) ? null : e;
|
|
}
|
|
|
|
/** Returns the absolute high fence for ascending traversal */
|
|
final TreeMapEntry<K,V> absHighFence() {
|
|
return (toEnd ? null : (hiInclusive ?
|
|
m.getHigherEntry(hi) :
|
|
m.getCeilingEntry(hi)));
|
|
}
|
|
|
|
/** Return the absolute low fence for descending traversal */
|
|
final TreeMapEntry<K,V> absLowFence() {
|
|
return (fromStart ? null : (loInclusive ?
|
|
m.getLowerEntry(lo) :
|
|
m.getFloorEntry(lo)));
|
|
}
|
|
|
|
// Abstract methods defined in ascending vs descending classes
|
|
// These relay to the appropriate absolute versions
|
|
|
|
abstract TreeMapEntry<K,V> subLowest();
|
|
abstract TreeMapEntry<K,V> subHighest();
|
|
abstract TreeMapEntry<K,V> subCeiling(K key);
|
|
abstract TreeMapEntry<K,V> subHigher(K key);
|
|
abstract TreeMapEntry<K,V> subFloor(K key);
|
|
abstract TreeMapEntry<K,V> subLower(K key);
|
|
|
|
/** Returns ascending iterator from the perspective of this submap */
|
|
abstract Iterator<K> keyIterator();
|
|
|
|
abstract Spliterator<K> keySpliterator();
|
|
|
|
/** Returns descending iterator from the perspective of this submap */
|
|
abstract Iterator<K> descendingKeyIterator();
|
|
|
|
// public methods
|
|
|
|
public boolean isEmpty() {
|
|
return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
|
|
}
|
|
|
|
public int size() {
|
|
return (fromStart && toEnd) ? m.size() : entrySet().size();
|
|
}
|
|
|
|
public final boolean containsKey(Object key) {
|
|
return inRange(key) && m.containsKey(key);
|
|
}
|
|
|
|
public final V put(K key, V value) {
|
|
if (!inRange(key))
|
|
throw new IllegalArgumentException("key out of range");
|
|
return m.put(key, value);
|
|
}
|
|
|
|
public V putIfAbsent(K key, V value) {
|
|
if (!inRange(key))
|
|
throw new IllegalArgumentException("key out of range");
|
|
return m.putIfAbsent(key, value);
|
|
}
|
|
|
|
public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
|
|
if (!inRange(key))
|
|
throw new IllegalArgumentException("key out of range");
|
|
return m.merge(key, value, remappingFunction);
|
|
}
|
|
|
|
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
|
|
if (!inRange(key)) {
|
|
// Do not throw if mapping function returns null
|
|
// to preserve compatibility with default computeIfAbsent implementation
|
|
if (mappingFunction.apply(key) == null) return null;
|
|
throw new IllegalArgumentException("key out of range");
|
|
}
|
|
return m.computeIfAbsent(key, mappingFunction);
|
|
}
|
|
|
|
public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
if (!inRange(key)) {
|
|
// Do not throw if remapping function returns null
|
|
// to preserve compatibility with default computeIfAbsent implementation
|
|
if (remappingFunction.apply(key, null) == null) return null;
|
|
throw new IllegalArgumentException("key out of range");
|
|
}
|
|
return m.compute(key, remappingFunction);
|
|
}
|
|
|
|
public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
|
|
return !inRange(key) ? null : m.computeIfPresent(key, remappingFunction);
|
|
}
|
|
|
|
public final V get(Object key) {
|
|
return !inRange(key) ? null : m.get(key);
|
|
}
|
|
|
|
public final V remove(Object key) {
|
|
return !inRange(key) ? null : m.remove(key);
|
|
}
|
|
|
|
public final Map.Entry<K,V> ceilingEntry(K key) {
|
|
return exportEntry(subCeiling(key));
|
|
}
|
|
|
|
public final K ceilingKey(K key) {
|
|
return keyOrNull(subCeiling(key));
|
|
}
|
|
|
|
public final Map.Entry<K,V> higherEntry(K key) {
|
|
return exportEntry(subHigher(key));
|
|
}
|
|
|
|
public final K higherKey(K key) {
|
|
return keyOrNull(subHigher(key));
|
|
}
|
|
|
|
public final Map.Entry<K,V> floorEntry(K key) {
|
|
return exportEntry(subFloor(key));
|
|
}
|
|
|
|
public final K floorKey(K key) {
|
|
return keyOrNull(subFloor(key));
|
|
}
|
|
|
|
public final Map.Entry<K,V> lowerEntry(K key) {
|
|
return exportEntry(subLower(key));
|
|
}
|
|
|
|
public final K lowerKey(K key) {
|
|
return keyOrNull(subLower(key));
|
|
}
|
|
|
|
public final K firstKey() {
|
|
return key(subLowest());
|
|
}
|
|
|
|
public final K lastKey() {
|
|
return key(subHighest());
|
|
}
|
|
|
|
public final Map.Entry<K,V> firstEntry() {
|
|
return exportEntry(subLowest());
|
|
}
|
|
|
|
public final Map.Entry<K,V> lastEntry() {
|
|
return exportEntry(subHighest());
|
|
}
|
|
|
|
public final Map.Entry<K,V> pollFirstEntry() {
|
|
TreeMapEntry<K,V> e = subLowest();
|
|
Map.Entry<K,V> result = exportEntry(e);
|
|
if (e != null)
|
|
m.deleteEntry(e);
|
|
return result;
|
|
}
|
|
|
|
public final Map.Entry<K,V> pollLastEntry() {
|
|
TreeMapEntry<K,V> e = subHighest();
|
|
Map.Entry<K,V> result = exportEntry(e);
|
|
if (e != null)
|
|
m.deleteEntry(e);
|
|
return result;
|
|
}
|
|
|
|
// Views
|
|
transient NavigableMap<K,V> descendingMapView;
|
|
transient EntrySetView entrySetView;
|
|
transient KeySet<K> navigableKeySetView;
|
|
|
|
public final NavigableSet<K> navigableKeySet() {
|
|
KeySet<K> nksv = navigableKeySetView;
|
|
return (nksv != null) ? nksv :
|
|
(navigableKeySetView = new TreeMap.KeySet<>(this));
|
|
}
|
|
|
|
public final Set<K> keySet() {
|
|
return navigableKeySet();
|
|
}
|
|
|
|
public NavigableSet<K> descendingKeySet() {
|
|
return descendingMap().navigableKeySet();
|
|
}
|
|
|
|
public final SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
return subMap(fromKey, true, toKey, false);
|
|
}
|
|
|
|
public final SortedMap<K,V> headMap(K toKey) {
|
|
return headMap(toKey, false);
|
|
}
|
|
|
|
public final SortedMap<K,V> tailMap(K fromKey) {
|
|
return tailMap(fromKey, true);
|
|
}
|
|
|
|
// View classes
|
|
|
|
abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
|
|
private transient int size = -1, sizeModCount;
|
|
|
|
public int size() {
|
|
if (fromStart && toEnd)
|
|
return m.size();
|
|
if (size == -1 || sizeModCount != m.modCount) {
|
|
sizeModCount = m.modCount;
|
|
size = 0;
|
|
Iterator<?> i = iterator();
|
|
while (i.hasNext()) {
|
|
size++;
|
|
i.next();
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
