1639 lines
58 KiB
Java
1639 lines
58 KiB
Java
/*
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* This file is available under and governed by the GNU General Public
|
|
* License version 2 only, as published by the Free Software Foundation.
|
|
* However, the following notice accompanied the original version of this
|
|
* file:
|
|
*
|
|
* Written by Doug Lea with assistance from members of JCP JSR-166
|
|
* Expert Group and released to the public domain, as explained at
|
|
* http://creativecommons.org/publicdomain/zero/1.0/
|
|
*/
|
|
|
|
package java.util.concurrent;
|
|
|
|
import java.lang.ref.WeakReference;
|
|
import java.util.AbstractQueue;
|
|
import java.util.Arrays;
|
|
import java.util.Collection;
|
|
import java.util.Iterator;
|
|
import java.util.NoSuchElementException;
|
|
import java.util.Objects;
|
|
import java.util.Spliterator;
|
|
import java.util.Spliterators;
|
|
import java.util.concurrent.locks.Condition;
|
|
import java.util.concurrent.locks.ReentrantLock;
|
|
import java.util.function.Consumer;
|
|
import java.util.function.Predicate;
|
|
|
|
/**
|
|
* A bounded {@linkplain BlockingQueue blocking queue} backed by an
|
|
* array. This queue orders elements FIFO (first-in-first-out). The
|
|
* <em>head</em> of the queue is that element that has been on the
|
|
* queue the longest time. The <em>tail</em> of the queue is that
|
|
* element that has been on the queue the shortest time. New elements
|
|
* are inserted at the tail of the queue, and the queue retrieval
|
|
* operations obtain elements at the head of the queue.
|
|
*
|
|
* <p>This is a classic "bounded buffer", in which a
|
|
* fixed-sized array holds elements inserted by producers and
|
|
* extracted by consumers. Once created, the capacity cannot be
|
|
* changed. Attempts to {@code put} an element into a full queue
|
|
* will result in the operation blocking; attempts to {@code take} an
|
|
* element from an empty queue will similarly block.
|
|
*
|
|
* <p>This class supports an optional fairness policy for ordering
|
|
* waiting producer and consumer threads. By default, this ordering
|
|
* is not guaranteed. However, a queue constructed with fairness set
|
|
* to {@code true} grants threads access in FIFO order. Fairness
|
|
* generally decreases throughput but reduces variability and avoids
|
|
* starvation.
|
|
*
|
|
* <p>This class and its iterator implement all of the <em>optional</em>
|
|
* methods of the {@link Collection} and {@link Iterator} interfaces.
|
|
*
|
|
* <p>This class is a member of the
|
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
|
|
* Java Collections Framework</a>.
|
|
*
|
|
* @since 1.5
|
|
* @author Doug Lea
|
|
* @param <E> the type of elements held in this queue
|
|
*/
|
|
public class ArrayBlockingQueue<E> extends AbstractQueue<E>
|
|
implements BlockingQueue<E>, java.io.Serializable {
|
|
|
|
/*
|
|
* Much of the implementation mechanics, especially the unusual
|
|
* nested loops, are shared and co-maintained with ArrayDeque.
|
|
*/
|
|
|
|
/**
|
|
* Serialization ID. This class relies on default serialization
|
|
* even for the items array, which is default-serialized, even if
|
|
* it is empty. Otherwise it could not be declared final, which is
|
|
* necessary here.
|
|
*/
|
|
private static final long serialVersionUID = -817911632652898426L;
|
|
|
|
/** The queued items */
|
|
@SuppressWarnings("serial") // Conditionally serializable
|
|
final Object[] items;
|
|
|
|
/** items index for next take, poll, peek or remove */
|
|
int takeIndex;
|
|
|
|
/** items index for next put, offer, or add */
|
|
int putIndex;
|
|
|
|
/** Number of elements in the queue */
|
|
int count;
|
|
|
|
/*
|
|
* Concurrency control uses the classic two-condition algorithm
|
|
* found in any textbook.
|
|
*/
|
|
|
|
/** Main lock guarding all access */
|
|
final ReentrantLock lock;
|
|
|
|
/** Condition for waiting takes */
|
|
@SuppressWarnings("serial") // Classes implementing Condition may be serializable.
|
|
private final Condition notEmpty;
|
|
|
|
/** Condition for waiting puts */
|
|
@SuppressWarnings("serial") // Classes implementing Condition may be serializable.
|
|
private final Condition notFull;
|
|
|
|
/**
|
|
* Shared state for currently active iterators, or null if there
|
|
* are known not to be any. Allows queue operations to update
|
|
* iterator state.
|
|
*/
|
|
transient Itrs itrs;
|
|
|
|
// Internal helper methods
|
|
|
|
/**
|
|
* Increments i, mod modulus.
|
|
* Precondition and postcondition: 0 <= i < modulus.
|
|
*/
|
|
static final int inc(int i, int modulus) {
|
|
if (++i >= modulus) i = 0;
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Decrements i, mod modulus.
|
|
* Precondition and postcondition: 0 <= i < modulus.
|
|
*/
|
|
static final int dec(int i, int modulus) {
|
|
if (--i < 0) i = modulus - 1;
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Returns item at index i.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
final E itemAt(int i) {
|
|
return (E) items[i];
|
|
}
|
|
|
|
/**
|
|
* Returns element at array index i.
|
|
* This is a slight abuse of generics, accepted by javac.