public boolean isEmpty() {
|
|
TreeMapEntry<K,V> n = absLowest();
|
|
return n == null || tooHigh(n.key);
|
|
}
|
|
|
|
public boolean contains(Object o) {
|
|
if (!(o instanceof Entry<?, ?> entry))
|
|
return false;
|
|
Object key = entry.getKey();
|
|
if (!inRange(key))
|
|
return false;
|
|
TreeMapEntry<?, ?> node = m.getEntry(key);
|
|
return node != null &&
|
|
valEquals(node.getValue(), entry.getValue());
|
|
}
|
|
|
|
public boolean remove(Object o) {
|
|
if (!(o instanceof Entry<?, ?> entry))
|
|
return false;
|
|
Object key = entry.getKey();
|
|
if (!inRange(key))
|
|
return false;
|
|
TreeMapEntry<K,V> node = m.getEntry(key);
|
|
if (node!=null && valEquals(node.getValue(),
|
|
entry.getValue())) {
|
|
m.deleteEntry(node);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterators for SubMaps
|
|
*/
|
|
abstract class SubMapIterator<T> implements Iterator<T> {
|
|
TreeMapEntry<K,V> lastReturned;
|
|
TreeMapEntry<K,V> next;
|
|
final Object fenceKey;
|
|
int expectedModCount;
|
|
|
|
SubMapIterator(TreeMapEntry<K,V> first,
|
|
TreeMapEntry<K,V> fence) {
|
|
expectedModCount = m.modCount;
|
|
lastReturned = null;
|
|
next = first;
|
|
fenceKey = fence == null ? UNBOUNDED : fence.key;
|
|
}
|
|
|
|
public final boolean hasNext() {
|
|
return next != null && next.key != fenceKey;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> nextEntry() {
|
|
TreeMapEntry<K,V> e = next;
|
|
if (e == null || e.key == fenceKey)
|
|
throw new NoSuchElementException();
|
|
if (m.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
next = successor(e);
|
|
lastReturned = e;
|
|
return e;
|
|
}
|
|
|
|
final TreeMapEntry<K,V> prevEntry() {
|
|
TreeMapEntry<K,V> e = next;
|
|
if (e == null || e.key == fenceKey)
|
|
throw new NoSuchElementException();
|
|
if (m.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
next = predecessor(e);
|
|
lastReturned = e;
|
|
return e;
|
|
}
|
|
|
|
final void removeAscending() {
|
|
if (lastReturned == null)
|
|
throw new IllegalStateException();
|
|
if (m.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
// deleted entries are replaced by their successors
|
|
if (lastReturned.left != null && lastReturned.right != null)
|
|
next = lastReturned;
|
|
m.deleteEntry(lastReturned);
|
|
lastReturned = null;
|
|
expectedModCount = m.modCount;
|
|
}
|
|
|
|
final void removeDescending() {
|
|
if (lastReturned == null)
|
|
throw new IllegalStateException();
|
|
if (m.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
m.deleteEntry(lastReturned);
|
|
lastReturned = null;
|
|
expectedModCount = m.modCount;
|
|
}
|
|
|
|
}
|
|
|
|
final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
|
|
SubMapEntryIterator(TreeMapEntry<K,V> first,
|
|
TreeMapEntry<K,V> fence) {
|
|
super(first, fence);
|
|
}
|
|
public Map.Entry<K,V> next() {
|
|
return nextEntry();
|
|
}
|
|
public void remove() {
|
|
removeAscending();
|
|
}
|
|
}
|
|
|
|
final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
|
|
DescendingSubMapEntryIterator(TreeMapEntry<K,V> last,
|
|
TreeMapEntry<K,V> fence) {
|
|
super(last, fence);
|
|
}
|
|
|
|
public Map.Entry<K,V> next() {
|
|
return prevEntry();
|
|
}
|
|
public void remove() {
|
|
removeDescending();
|
|
}
|
|
}
|
|
|
|
// Implement minimal Spliterator as KeySpliterator backup
|
|
final class SubMapKeyIterator extends SubMapIterator<K>
|
|
implements Spliterator<K> {
|
|
SubMapKeyIterator(TreeMapEntry<K,V> first,
|
|
TreeMapEntry<K,V> fence) {
|
|
super(first, fence);
|
|
}
|
|
public K next() {
|
|
return nextEntry().key;
|
|
}
|
|
public void remove() {
|
|
removeAscending();
|
|
}
|
|
public Spliterator<K> trySplit() {
|
|
return null;
|
|
}
|
|
public void forEachRemaining(Consumer<? super K> action) {
|
|
while (hasNext())
|
|
action.accept(next());
|
|
}
|
|
public boolean tryAdvance(Consumer<? super K> action) {
|
|
if (hasNext()) {
|
|
action.accept(next());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
public long estimateSize() {
|
|
return Long.MAX_VALUE;
|
|
}
|
|
public int characteristics() {
|
|
return Spliterator.DISTINCT | Spliterator.ORDERED |
|
|
Spliterator.SORTED;
|
|
}
|
|
public final Comparator<? super K> getComparator() {
|
|
return NavigableSubMap.this.comparator();
|
|
}
|
|
}
|
|
|
|
final class DescendingSubMapKeyIterator extends SubMapIterator<K>
|
|
implements Spliterator<K> {
|
|
DescendingSubMapKeyIterator(TreeMapEntry<K,V> last,
|
|
TreeMapEntry<K,V> fence) {
|
|
super(last, fence);
|
|
}
|
|
public K next() {
|
|
return prevEntry().key;
|
|
}
|
|
public void remove() {
|
|
removeDescending();
|
|
}
|
|
public Spliterator<K> trySplit() {
|
|
return null;
|
|
}
|
|
public void forEachRemaining(Consumer<? super K> action) {
|
|
while (hasNext())
|
|
action.accept(next());
|
|
}
|
|
public boolean tryAdvance(Consumer<? super K> action) {
|
|
if (hasNext()) {
|
|
action.accept(next());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
public long estimateSize() {
|
|
return Long.MAX_VALUE;
|
|
}
|
|
public int characteristics() {
|
|
return Spliterator.DISTINCT | Spliterator.ORDERED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 912986545866124060L;
|
|
|
|
AscendingSubMap(TreeMap<K,V> m,
|
|
boolean fromStart, K lo, boolean loInclusive,
|
|
boolean toEnd, K hi, boolean hiInclusive) {
|
|
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
|
|
}
|
|
|
|
public Comparator<? super K> comparator() {
|
|
return m.comparator();
|
|
}
|
|
|
|
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
|
|
K toKey, boolean toInclusive) {
|
|
if (!inRange(fromKey, fromInclusive))
|
|
throw new IllegalArgumentException("fromKey out of range");
|
|
if (!inRange(toKey, toInclusive))
|
|
throw new IllegalArgumentException("toKey out of range");
|
|
return new AscendingSubMap<>(m,
|
|
false, fromKey, fromInclusive,
|
|
false, toKey, toInclusive);
|
|
}
|
|
|
|
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
|
|
// BEGIN Android-changed: Fix for edge cases.
|
|
// if (!inRange(toKey, inclusive))
|
|
if (!inRange(toKey) && !(!toEnd && m.compare(toKey, hi) == 0 &&
|
|
!hiInclusive && !inclusive))
|
|
// END Android-changed: Fix for edge cases.
|
|
throw new IllegalArgumentException("toKey out of range");
|
|
return new AscendingSubMap<>(m,
|
|
fromStart, lo, loInclusive,
|
|
false, toKey, inclusive);
|
|
}
|
|
|
|
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
|
|
// BEGIN Android-changed: Fix for edge cases.
|
|
// if (!inRange(fromKey, inclusive))
|
|
if (!inRange(fromKey) && !(!fromStart && m.compare(fromKey, lo) == 0 &&
|
|
!loInclusive && !inclusive))
|
|
// END Android-changed: Fix for edge cases.
|
|
throw new IllegalArgumentException("fromKey out of range");
|
|
return new AscendingSubMap<>(m,
|
|
false, fromKey, inclusive,
|
|
toEnd, hi, hiInclusive);
|
|
}
|
|
|
|
public NavigableMap<K,V> descendingMap() {
|
|
NavigableMap<K,V> mv = descendingMapView;
|
|
return (mv != null) ? mv :
|
|
(descendingMapView =
|
|
new DescendingSubMap<>(m,
|
|
fromStart, lo, loInclusive,
|
|
toEnd, hi, hiInclusive));
|
|
}
|
|
|
|
Iterator<K> keyIterator() {
|
|
return new SubMapKeyIterator(absLowest(), absHighFence());
|
|
}
|
|
|
|
Spliterator<K> keySpliterator() {
|
|
return new SubMapKeyIterator(absLowest(), absHighFence());
|
|
}
|
|
|
|
Iterator<K> descendingKeyIterator() {
|
|
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
|
|
}
|
|
|
|
final class AscendingEntrySetView extends EntrySetView {
|
|
public Iterator<Map.Entry<K,V>> iterator() {
|
|
return new SubMapEntryIterator(absLowest(), absHighFence());
|
|
}
|
|
}
|
|
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
EntrySetView es = entrySetView;
|
|
return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
|
|
}
|
|
|
|
TreeMapEntry<K,V> subLowest() { return absLowest(); }
|
|
TreeMapEntry<K,V> subHighest() { return absHighest(); }
|
|
TreeMapEntry<K,V> subCeiling(K key) { return absCeiling(key); }
|
|
TreeMapEntry<K,V> subHigher(K key) { return absHigher(key); }
|
|
TreeMapEntry<K,V> subFloor(K key) { return absFloor(key); }
|
|
TreeMapEntry<K,V> subLower(K key) { return absLower(key); }
|
|
}
|
|
|
|
/**
|
|
* @serial include
|
|
*/
|
|
static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 912986545866120460L;
|
|
DescendingSubMap(TreeMap<K,V> m,
|
|
boolean fromStart, K lo, boolean loInclusive,
|
|
boolean toEnd, K hi, boolean hiInclusive) {
|
|
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
|
|
}
|
|
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private final Comparator<? super K> reverseComparator =
|
|
Collections.reverseOrder(m.comparator);
|
|
|
|
public Comparator<? super K> comparator() {
|
|
return reverseComparator;
|
|
}
|
|
|
|
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
|
|
K toKey, boolean toInclusive) {
|
|
if (!inRange(fromKey, fromInclusive))
|
|
throw new IllegalArgumentException("fromKey out of range");
|
|
if (!inRange(toKey, toInclusive))
|
|
throw new IllegalArgumentException("toKey out of range");
|
|
return new DescendingSubMap<>(m,
|
|
false, toKey, toInclusive,
|
|
false, fromKey, fromInclusive);
|
|
}
|
|
|
|
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
|
|
// BEGIN Android-changed: Fix for edge cases.
|
|
// if (!inRange(toKey, inclusive))
|
|
if (!inRange(toKey) && !(!fromStart && m.compare(toKey, lo) == 0 &&
|
|
!loInclusive && !inclusive))
|
|
// END Android-changed: Fix for edge cases.
|
|
throw new IllegalArgumentException("toKey out of range");
|
|
return new DescendingSubMap<>(m,
|
|
false, toKey, inclusive,
|
|
toEnd, hi, hiInclusive);
|
|
}
|
|
|
|
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
|
|
// BEGIN Android-changed: Fix for edge cases.
|
|
// if (!inRange(fromKey, inclusive))
|
|
if (!inRange(fromKey) && !(!toEnd && m.compare(fromKey, hi) == 0 &&
|
|
!hiInclusive && !inclusive))
|
|
// END Android-changed: Fix for edge cases.
|
|
throw new IllegalArgumentException("fromKey out of range");
|
|
return new DescendingSubMap<>(m,
|
|
fromStart, lo, loInclusive,
|
|
false, fromKey, inclusive);
|
|
}
|
|
|
|
public NavigableMap<K,V> descendingMap() {
|
|
NavigableMap<K,V> mv = descendingMapView;
|
|
return (mv != null) ? mv :
|
|
(descendingMapView =
|
|
new AscendingSubMap<>(m,
|
|
fromStart, lo, loInclusive,
|
|
toEnd, hi, hiInclusive));
|
|
}
|
|
|
|
Iterator<K> keyIterator() {
|
|
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
|
|
}
|
|
|
|
Spliterator<K> keySpliterator() {
|
|
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
|
|
}
|
|
|
|
Iterator<K> descendingKeyIterator() {
|
|
return new SubMapKeyIterator(absLowest(), absHighFence());
|
|
}
|
|
|
|
final class DescendingEntrySetView extends EntrySetView {
|
|
public Iterator<Map.Entry<K,V>> iterator() {
|
|
return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
|
|
}
|
|
}
|
|
|
|
public Set<Map.Entry<K,V>> entrySet() {
|
|
EntrySetView es = entrySetView;
|
|
return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
|
|
}
|
|
|
|
TreeMapEntry<K,V> subLowest() { return absHighest(); }
|
|
TreeMapEntry<K,V> subHighest() { return absLowest(); }
|
|
TreeMapEntry<K,V> subCeiling(K key) { return absFloor(key); }
|
|
TreeMapEntry<K,V> subHigher(K key) { return absLower(key); }
|
|
TreeMapEntry<K,V> subFloor(K key) { return absCeiling(key); }
|
|
TreeMapEntry<K,V> subLower(K key) { return absHigher(key); }
|
|
}
|
|
|
|
/**
|
|
* This class exists solely for the sake of serialization
|
|
* compatibility with previous releases of TreeMap that did not
|
|
* support NavigableMap. It translates an old-version SubMap into
|
|
* a new-version AscendingSubMap. This class is never otherwise
|
|
* used.