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
static <E> E itemAt(Object[] items, int i) {
|
|
return (E) items[i];
|
|
}
|
|
|
|
/**
|
|
* Inserts element at current put position, advances, and signals.
|
|
* Call only when holding lock.
|
|
*/
|
|
private void enqueue(E e) {
|
|
// assert lock.isHeldByCurrentThread();
|
|
// assert lock.getHoldCount() == 1;
|
|
// assert items[putIndex] == null;
|
|
final Object[] items = this.items;
|
|
items[putIndex] = e;
|
|
if (++putIndex == items.length) putIndex = 0;
|
|
count++;
|
|
notEmpty.signal();
|
|
}
|
|
|
|
/**
|
|
* Extracts element at current take position, advances, and signals.
|
|
* Call only when holding lock.
|
|
*/
|
|
private E dequeue() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
// assert lock.getHoldCount() == 1;
|
|
// assert items[takeIndex] != null;
|
|
final Object[] items = this.items;
|
|
@SuppressWarnings("unchecked")
|
|
E e = (E) items[takeIndex];
|
|
items[takeIndex] = null;
|
|
if (++takeIndex == items.length) takeIndex = 0;
|
|
count--;
|
|
if (itrs != null)
|
|
itrs.elementDequeued();
|
|
notFull.signal();
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* Deletes item at array index removeIndex.
|
|
* Utility for remove(Object) and iterator.remove.
|
|
* Call only when holding lock.
|
|
*/
|
|
void removeAt(final int removeIndex) {
|
|
// assert lock.isHeldByCurrentThread();
|
|
// assert lock.getHoldCount() == 1;
|
|
// assert items[removeIndex] != null;
|
|
// assert removeIndex >= 0 && removeIndex < items.length;
|
|
final Object[] items = this.items;
|
|
if (removeIndex == takeIndex) {
|
|
// removing front item; just advance
|
|
items[takeIndex] = null;
|
|
if (++takeIndex == items.length) takeIndex = 0;
|
|
count--;
|
|
if (itrs != null)
|
|
itrs.elementDequeued();
|
|
} else {
|
|
// an "interior" remove
|
|
|
|
// slide over all others up through putIndex.
|
|
for (int i = removeIndex, putIndex = this.putIndex;;) {
|
|
int pred = i;
|
|
if (++i == items.length) i = 0;
|
|
if (i == putIndex) {
|
|
items[pred] = null;
|
|
this.putIndex = pred;
|
|
break;
|
|
}
|
|
items[pred] = items[i];
|
|
}
|
|
count--;
|
|
if (itrs != null)
|
|
itrs.removedAt(removeIndex);
|
|
}
|
|
notFull.signal();
|
|
}
|
|
|
|
/**
|
|
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
|
|
* capacity and default access policy.
|
|
*
|
|
* @param capacity the capacity of this queue
|
|
* @throws IllegalArgumentException if {@code capacity < 1}
|
|
*/
|
|
public ArrayBlockingQueue(int capacity) {
|
|
this(capacity, false);
|
|
}
|
|
|
|
/**
|
|
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
|
|
* capacity and the specified access policy.
|
|
*
|
|
* @param capacity the capacity of this queue
|
|
* @param fair if {@code true} then queue accesses for threads blocked
|
|
* on insertion or removal, are processed in FIFO order;
|
|
* if {@code false} the access order is unspecified.
|
|
* @throws IllegalArgumentException if {@code capacity < 1}
|
|
*/
|
|
public ArrayBlockingQueue(int capacity, boolean fair) {
|
|
if (capacity <= 0)
|
|
throw new IllegalArgumentException();
|
|
this.items = new Object[capacity];
|
|
lock = new ReentrantLock(fair);
|
|
notEmpty = lock.newCondition();
|
|
notFull = lock.newCondition();
|
|
}
|
|
|
|
/**
|
|
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
|
|
* capacity, the specified access policy and initially containing the
|
|
* elements of the given collection,
|
|
* added in traversal order of the collection's iterator.
|
|
*
|
|
* @param capacity the capacity of this queue
|
|
* @param fair if {@code true} then queue accesses for threads blocked
|
|
* on insertion or removal, are processed in FIFO order;
|
|
* if {@code false} the access order is unspecified.
|
|
* @param c the collection of elements to initially contain
|
|
* @throws IllegalArgumentException if {@code capacity} is less than
|
|
* {@code c.size()}, or less than 1.