|
|
*
|
|
* @serial include
|
|
*/
|
|
private class SubMap extends AbstractMap<K,V>
|
|
implements SortedMap<K,V>, java.io.Serializable {
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -6520786458950516097L;
|
|
private boolean fromStart = false, toEnd = false;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private K fromKey;
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
private K toKey;
|
|
@java.io.Serial
|
|
private Object readResolve() {
|
|
return new AscendingSubMap<>(TreeMap.this,
|
|
fromStart, fromKey, true,
|
|
toEnd, toKey, false);
|
|
}
|
|
public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
|
|
public K lastKey() { throw new InternalError(); }
|
|
public K firstKey() { throw new InternalError(); }
|
|
public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
|
|
public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
|
|
public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
|
|
public Comparator<? super K> comparator() { throw new InternalError(); }
|
|
}
|
|
|
|
|
|
// Red-black mechanics
|
|
|
|
private static final boolean RED = false;
|
|
private static final boolean BLACK = true;
|
|
|
|
/**
|
|
* Node in the Tree. Doubles as a means to pass key-value pairs back to
|
|
* user (see Map.Entry).
|
|
*/
|
|
// BEGIN Android-changed: Renamed Entry -> TreeMapEntry.
|
|
// Code references to "TreeMap.Entry" must mean Map.Entry
|
|
//
|
|
// This mirrors the corresponding rename of LinkedHashMap's
|
|
// Entry->LinkedHashMapEntry.
|
|
//
|
|
// This is for source compatibility with earlier versions of Android.
|
|
// Otherwise, it would hide Map.Entry.
|
|
// END Android-changed: Renamed Entry -> TreeMapEntry.
|
|
static final class TreeMapEntry<K,V> implements Map.Entry<K,V> {
|
|
K key;
|
|
V value;
|
|
TreeMapEntry<K,V> left;
|
|
TreeMapEntry<K,V> right;
|
|
TreeMapEntry<K,V> parent;
|
|
boolean color = BLACK;
|
|
|
|
/**
|
|
* Make a new cell with given key, value, and parent, and with
|
|
* {@code null} child links, and BLACK color.
|
|
*/
|
|
TreeMapEntry(K key, V value, TreeMapEntry<K,V> parent) {
|
|
this.key = key;
|
|
this.value = value;
|
|
this.parent = parent;
|
|
}
|
|
|
|
/**
|
|
* Returns the key.
|
|
*
|
|
* @return the key
|
|
*/
|
|
public K getKey() {
|
|
return key;
|
|
}
|
|
|
|
/**
|
|
* Returns the value associated with the key.
|
|
*
|
|
* @return the value associated with the key
|
|
*/
|
|
public V getValue() {
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* Replaces the value currently associated with the key with the given
|
|
* value.
|
|
*
|
|
* @return the value associated with the key before this method was
|
|
* called
|
|
*/
|
|
public V setValue(V value) {
|
|
V oldValue = this.value;
|
|
this.value = value;
|
|
return oldValue;
|
|
}
|
|
|
|
public boolean equals(Object o) {
|
|
return o instanceof Map.Entry<?, ?> e
|
|
&& valEquals(key,e.getKey())
|
|
&& valEquals(value,e.getValue());
|
|
}
|
|
|
|
public int hashCode() {
|
|
int keyHash = (key==null ? 0 : key.hashCode());
|
|
int valueHash = (value==null ? 0 : value.hashCode());
|
|
return keyHash ^ valueHash;
|
|
}
|
|
|
|
public String toString() {
|
|
return key + "=" + value;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the first Entry in the TreeMap (according to the TreeMap's
|
|
* key-sort function). Returns null if the TreeMap is empty.
|
|
*/
|
|
final TreeMapEntry<K,V> getFirstEntry() {
|
|
TreeMapEntry<K,V> p = root;
|
|
if (p != null)
|
|
while (p.left != null)
|
|
p = p.left;
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Returns the last Entry in the TreeMap (according to the TreeMap's
|
|
* key-sort function). Returns null if the TreeMap is empty.
|
|
*/
|
|
final TreeMapEntry<K,V> getLastEntry() {
|
|
TreeMapEntry<K,V> p = root;
|
|
if (p != null)
|
|
while (p.right != null)
|
|
p = p.right;
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Returns the successor of the specified Entry, or null if no such.
|
|
*/
|
|
static <K,V> TreeMapEntry<K,V> successor(TreeMapEntry<K,V> t) {
|
|
if (t == null)
|
|
return null;
|
|
else if (t.right != null) {
|
|
TreeMapEntry<K,V> p = t.right;
|
|
while (p.left != null)
|
|
p = p.left;
|
|
return p;
|
|
} else {
|
|
TreeMapEntry<K,V> p = t.parent;
|
|
TreeMapEntry<K,V> ch = t;
|
|
while (p != null && ch == p.right) {
|
|
ch = p;
|
|
p = p.parent;
|
|
}
|
|
return p;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the predecessor of the specified Entry, or null if no such.
|
|
*/
|
|
static <K,V> TreeMapEntry<K,V> predecessor(TreeMapEntry<K,V> t) {
|
|
if (t == null)
|
|
return null;
|
|
else if (t.left != null) {
|
|
TreeMapEntry<K,V> p = t.left;
|
|
while (p.right != null)
|
|
p = p.right;
|
|
return p;
|
|
} else {
|
|
TreeMapEntry<K,V> p = t.parent;
|
|
TreeMapEntry<K,V> ch = t;
|
|
while (p != null && ch == p.left) {
|
|
ch = p;
|
|
p = p.parent;
|
|
}
|
|
return p;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Balancing operations.
|
|
*
|
|
* Implementations of rebalancings during insertion and deletion are
|
|
* slightly different than the CLR version. Rather than using dummy
|
|
* nilnodes, we use a set of accessors that deal properly with null. They
|
|
* are used to avoid messiness surrounding nullness checks in the main
|
|
* algorithms.