|
|
* @throws NullPointerException if the specified collection or any
|
|
* of its elements are null
|
|
*/
|
|
public ArrayBlockingQueue(int capacity, boolean fair,
|
|
Collection<? extends E> c) {
|
|
this(capacity, fair);
|
|
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock(); // Lock only for visibility, not mutual exclusion
|
|
try {
|
|
final Object[] items = this.items;
|
|
int i = 0;
|
|
try {
|
|
for (E e : c)
|
|
items[i++] = Objects.requireNonNull(e);
|
|
} catch (ArrayIndexOutOfBoundsException ex) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
count = i;
|
|
putIndex = (i == capacity) ? 0 : i;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified element at the tail of this queue if it is
|
|
* possible to do so immediately without exceeding the queue's capacity,
|
|
* returning {@code true} upon success and throwing an
|
|
* {@code IllegalStateException} if this queue is full.
|
|
*
|
|
* @param e the element to add
|
|
* @return {@code true} (as specified by {@link Collection#add})
|
|
* @throws IllegalStateException if this queue is full
|
|
* @throws NullPointerException if the specified element is null
|
|
*/
|
|
public boolean add(E e) {
|
|
return super.add(e);
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified element at the tail of this queue if it is
|
|
* possible to do so immediately without exceeding the queue's capacity,
|
|
* returning {@code true} upon success and {@code false} if this queue
|
|
* is full. This method is generally preferable to method {@link #add},
|
|
* which can fail to insert an element only by throwing an exception.
|
|
*
|
|
* @throws NullPointerException if the specified element is null
|
|
*/
|
|
public boolean offer(E e) {
|
|
Objects.requireNonNull(e);
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (count == items.length)
|
|
return false;
|
|
else {
|
|
enqueue(e);
|
|
return true;
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified element at the tail of this queue, waiting
|
|
* for space to become available if the queue is full.
|
|
*
|
|
* @throws InterruptedException {@inheritDoc}
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
public void put(E e) throws InterruptedException {
|
|
Objects.requireNonNull(e);
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lockInterruptibly();
|
|
try {
|
|
while (count == items.length)
|
|
notFull.await();
|
|
enqueue(e);
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified element at the tail of this queue, waiting
|
|
* up to the specified wait time for space to become available if
|
|
* the queue is full.
|
|
*
|
|
* @throws InterruptedException {@inheritDoc}
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
public boolean offer(E e, long timeout, TimeUnit unit)
|
|
throws InterruptedException {
|
|
|
|
Objects.requireNonNull(e);
|
|
long nanos = unit.toNanos(timeout);
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lockInterruptibly();
|
|
try {
|
|
while (count == items.length) {
|
|
if (nanos <= 0L)
|
|
return false;
|
|
nanos = notFull.awaitNanos(nanos);
|
|
}
|
|
enqueue(e);
|
|
return true;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public E poll() {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
return (count == 0) ? null : dequeue();
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public E take() throws InterruptedException {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lockInterruptibly();
|
|
try {
|
|
while (count == 0)
|
|
notEmpty.await();
|
|
return dequeue();
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
|
|
long nanos = unit.toNanos(timeout);
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lockInterruptibly();
|
|
try {
|
|
while (count == 0) {
|
|
if (nanos <= 0L)
|
|
return null;
|
|
nanos = notEmpty.awaitNanos(nanos);
|
|
}
|
|
return dequeue();
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public E peek() {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
return itemAt(takeIndex); // null when queue is empty
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
// this doc comment is overridden to remove the reference to collections
|
|
// greater in size than Integer.MAX_VALUE
|
|
/**
|
|
* Returns the number of elements in this queue.
|
|
*
|
|
* @return the number of elements in this queue
|
|
*/
|
|
public int size() {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
return count;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
// this doc comment is a modified copy of the inherited doc comment,
|
|
// without the reference to unlimited queues.
|
|
/**
|
|
* Returns the number of additional elements that this queue can ideally
|
|
* (in the absence of memory or resource constraints) accept without
|
|
* blocking. This is always equal to the initial capacity of this queue
|
|
* less the current {@code size} of this queue.
|
|
*
|
|
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
|
|
* an element will succeed by inspecting {@code remainingCapacity}
|
|
* because it may be the case that another thread is about to
|
|
* insert or remove an element.
|
|
*/
|
|
public int remainingCapacity() {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
return items.length - count;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Removes a single instance of the specified element from this queue,
|
|
* if it is present. More formally, removes an element {@code e} such
|
|
* that {@code o.equals(e)}, if this queue contains one or more such
|
|
* elements.
|
|
* Returns {@code true} if this queue contained the specified element
|
|
* (or equivalently, if this queue changed as a result of the call).
|
|
*
|
|
* <p>Removal of interior elements in circular array based queues
|
|
* is an intrinsically slow and disruptive operation, so should
|
|
* be undertaken only in exceptional circumstances, ideally
|
|
* only when the queue is known not to be accessible by other
|
|
* threads.
|
|
*
|
|
* @param o element to be removed from this queue, if present
|
|
* @return {@code true} if this queue changed as a result of the call
|
|
*/
|
|
public boolean remove(Object o) {
|
|
if (o == null) return false;
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (count > 0) {
|
|
final Object[] items = this.items;
|
|
for (int i = takeIndex, end = putIndex,
|
|
to = (i < end) ? end : items.length;
|
|
; i = 0, to = end) {
|
|
for (; i < to; i++)
|
|
if (o.equals(items[i])) {
|
|
removeAt(i);
|
|
return true;
|
|
}
|
|
if (to == end) break;
|
|
}
|
|
}
|
|
return false;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this queue contains the specified element.
|
|
* More formally, returns {@code true} if and only if this queue contains
|
|
* at least one element {@code e} such that {@code o.equals(e)}.
|
|
*
|
|
* @param o object to be checked for containment in this queue
|
|
* @return {@code true} if this queue contains the specified element
|
|
*/
|
|
public boolean contains(Object o) {
|
|
if (o == null) return false;
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (count > 0) {
|
|
final Object[] items = this.items;
|
|
for (int i = takeIndex, end = putIndex,
|
|
to = (i < end) ? end : items.length;
|
|
; i = 0, to = end) {
|
|
for (; i < to; i++)
|
|
if (o.equals(items[i]))
|
|
return true;
|
|
if (to == end) break;
|
|
}
|
|
}
|
|
return false;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an array containing all of the elements in this queue, in
|
|
* proper sequence.
|
|
*
|
|
* <p>The returned array will be "safe" in that no references to it are
|
|
* maintained by this queue. (In other words, this method must allocate
|
|
* a new array). The caller is thus free to modify the returned array.
|
|
*
|
|
* <p>This method acts as bridge between array-based and collection-based
|
|
* APIs.
|
|
*
|
|
* @return an array containing all of the elements in this queue
|
|
*/
|
|
public Object[] toArray() {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
final Object[] items = this.items;
|
|
final int end = takeIndex + count;
|
|
final Object[] a = Arrays.copyOfRange(items, takeIndex, end);
|
|
if (end != putIndex)
|
|
System.arraycopy(items, 0, a, items.length - takeIndex, putIndex);
|
|
return a;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an array containing all of the elements in this queue, in
|
|
* proper sequence; the runtime type of the returned array is that of
|
|
* the specified array. If the queue fits in the specified array, it
|
|
* is returned therein. Otherwise, a new array is allocated with the
|
|
* runtime type of the specified array and the size of this queue.
|
|
*
|
|
* <p>If this queue fits in the specified array with room to spare
|
|
* (i.e., the array has more elements than this queue), the element in
|
|
* the array immediately following the end of the queue is set to
|
|
* {@code null}.
|
|
*
|
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between
|
|
* array-based and collection-based APIs. Further, this method allows
|
|
* precise control over the runtime type of the output array, and may,
|
|
* under certain circumstances, be used to save allocation costs.
|
|
*
|
|
* <p>Suppose {@code x} is a queue known to contain only strings.
|
|
* The following code can be used to dump the queue into a newly
|
|
* allocated array of {@code String}:
|
|
*
|
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
|
|
*
|
|
* Note that {@code toArray(new Object[0])} is identical in function to
|
|
* {@code toArray()}.
|
|
*
|
|
* @param a the array into which the elements of the queue are to
|
|
* be stored, if it is big enough; otherwise, a new array of the
|
|
* same runtime type is allocated for this purpose
|
|
* @return an array containing all of the elements in this queue
|
|
* @throws ArrayStoreException if the runtime type of the specified array
|
|
* is not a supertype of the runtime type of every element in
|
|
* this queue
|
|
* @throws NullPointerException if the specified array is null
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
final Object[] items = this.items;
|
|
final int count = this.count;
|
|
final int firstLeg = Math.min(items.length - takeIndex, count);
|
|
if (a.length < count) {
|
|
a = (T[]) Arrays.copyOfRange(items, takeIndex, takeIndex + count,
|
|
a.getClass());
|
|
} else {
|
|
System.arraycopy(items, takeIndex, a, 0, firstLeg);
|
|
if (a.length > count)
|
|
a[count] = null;
|
|
}
|
|
if (firstLeg < count)
|
|
System.arraycopy(items, 0, a, firstLeg, putIndex);
|
|
return a;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public String toString() {
|
|
return Helpers.collectionToString(this);
|
|
}
|
|
|
|
/**
|
|
* Atomically removes all of the elements from this queue.
|
|
* The queue will be empty after this call returns.
|
|
*/
|
|
public void clear() {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
int k;
|
|
if ((k = count) > 0) {
|
|
circularClear(items, takeIndex, putIndex);
|
|
takeIndex = putIndex;
|
|
count = 0;
|
|
if (itrs != null)
|
|
itrs.queueIsEmpty();
|
|
for (; k > 0 && lock.hasWaiters(notFull); k--)
|
|
notFull.signal();
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Nulls out slots starting at array index i, upto index end.