|
|
*/
|
|
|
|
private static <K,V> boolean colorOf(TreeMapEntry<K,V> p) {
|
|
return (p == null ? BLACK : p.color);
|
|
}
|
|
|
|
private static <K,V> TreeMapEntry<K,V> parentOf(TreeMapEntry<K,V> p) {
|
|
return (p == null ? null: p.parent);
|
|
}
|
|
|
|
private static <K,V> void setColor(TreeMapEntry<K,V> p, boolean c) {
|
|
if (p != null)
|
|
p.color = c;
|
|
}
|
|
|
|
private static <K,V> TreeMapEntry<K,V> leftOf(TreeMapEntry<K,V> p) {
|
|
return (p == null) ? null: p.left;
|
|
}
|
|
|
|
private static <K,V> TreeMapEntry<K,V> rightOf(TreeMapEntry<K,V> p) {
|
|
return (p == null) ? null: p.right;
|
|
}
|
|
|
|
/** From CLR */
|
|
private void rotateLeft(TreeMapEntry<K,V> p) {
|
|
if (p != null) {
|
|
TreeMapEntry<K,V> r = p.right;
|
|
p.right = r.left;
|
|
if (r.left != null)
|
|
r.left.parent = p;
|
|
r.parent = p.parent;
|
|
if (p.parent == null)
|
|
root = r;
|
|
else if (p.parent.left == p)
|
|
p.parent.left = r;
|
|
else
|
|
p.parent.right = r;
|
|
r.left = p;
|
|
p.parent = r;
|
|
}
|
|
}
|
|
|
|
/** From CLR */
|
|
private void rotateRight(TreeMapEntry<K,V> p) {
|
|
if (p != null) {
|
|
TreeMapEntry<K,V> l = p.left;
|
|
p.left = l.right;
|
|
if (l.right != null) l.right.parent = p;
|
|
l.parent = p.parent;
|
|
if (p.parent == null)
|
|
root = l;
|
|
else if (p.parent.right == p)
|
|
p.parent.right = l;
|
|
else p.parent.left = l;
|
|
l.right = p;
|
|
p.parent = l;
|
|
}
|
|
}
|
|
|
|
/** From CLR */
|
|
private void fixAfterInsertion(TreeMapEntry<K,V> x) {
|
|
x.color = RED;
|
|
|
|
while (x != null && x != root && x.parent.color == RED) {
|
|
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
|
|
TreeMapEntry<K,V> y = rightOf(parentOf(parentOf(x)));
|
|
if (colorOf(y) == RED) {
|
|
setColor(parentOf(x), BLACK);
|
|
setColor(y, BLACK);
|
|
setColor(parentOf(parentOf(x)), RED);
|
|
x = parentOf(parentOf(x));
|
|
} else {
|
|
if (x == rightOf(parentOf(x))) {
|
|
x = parentOf(x);
|
|
rotateLeft(x);
|
|
}
|
|
setColor(parentOf(x), BLACK);
|
|
setColor(parentOf(parentOf(x)), RED);
|
|
rotateRight(parentOf(parentOf(x)));
|
|
}
|
|
} else {
|
|
TreeMapEntry<K,V> y = leftOf(parentOf(parentOf(x)));
|
|
if (colorOf(y) == RED) {
|
|
setColor(parentOf(x), BLACK);
|
|
setColor(y, BLACK);
|
|
setColor(parentOf(parentOf(x)), RED);
|
|
x = parentOf(parentOf(x));
|
|
} else {
|
|
if (x == leftOf(parentOf(x))) {
|
|
x = parentOf(x);
|
|
rotateRight(x);
|
|
}
|
|
setColor(parentOf(x), BLACK);
|
|
setColor(parentOf(parentOf(x)), RED);
|
|
rotateLeft(parentOf(parentOf(x)));
|
|
}
|
|
}
|
|
}
|
|
root.color = BLACK;
|
|
}
|
|
|
|
/**
|
|
* Delete node p, and then rebalance the tree.
|
|
*/
|
|
private void deleteEntry(TreeMapEntry<K,V> p) {
|
|
modCount++;
|
|
size--;
|
|
|
|
// If strictly internal, copy successor's element to p and then make p
|
|
// point to successor.
|
|
if (p.left != null && p.right != null) {
|
|
TreeMapEntry<K,V> s = successor(p);
|
|
p.key = s.key;
|
|
p.value = s.value;
|
|
p = s;
|
|
} // p has 2 children
|
|
|
|
// Start fixup at replacement node, if it exists.
|
|
TreeMapEntry<K,V> replacement = (p.left != null ? p.left : p.right);
|
|
|
|
if (replacement != null) {
|
|
// Link replacement to parent
|
|
replacement.parent = p.parent;
|
|
if (p.parent == null)
|
|
root = replacement;
|
|
else if (p == p.parent.left)
|
|
p.parent.left = replacement;
|
|
else
|
|
p.parent.right = replacement;
|
|
|
|
// Null out links so they are OK to use by fixAfterDeletion.
|
|
p.left = p.right = p.parent = null;
|
|
|
|
// Fix replacement
|
|
if (p.color == BLACK)
|
|
fixAfterDeletion(replacement);
|
|
} else if (p.parent == null) { // return if we are the only node.
|
|
root = null;
|
|
} else { // No children. Use self as phantom replacement and unlink.
|
|
if (p.color == BLACK)
|
|
fixAfterDeletion(p);
|
|
|
|
if (p.parent != null) {
|
|
if (p == p.parent.left)
|
|
p.parent.left = null;
|
|
else if (p == p.parent.right)
|
|
p.parent.right = null;
|
|
p.parent = null;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** From CLR */
|
|
private void fixAfterDeletion(TreeMapEntry<K,V> x) {
|
|
while (x != root && colorOf(x) == BLACK) {
|
|
if (x == leftOf(parentOf(x))) {
|
|
TreeMapEntry<K,V> sib = rightOf(parentOf(x));
|
|
|
|
if (colorOf(sib) == RED) {
|
|
setColor(sib, BLACK);
|
|
setColor(parentOf(x), RED);
|
|
rotateLeft(parentOf(x));
|
|
sib = rightOf(parentOf(x));
|
|
}
|
|
|
|
if (colorOf(leftOf(sib)) == BLACK &&
|
|
colorOf(rightOf(sib)) == BLACK) {
|
|
setColor(sib, RED);
|
|
x = parentOf(x);
|
|
} else {
|
|
if (colorOf(rightOf(sib)) == BLACK) {
|
|
setColor(leftOf(sib), BLACK);
|
|
setColor(sib, RED);
|
|
rotateRight(sib);
|
|
sib = rightOf(parentOf(x));
|
|
}
|
|
setColor(sib, colorOf(parentOf(x)));
|
|
setColor(parentOf(x), BLACK);
|
|
setColor(rightOf(sib), BLACK);
|
|
rotateLeft(parentOf(x));
|
|
x = root;
|
|
}
|
|
} else { // symmetric
|
|
TreeMapEntry<K,V> sib = leftOf(parentOf(x));
|
|
|
|
if (colorOf(sib) == RED) {
|
|
setColor(sib, BLACK);
|
|
setColor(parentOf(x), RED);
|
|
rotateRight(parentOf(x));
|
|
sib = leftOf(parentOf(x));
|
|
}
|
|
|
|
if (colorOf(rightOf(sib)) == BLACK &&
|
|
colorOf(leftOf(sib)) == BLACK) {
|
|
setColor(sib, RED);
|
|
x = parentOf(x);
|
|
} else {
|
|
if (colorOf(leftOf(sib)) == BLACK) {
|
|
setColor(rightOf(sib), BLACK);
|
|
setColor(sib, RED);
|
|
rotateLeft(sib);
|
|
sib = leftOf(parentOf(x));
|
|
}
|
|
setColor(sib, colorOf(parentOf(x)));
|
|
setColor(parentOf(x), BLACK);
|
|
setColor(leftOf(sib), BLACK);
|
|
rotateRight(parentOf(x));
|
|
x = root;
|
|
}
|
|
}
|
|
}
|
|
|
|
setColor(x, BLACK);
|
|
}
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 919286545866124006L;
|
|
|
|
/**
|
|
* Save the state of the {@code TreeMap} instance to a stream (i.e.,
|
|
* serialize it).