|
|
* Condition i == end means "full" - the entire array is cleared.
|
|
*/
|
|
private static void circularClear(Object[] items, int i, int end) {
|
|
// assert 0 <= i && i < items.length;
|
|
// assert 0 <= end && end < items.length;
|
|
for (int to = (i < end) ? end : items.length;
|
|
; i = 0, to = end) {
|
|
for (; i < to; i++) items[i] = null;
|
|
if (to == end) break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @throws UnsupportedOperationException {@inheritDoc}
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException {@inheritDoc}
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public int drainTo(Collection<? super E> c) {
|
|
return drainTo(c, Integer.MAX_VALUE);
|
|
}
|
|
|
|
/**
|
|
* @throws UnsupportedOperationException {@inheritDoc}
|
|
* @throws ClassCastException {@inheritDoc}
|
|
* @throws NullPointerException {@inheritDoc}
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public int drainTo(Collection<? super E> c, int maxElements) {
|
|
Objects.requireNonNull(c);
|
|
if (c == this)
|
|
throw new IllegalArgumentException();
|
|
if (maxElements <= 0)
|
|
return 0;
|
|
final Object[] items = this.items;
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
int n = Math.min(maxElements, count);
|
|
int take = takeIndex;
|
|
int i = 0;
|
|
try {
|
|
while (i < n) {
|
|
@SuppressWarnings("unchecked")
|
|
E e = (E) items[take];
|
|
c.add(e);
|
|
items[take] = null;
|
|
if (++take == items.length) take = 0;
|
|
i++;
|
|
}
|
|
return n;
|
|
} finally {
|
|
// Restore invariants even if c.add() threw
|
|
if (i > 0) {
|
|
count -= i;
|
|
takeIndex = take;
|
|
if (itrs != null) {
|
|
if (count == 0)
|
|
itrs.queueIsEmpty();
|
|
else if (i > take)
|
|
itrs.takeIndexWrapped();
|
|
}
|
|
for (; i > 0 && lock.hasWaiters(notFull); i--)
|
|
notFull.signal();
|
|
}
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an iterator over the elements in this queue in proper sequence.
|
|
* The elements will be returned in order from first (head) to last (tail).
|
|
*
|
|
* <p>The returned iterator is
|
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
|
*
|
|
* @return an iterator over the elements in this queue in proper sequence
|
|
*/
|
|
public Iterator<E> iterator() {
|
|
return new Itr();
|
|
}
|
|
|
|
/**
|
|
* Shared data between iterators and their queue, allowing queue
|
|
* modifications to update iterators when elements are removed.
|
|
*
|
|
* This adds a lot of complexity for the sake of correctly
|
|
* handling some uncommon operations, but the combination of
|
|
* circular-arrays and supporting interior removes (i.e., those
|
|
* not at head) would cause iterators to sometimes lose their
|
|
* places and/or (re)report elements they shouldn't. To avoid
|
|
* this, when a queue has one or more iterators, it keeps iterator
|
|
* state consistent by:
|
|
*
|
|
* (1) keeping track of the number of "cycles", that is, the
|
|
* number of times takeIndex has wrapped around to 0.
|
|
* (2) notifying all iterators via the callback removedAt whenever
|
|
* an interior element is removed (and thus other elements may
|
|
* be shifted).
|
|
*
|
|
* These suffice to eliminate iterator inconsistencies, but
|
|
* unfortunately add the secondary responsibility of maintaining
|
|
* the list of iterators. We track all active iterators in a
|
|
* simple linked list (accessed only when the queue's lock is
|
|
* held) of weak references to Itr. The list is cleaned up using
|
|
* 3 different mechanisms:
|
|
*
|
|
* (1) Whenever a new iterator is created, do some O(1) checking for
|
|
* stale list elements.
|
|
*
|
|
* (2) Whenever takeIndex wraps around to 0, check for iterators
|
|
* that have been unused for more than one wrap-around cycle.
|
|
*
|
|
* (3) Whenever the queue becomes empty, all iterators are notified
|
|
* and this entire data structure is discarded.
|
|
*
|
|
* So in addition to the removedAt callback that is necessary for
|
|
* correctness, iterators have the shutdown and takeIndexWrapped
|
|
* callbacks that help remove stale iterators from the list.
|
|
*
|
|
* Whenever a list element is examined, it is expunged if either
|
|
* the GC has determined that the iterator is discarded, or if the
|
|
* iterator reports that it is "detached" (does not need any
|
|
* further state updates). Overhead is maximal when takeIndex
|
|
* never advances, iterators are discarded before they are
|
|
* exhausted, and all removals are interior removes, in which case
|
|
* all stale iterators are discovered by the GC. But even in this
|
|
* case we don't increase the amortized complexity.
|
|
*
|
|
* Care must be taken to keep list sweeping methods from
|
|
* reentrantly invoking another such method, causing subtle
|
|
* corruption bugs.
|
|
*/
|
|
class Itrs {
|
|
|
|
/**
|
|
* Node in a linked list of weak iterator references.
|
|
*/
|
|
private class Node extends WeakReference<Itr> {
|
|
Node next;
|
|
|
|
Node(Itr iterator, Node next) {
|
|
super(iterator);
|
|
this.next = next;
|
|
}
|
|
}
|
|
|
|
/** Incremented whenever takeIndex wraps around to 0 */
|
|
int cycles;
|
|
|
|
/** Linked list of weak iterator references */
|
|
private Node head;
|
|
|
|
/** Used to expunge stale iterators */
|
|
private Node sweeper;
|
|
|
|
private static final int SHORT_SWEEP_PROBES = 4;
|
|
private static final int LONG_SWEEP_PROBES = 16;
|
|
|
|
Itrs(Itr initial) {
|
|
register(initial);
|
|
}
|
|
|
|
/**
|
|
* Sweeps itrs, looking for and expunging stale iterators.
|
|
* If at least one was found, tries harder to find more.
|
|
* Called only from iterating thread.
|
|
*
|
|
* @param tryHarder whether to start in try-harder mode, because
|
|
* there is known to be at least one iterator to collect
|
|
*/
|
|
void doSomeSweeping(boolean tryHarder) {
|
|
// assert lock.isHeldByCurrentThread();
|
|
// assert head != null;
|
|
int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
|
|
Node o, p;
|
|
final Node sweeper = this.sweeper;
|
|
boolean passedGo; // to limit search to one full sweep
|
|
|
|
if (sweeper == null) {
|
|
o = null;
|
|
p = head;
|
|
passedGo = true;
|
|
} else {
|
|
o = sweeper;
|
|
p = o.next;
|
|
passedGo = false;
|
|
}
|
|
|
|
for (; probes > 0; probes--) {
|
|
if (p == null) {
|
|
if (passedGo)
|
|
break;
|
|
o = null;
|
|
p = head;
|
|
passedGo = true;
|
|
}
|
|
final Itr it = p.get();
|
|
final Node next = p.next;
|
|
if (it == null || it.isDetached()) {
|
|
// found a discarded/exhausted iterator
|
|
probes = LONG_SWEEP_PROBES; // "try harder"
|
|
// unlink p
|
|
p.clear();
|
|
p.next = null;
|
|
if (o == null) {
|
|
head = next;
|
|
if (next == null) {
|
|
// We've run out of iterators to track; retire
|
|
itrs = null;
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
o.next = next;
|
|
} else {
|
|
o = p;
|
|
}
|
|
p = next;
|
|
}
|
|
|
|
this.sweeper = (p == null) ? null : o;
|
|
}
|
|
|
|
/**
|
|
* Adds a new iterator to the linked list of tracked iterators.
|
|
*/
|
|
void register(Itr itr) {
|
|
// assert lock.isHeldByCurrentThread();
|
|
head = new Node(itr, head);
|
|
}
|
|
|
|
/**
|
|
* Called whenever takeIndex wraps around to 0.
|
|
*
|
|
* Notifies all iterators, and expunges any that are now stale.
|
|
*/
|
|
void takeIndexWrapped() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
cycles++;
|
|
for (Node o = null, p = head; p != null;) {
|
|
final Itr it = p.get();
|
|
final Node next = p.next;
|
|
if (it == null || it.takeIndexWrapped()) {
|
|
// unlink p
|
|
// assert it == null || it.isDetached();
|
|
p.clear();
|
|
p.next = null;
|
|
if (o == null)
|
|
head = next;
|
|
else
|
|
o.next = next;
|
|
} else {
|
|
o = p;
|
|
}
|
|
p = next;
|
|
}
|
|
if (head == null) // no more iterators to track
|
|
itrs = null;
|
|
}
|
|
|
|
/**
|
|
* Called whenever an interior remove (not at takeIndex) occurred.
|
|
*
|
|
* Notifies all iterators, and expunges any that are now stale.
|
|
*/
|
|
void removedAt(int removedIndex) {
|
|
for (Node o = null, p = head; p != null;) {
|
|
final Itr it = p.get();
|
|
final Node next = p.next;
|
|
if (it == null || it.removedAt(removedIndex)) {
|
|
// unlink p
|
|
// assert it == null || it.isDetached();
|
|
p.clear();
|
|
p.next = null;
|
|
if (o == null)
|
|
head = next;
|
|
else
|
|
o.next = next;
|
|
} else {
|
|
o = p;
|
|
}
|
|
p = next;
|
|
}
|
|
if (head == null) // no more iterators to track
|
|
itrs = null;
|
|
}
|
|
|
|
/**
|
|
* Called whenever the queue becomes empty.
|
|
*
|
|
* Notifies all active iterators that the queue is empty,
|
|
* clears all weak refs, and unlinks the itrs datastructure.