|
|
*
|
|
* @serialData The <em>size</em> of the TreeMap (the number of key-value
|
|
* mappings) is emitted (int), followed by the key (Object)
|
|
* and value (Object) for each key-value mapping represented
|
|
* by the TreeMap. The key-value mappings are emitted in
|
|
* key-order (as determined by the TreeMap's Comparator,
|
|
* or by the keys' natural ordering if the TreeMap has no
|
|
* Comparator).
|
|
*/
|
|
@java.io.Serial
|
|
private void writeObject(java.io.ObjectOutputStream s)
|
|
throws java.io.IOException {
|
|
// Write out the Comparator and any hidden stuff
|
|
s.defaultWriteObject();
|
|
|
|
// Write out size (number of Mappings)
|
|
s.writeInt(size);
|
|
|
|
// Write out keys and values (alternating)
|
|
for (Map.Entry<K, V> e : entrySet()) {
|
|
s.writeObject(e.getKey());
|
|
s.writeObject(e.getValue());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reconstitute the {@code TreeMap} instance from a stream (i.e.,
|
|
* deserialize it).
|
|
*/
|
|
@java.io.Serial
|
|
private void readObject(final java.io.ObjectInputStream s)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
// Read in the Comparator and any hidden stuff
|
|
s.defaultReadObject();
|
|
|
|
// Read in size
|
|
int size = s.readInt();
|
|
|
|
buildFromSorted(size, null, s, null);
|
|
}
|
|
|
|
/** Intended to be called only from TreeSet.readObject */
|
|
void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
buildFromSorted(size, null, s, defaultVal);
|
|
}
|
|
|
|
/** Intended to be called only from TreeSet.addAll */
|
|
void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
|
|
try {
|
|
buildFromSorted(set.size(), set.iterator(), null, defaultVal);
|
|
} catch (java.io.IOException | ClassNotFoundException cannotHappen) {
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Linear time tree building algorithm from sorted data. Can accept keys
|
|
* and/or values from iterator or stream. This leads to too many
|
|
* parameters, but seems better than alternatives. The four formats
|
|
* that this method accepts are:
|
|
*
|
|
* 1) An iterator of Map.Entries. (it != null, defaultVal == null).
|
|
* 2) An iterator of keys. (it != null, defaultVal != null).
|
|
* 3) A stream of alternating serialized keys and values.
|
|
* (it == null, defaultVal == null).
|
|
* 4) A stream of serialized keys. (it == null, defaultVal != null).
|
|
*
|
|
* It is assumed that the comparator of the TreeMap is already set prior
|
|
* to calling this method.
|
|
*
|
|
* @param size the number of keys (or key-value pairs) to be read from
|
|
* the iterator or stream
|
|
* @param it If non-null, new entries are created from entries
|
|
* or keys read from this iterator.
|
|
* @param str If non-null, new entries are created from keys and
|
|
* possibly values read from this stream in serialized form.
|
|
* Exactly one of it and str should be non-null.
|
|
* @param defaultVal if non-null, this default value is used for
|
|
* each value in the map. If null, each value is read from
|
|
* iterator or stream, as described above.
|
|
* @throws java.io.IOException propagated from stream reads. This cannot
|
|
* occur if str is null.
|
|
* @throws ClassNotFoundException propagated from readObject.
|
|
* This cannot occur if str is null.
|
|
*/
|
|
private void buildFromSorted(int size, Iterator<?> it,
|
|
java.io.ObjectInputStream str,
|
|
V defaultVal)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
this.size = size;
|
|
root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
|
|
it, str, defaultVal);
|
|
}
|
|
|
|
/**
|
|
* Recursive "helper method" that does the real work of the
|
|
* previous method. Identically named parameters have
|
|
* identical definitions. Additional parameters are documented below.
|
|
* It is assumed that the comparator and size fields of the TreeMap are
|
|
* already set prior to calling this method. (It ignores both fields.)
|
|
*
|
|
* @param level the current level of tree. Initial call should be 0.
|
|
* @param lo the first element index of this subtree. Initial should be 0.
|
|
* @param hi the last element index of this subtree. Initial should be
|
|
* size-1.
|
|
* @param redLevel the level at which nodes should be red.
|
|
* Must be equal to computeRedLevel for tree of this size.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
private final TreeMapEntry<K,V> buildFromSorted(int level, int lo, int hi,
|
|
int redLevel,
|
|
Iterator<?> it,
|
|
java.io.ObjectInputStream str,
|
|
V defaultVal)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
/*
|
|
* Strategy: The root is the middlemost element. To get to it, we
|
|
* have to first recursively construct the entire left subtree,
|
|
* so as to grab all of its elements. We can then proceed with right
|
|
* subtree.
|
|
*
|
|
* The lo and hi arguments are the minimum and maximum
|
|
* indices to pull out of the iterator or stream for current subtree.
|
|
* They are not actually indexed, we just proceed sequentially,
|
|
* ensuring that items are extracted in corresponding order.
|
|
*/
|
|
|
|
if (hi < lo) return null;
|
|
|
|
int mid = (lo + hi) >>> 1;
|
|
|
|
TreeMapEntry<K,V> left = null;
|
|
if (lo < mid)
|
|
left = buildFromSorted(level+1, lo, mid - 1, redLevel,
|
|
it, str, defaultVal);
|
|
|
|
// extract key and/or value from iterator or stream
|
|
K key;
|
|
V value;
|
|
if (it != null) {
|
|
if (defaultVal==null) {
|
|
Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
|
|
key = (K)entry.getKey();
|
|
value = (V)entry.getValue();
|
|
} else {
|
|
key = (K)it.next();
|
|
value = defaultVal;
|
|
}
|
|
} else { // use stream
|
|
key = (K) str.readObject();
|
|
value = (defaultVal != null ? defaultVal : (V) str.readObject());
|
|
}
|
|
|
|
TreeMapEntry<K,V> middle = new TreeMapEntry<>(key, value, null);
|
|
|
|
// color nodes in non-full bottommost level red
|
|
if (level == redLevel)
|
|
middle.color = RED;
|
|
|
|
if (left != null) {
|
|
middle.left = left;
|
|
left.parent = middle;
|
|
}
|
|
|
|
if (mid < hi) {
|
|
TreeMapEntry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
|
|
it, str, defaultVal);
|
|
middle.right = right;
|
|
right.parent = middle;
|
|
}
|
|
|
|
return middle;
|
|
}
|
|
|
|
/**
|
|
* Finds the level down to which to assign all nodes BLACK. This is the
|
|
* last `full' level of the complete binary tree produced by buildTree.
|
|
* The remaining nodes are colored RED. (This makes a `nice' set of
|
|
* color assignments wrt future insertions.) This level number is
|
|
* computed by finding the number of splits needed to reach the zeroeth
|
|
* node.
|
|
*
|
|
* @param size the (non-negative) number of keys in the tree to be built
|
|
*/
|
|
private static int computeRedLevel(int size) {
|
|
return 31 - Integer.numberOfLeadingZeros(size + 1);
|
|
}
|
|
|
|
/**
|
|
* Currently, we support Spliterator-based versions only for the
|
|
* full map, in either plain of descending form, otherwise relying
|
|
* on defaults because size estimation for submaps would dominate
|
|
* costs. The type tests needed to check these for key views are
|
|
* not very nice but avoid disrupting existing class
|
|
* structures. Callers must use plain default spliterators if this
|
|
* returns null.
|
|
*/
|
|
static <K> Spliterator<K> keySpliteratorFor(NavigableMap<K,?> m) {
|
|
if (m instanceof TreeMap) {
|
|
@SuppressWarnings("unchecked") TreeMap<K,Object> t =
|
|
(TreeMap<K,Object>) m;
|
|
return t.keySpliterator();
|
|
}
|
|
if (m instanceof DescendingSubMap) {
|
|
@SuppressWarnings("unchecked") DescendingSubMap<K,?> dm =
|
|
(DescendingSubMap<K,?>) m;
|
|
TreeMap<K,?> tm = dm.m;
|
|
if (dm == tm.descendingMap) {
|
|
@SuppressWarnings("unchecked") TreeMap<K,Object> t =
|
|
(TreeMap<K,Object>) tm;
|
|
return t.descendingKeySpliterator();
|
|
}
|
|
}
|
|
@SuppressWarnings("unchecked") NavigableSubMap<K,?> sm =
|
|
(NavigableSubMap<K,?>) m;
|
|
return sm.keySpliterator();
|
|
}
|
|
|
|
final Spliterator<K> keySpliterator() {
|
|
return new KeySpliterator<>(this, null, null, 0, -1, 0);
|
|
}
|
|
|
|
final Spliterator<K> descendingKeySpliterator() {
|
|
return new DescendingKeySpliterator<>(this, null, null, 0, -2, 0);
|
|
}
|
|
|
|
/**
|
|
* Base class for spliterators. Iteration starts at a given
|
|
* origin and continues up to but not including a given fence (or
|
|
* null for end). At top-level, for ascending cases, the first
|
|
* split uses the root as left-fence/right-origin. From there,
|
|
* right-hand splits replace the current fence with its left
|
|
* child, also serving as origin for the split-off spliterator.
|
|
* Left-hands are symmetric. Descending versions place the origin
|
|
* at the end and invert ascending split rules. This base class
|
|
* is non-committal about directionality, or whether the top-level
|
|
* spliterator covers the whole tree. This means that the actual
|
|
* split mechanics are located in subclasses. Some of the subclass
|
|
* trySplit methods are identical (except for return types), but
|
|
* not nicely factorable.
|
|
*
|
|
* Currently, subclass versions exist only for the full map
|
|
* (including descending keys via its descendingMap). Others are
|
|
* possible but currently not worthwhile because submaps require
|
|
* O(n) computations to determine size, which substantially limits
|
|
* potential speed-ups of using custom Spliterators versus default
|
|
* mechanics.
|
|
*
|
|
* To bootstrap initialization, external constructors use
|
|
* negative size estimates: -1 for ascend, -2 for descend.
|
|
*/
|
|
static class TreeMapSpliterator<K,V> {
|
|
final TreeMap<K,V> tree;
|
|
TreeMapEntry<K,V> current; // traverser; initially first node in range
|
|
TreeMapEntry<K,V> fence; // one past last, or null
|
|
int side; // 0: top, -1: is a left split, +1: right
|
|
int est; // size estimate (exact only for top-level)
|
|
int expectedModCount; // for CME checks
|
|
|
|
TreeMapSpliterator(TreeMap<K,V> tree,
|
|
TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
|
|
int side, int est, int expectedModCount) {
|
|
this.tree = tree;
|
|
this.current = origin;
|
|
this.fence = fence;
|
|
this.side = side;
|
|
this.est = est;
|
|
this.expectedModCount = expectedModCount;
|
|
}
|
|
|
|
final int getEstimate() { // force initialization
|
|
int s; TreeMap<K,V> t;
|
|
if ((s = est) < 0) {
|
|
if ((t = tree) != null) {
|
|
current = (s == -1) ? t.getFirstEntry() : t.getLastEntry();
|
|
s = est = t.size;
|
|
expectedModCount = t.modCount;
|
|
}
|
|
else
|
|
s = est = 0;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
public final long estimateSize() {
|
|
return (long)getEstimate();
|
|
}
|
|
}
|
|
|
|
static final class KeySpliterator<K,V>
|
|
extends TreeMapSpliterator<K,V>
|
|
implements Spliterator<K> {
|
|
KeySpliterator(TreeMap<K,V> tree,
|
|
TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
|
|
int side, int est, int expectedModCount) {
|
|
super(tree, origin, fence, side, est, expectedModCount);
|
|
}
|
|
|
|
public KeySpliterator<K,V> trySplit() {
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
int d = side;
|
|
TreeMapEntry<K,V> e = current, f = fence,
|
|
s = ((e == null || e == f) ? null : // empty
|
|
(d == 0) ? tree.root : // was top
|
|
(d > 0) ? e.right : // was right
|
|
(d < 0 && f != null) ? f.left : // was left
|
|
null);
|
|
if (s != null && s != e && s != f &&
|
|
tree.compare(e.key, s.key) < 0) { // e not already past s
|
|
side = 1;
|
|
return new KeySpliterator<>
|
|
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super K> action) {
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
TreeMapEntry<K,V> f = fence, e, p, pl;