|
|
*/
|
|
void queueIsEmpty() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
for (Node p = head; p != null; p = p.next) {
|
|
Itr it = p.get();
|
|
if (it != null) {
|
|
p.clear();
|
|
it.shutdown();
|
|
}
|
|
}
|
|
head = null;
|
|
itrs = null;
|
|
}
|
|
|
|
/**
|
|
* Called whenever an element has been dequeued (at takeIndex).
|
|
*/
|
|
void elementDequeued() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
if (count == 0)
|
|
queueIsEmpty();
|
|
else if (takeIndex == 0)
|
|
takeIndexWrapped();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterator for ArrayBlockingQueue.
|
|
*
|
|
* To maintain weak consistency with respect to puts and takes, we
|
|
* read ahead one slot, so as to not report hasNext true but then
|
|
* not have an element to return.
|
|
*
|
|
* We switch into "detached" mode (allowing prompt unlinking from
|
|
* itrs without help from the GC) when all indices are negative, or
|
|
* when hasNext returns false for the first time. This allows the
|
|
* iterator to track concurrent updates completely accurately,
|
|
* except for the corner case of the user calling Iterator.remove()
|
|
* after hasNext() returned false. Even in this case, we ensure
|
|
* that we don't remove the wrong element by keeping track of the
|
|
* expected element to remove, in lastItem. Yes, we may fail to
|
|
* remove lastItem from the queue if it moved due to an interleaved
|
|
* interior remove while in detached mode.
|
|
*
|
|
* Method forEachRemaining, added in Java 8, is treated similarly
|
|
* to hasNext returning false, in that we switch to detached mode,
|
|
* but we regard it as an even stronger request to "close" this
|
|
* iteration, and don't bother supporting subsequent remove().
|
|
*/
|
|
private class Itr implements Iterator<E> {
|
|
/** Index to look for new nextItem; NONE at end */
|
|
private int cursor;
|
|
|
|
/** Element to be returned by next call to next(); null if none */
|
|
private E nextItem;
|
|
|
|
/** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
|
|
private int nextIndex;
|
|
|
|
/** Last element returned; null if none or not detached. */
|
|
private E lastItem;
|
|
|
|
/** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
|
|
private int lastRet;
|
|
|
|
/** Previous value of takeIndex, or DETACHED when detached */
|
|
private int prevTakeIndex;
|
|
|
|
/** Previous value of iters.cycles */
|
|
private int prevCycles;
|
|
|
|
/** Special index value indicating "not available" or "undefined" */
|
|
private static final int NONE = -1;
|
|
|
|
/**
|
|
* Special index value indicating "removed elsewhere", that is,
|
|
* removed by some operation other than a call to this.remove().
|
|
*/
|
|
private static final int REMOVED = -2;
|
|
|
|
/** Special value for prevTakeIndex indicating "detached mode" */
|
|
private static final int DETACHED = -3;
|
|
|
|
Itr() {
|
|
lastRet = NONE;
|
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (count == 0) {
|
|
// assert itrs == null;
|
|
cursor = NONE;
|
|
nextIndex = NONE;
|
|
prevTakeIndex = DETACHED;
|
|
} else {
|
|
final int takeIndex = ArrayBlockingQueue.this.takeIndex;
|
|
prevTakeIndex = takeIndex;
|
|
nextItem = itemAt(nextIndex = takeIndex);
|
|
cursor = incCursor(takeIndex);
|
|
if (itrs == null) {
|
|
itrs = new Itrs(this);
|
|
} else {
|
|
itrs.register(this); // in this order
|
|
itrs.doSomeSweeping(false);
|
|
}
|
|
prevCycles = itrs.cycles;
|
|
// assert takeIndex >= 0;
|
|
// assert prevTakeIndex == takeIndex;
|
|
// assert nextIndex >= 0;
|
|
// assert nextItem != null;
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
boolean isDetached() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
return prevTakeIndex < 0;
|
|
}
|
|
|
|
private int incCursor(int index) {
|
|
// assert lock.isHeldByCurrentThread();
|
|
if (++index == items.length) index = 0;
|
|
if (index == putIndex) index = NONE;
|
|
return index;
|
|
}
|
|
|
|
/**
|
|
* Returns true if index is invalidated by the given number of
|
|
* dequeues, starting from prevTakeIndex.
|
|
*/
|
|
private boolean invalidated(int index, int prevTakeIndex,
|
|
long dequeues, int length) {
|
|
if (index < 0)
|
|
return false;
|
|
int distance = index - prevTakeIndex;
|
|
if (distance < 0)
|
|
distance += length;
|
|
return dequeues > distance;
|
|
}
|
|
|
|
/**
|
|
* Adjusts indices to incorporate all dequeues since the last
|
|
* operation on this iterator. Call only from iterating thread.