|
|
if ((e = current) != null && e != f) {
|
|
current = f; // exhaust
|
|
do {
|
|
action.accept(e.key);
|
|
if ((p = e.right) != null) {
|
|
while ((pl = p.left) != null)
|
|
p = pl;
|
|
}
|
|
else {
|
|
while ((p = e.parent) != null && e == p.right)
|
|
e = p;
|
|
}
|
|
} while ((e = p) != null && e != f);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super K> action) {
|
|
TreeMapEntry<K,V> e;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
if ((e = current) == null || e == fence)
|
|
return false;
|
|
current = successor(e);
|
|
action.accept(e.key);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (side == 0 ? Spliterator.SIZED : 0) |
|
|
Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
|
|
}
|
|
|
|
public final Comparator<? super K> getComparator() {
|
|
return tree.comparator;
|
|
}
|
|
|
|
}
|
|
|
|
static final class DescendingKeySpliterator<K,V>
|
|
extends TreeMapSpliterator<K,V>
|
|
implements Spliterator<K> {
|
|
DescendingKeySpliterator(TreeMap<K,V> tree,
|
|
TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
|
|
int side, int est, int expectedModCount) {
|
|
super(tree, origin, fence, side, est, expectedModCount);
|
|
}
|
|
|
|
public DescendingKeySpliterator<K,V> trySplit() {
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
int d = side;
|
|
TreeMapEntry<K,V> e = current, f = fence,
|
|
s = ((e == null || e == f) ? null : // empty
|
|
(d == 0) ? tree.root : // was top
|
|
(d < 0) ? e.left : // was left
|
|
(d > 0 && f != null) ? f.right : // was right
|
|
null);
|
|
if (s != null && s != e && s != f &&
|
|
tree.compare(e.key, s.key) > 0) { // e not already past s
|
|
side = 1;
|
|
return new DescendingKeySpliterator<>
|
|
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super K> action) {
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
TreeMapEntry<K,V> f = fence, e, p, pr;
|
|
if ((e = current) != null && e != f) {
|
|
current = f; // exhaust
|
|
do {
|
|
action.accept(e.key);
|
|
if ((p = e.left) != null) {
|
|
while ((pr = p.right) != null)
|
|
p = pr;
|
|
}
|
|
else {
|
|
while ((p = e.parent) != null && e == p.left)
|
|
e = p;
|
|
}
|
|
} while ((e = p) != null && e != f);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super K> action) {
|
|
TreeMapEntry<K,V> e;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
if ((e = current) == null || e == fence)
|
|
return false;
|
|
current = predecessor(e);
|
|
action.accept(e.key);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (side == 0 ? Spliterator.SIZED : 0) |
|
|
Spliterator.DISTINCT | Spliterator.ORDERED;
|
|
}
|
|
}
|
|
|
|
static final class ValueSpliterator<K,V>
|
|
extends TreeMapSpliterator<K,V>
|
|
implements Spliterator<V> {
|
|
ValueSpliterator(TreeMap<K,V> tree,
|
|
TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
|
|
int side, int est, int expectedModCount) {
|
|
super(tree, origin, fence, side, est, expectedModCount);
|
|
}
|
|
|
|
public ValueSpliterator<K,V> trySplit() {
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
int d = side;
|
|
TreeMapEntry<K,V> e = current, f = fence,
|
|
s = ((e == null || e == f) ? null : // empty
|
|
(d == 0) ? tree.root : // was top
|
|
(d > 0) ? e.right : // was right
|
|
(d < 0 && f != null) ? f.left : // was left
|
|
null);
|
|
if (s != null && s != e && s != f &&
|
|
tree.compare(e.key, s.key) < 0) { // e not already past s
|
|
side = 1;
|
|
return new ValueSpliterator<>
|
|
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super V> action) {
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
TreeMapEntry<K,V> f = fence, e, p, pl;
|
|
if ((e = current) != null && e != f) {
|
|
current = f; // exhaust
|
|
do {
|
|
action.accept(e.value);
|
|
if ((p = e.right) != null) {
|
|
while ((pl = p.left) != null)
|
|
p = pl;
|
|
}
|
|
else {
|
|
while ((p = e.parent) != null && e == p.right)
|
|
e = p;
|
|
}
|
|
} while ((e = p) != null && e != f);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super V> action) {
|
|
TreeMapEntry<K,V> e;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
if ((e = current) == null || e == fence)
|
|
return false;
|
|
current = successor(e);
|
|
action.accept(e.value);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.ORDERED;
|
|
}
|
|
}
|
|
|
|
static final class EntrySpliterator<K,V>
|
|
extends TreeMapSpliterator<K,V>
|
|
implements Spliterator<Map.Entry<K,V>> {
|
|
EntrySpliterator(TreeMap<K,V> tree,
|
|
TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
|
|
int side, int est, int expectedModCount) {
|
|
super(tree, origin, fence, side, est, expectedModCount);
|
|
}
|
|
|
|
public EntrySpliterator<K,V> trySplit() {
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
int d = side;
|
|
TreeMapEntry<K,V> e = current, f = fence,
|
|
s = ((e == null || e == f) ? null : // empty
|
|
(d == 0) ? tree.root : // was top
|
|
(d > 0) ? e.right : // was right
|
|
(d < 0 && f != null) ? f.left : // was left
|
|
null);
|
|
if (s != null && s != e && s != f &&
|
|
tree.compare(e.key, s.key) < 0) { // e not already past s
|
|
side = 1;
|
|
return new EntrySpliterator<>
|
|
(tree, e, current = s, -1, est >>>= 1, expectedModCount);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
TreeMapEntry<K,V> f = fence, e, p, pl;
|
|
if ((e = current) != null && e != f) {
|
|
current = f; // exhaust
|
|
do {
|
|
action.accept(e);
|
|
if ((p = e.right) != null) {
|
|
while ((pl = p.left) != null)
|
|
p = pl;
|
|
}
|
|
else {
|
|
while ((p = e.parent) != null && e == p.right)
|
|
e = p;
|
|
}
|
|
} while ((e = p) != null && e != f);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
|
|
TreeMapEntry<K,V> e;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if (est < 0)
|
|
getEstimate(); // force initialization
|
|
if ((e = current) == null || e == fence)
|
|
return false;
|
|
current = successor(e);
|
|
action.accept(e);
|
|
if (tree.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
|
|
public int characteristics() {
|
|
return (side == 0 ? Spliterator.SIZED : 0) |
|
|
Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
|
|
}
|
|
|
|
@Override
|
|
public Comparator<Map.Entry<K, V>> getComparator() {
|
|
// Adapt or create a key-based comparator
|
|
if (tree.comparator != null) {
|
|
return Map.Entry.comparingByKey(tree.comparator);
|
|
}
|
|
else {
|
|
return (Comparator<Map.Entry<K, V>> & Serializable) (e1, e2) -> {
|
|
@SuppressWarnings("unchecked")
|
|
Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
|
|
return k1.compareTo(e2.getKey());
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|