|
|
*/
|
|
private void incorporateDequeues() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
// assert itrs != null;
|
|
// assert !isDetached();
|
|
// assert count > 0;
|
|
|
|
final int cycles = itrs.cycles;
|
|
final int takeIndex = ArrayBlockingQueue.this.takeIndex;
|
|
final int prevCycles = this.prevCycles;
|
|
final int prevTakeIndex = this.prevTakeIndex;
|
|
|
|
if (cycles != prevCycles || takeIndex != prevTakeIndex) {
|
|
final int len = items.length;
|
|
// how far takeIndex has advanced since the previous
|
|
// operation of this iterator
|
|
long dequeues = (long) (cycles - prevCycles) * len
|
|
+ (takeIndex - prevTakeIndex);
|
|
|
|
// Check indices for invalidation
|
|
if (invalidated(lastRet, prevTakeIndex, dequeues, len))
|
|
lastRet = REMOVED;
|
|
if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
|
|
nextIndex = REMOVED;
|
|
if (invalidated(cursor, prevTakeIndex, dequeues, len))
|
|
cursor = takeIndex;
|
|
|
|
if (cursor < 0 && nextIndex < 0 && lastRet < 0)
|
|
detach();
|
|
else {
|
|
this.prevCycles = cycles;
|
|
this.prevTakeIndex = takeIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called when itrs should stop tracking this iterator, either
|
|
* because there are no more indices to update (cursor < 0 &&
|
|
* nextIndex < 0 && lastRet < 0) or as a special exception, when
|
|
* lastRet >= 0, because hasNext() is about to return false for the
|
|
* first time. Call only from iterating thread.
|
|
*/
|
|
private void detach() {
|
|
// Switch to detached mode
|
|
// assert lock.isHeldByCurrentThread();
|
|
// assert cursor == NONE;
|
|
// assert nextIndex < 0;
|
|
// assert lastRet < 0 || nextItem == null;
|
|
// assert lastRet < 0 ^ lastItem != null;
|
|
if (prevTakeIndex >= 0) {
|
|
// assert itrs != null;
|
|
prevTakeIndex = DETACHED;
|
|
// try to unlink from itrs (but not too hard)
|
|
itrs.doSomeSweeping(true);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For performance reasons, we would like not to acquire a lock in
|
|
* hasNext in the common case. To allow for this, we only access
|
|
* fields (i.e. nextItem) that are not modified by update operations
|
|
* triggered by queue modifications.
|
|
*/
|
|
public boolean hasNext() {
|
|
if (nextItem != null)
|
|
return true;
|
|
noNext();
|
|
return false;
|
|
}
|
|
|
|
private void noNext() {
|
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
|
|
lock.lock();
|
|
try {
|
|
// assert cursor == NONE;
|
|
// assert nextIndex == NONE;
|
|
if (!isDetached()) {
|
|
// assert lastRet >= 0;
|
|
incorporateDequeues(); // might update lastRet
|
|
if (lastRet >= 0) {
|
|
lastItem = itemAt(lastRet);
|
|
// assert lastItem != null;
|
|
detach();
|
|
}
|
|
}
|
|
// assert isDetached();
|
|
// assert lastRet < 0 ^ lastItem != null;
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public E next() {
|
|
final E e = nextItem;
|
|
if (e == null)
|
|
throw new NoSuchElementException();
|
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (!isDetached())
|
|
incorporateDequeues();
|
|
// assert nextIndex != NONE;
|
|
// assert lastItem == null;
|
|
lastRet = nextIndex;
|
|
final int cursor = this.cursor;
|
|
if (cursor >= 0) {
|
|
nextItem = itemAt(nextIndex = cursor);
|
|
// assert nextItem != null;
|
|
this.cursor = incCursor(cursor);
|
|
} else {
|
|
nextIndex = NONE;
|
|
nextItem = null;
|
|
if (lastRet == REMOVED) detach();
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
return e;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
|
|
lock.lock();
|
|
try {
|
|
final E e = nextItem;
|
|
if (e == null) return;
|
|
if (!isDetached())
|
|
incorporateDequeues();
|
|
action.accept(e);
|
|
if (isDetached() || cursor < 0) return;
|
|
final Object[] items = ArrayBlockingQueue.this.items;
|
|
for (int i = cursor, end = putIndex,
|
|
to = (i < end) ? end : items.length;
|
|
; i = 0, to = end) {
|
|
for (; i < to; i++)
|
|
action.accept(itemAt(items, i));
|
|
if (to == end) break;
|
|
}
|
|
} finally {
|
|
// Calling forEachRemaining is a strong hint that this
|
|
// iteration is surely over; supporting remove() after
|
|
// forEachRemaining() is more trouble than it's worth
|
|
cursor = nextIndex = lastRet = NONE;
|
|
nextItem = lastItem = null;
|
|
detach();
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
public void remove() {
|
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock;
|
|
lock.lock();
|
|
// assert lock.getHoldCount() == 1;
|
|
try {
|
|
if (!isDetached())
|
|
incorporateDequeues(); // might update lastRet or detach
|
|
final int lastRet = this.lastRet;
|
|
this.lastRet = NONE;
|
|
if (lastRet >= 0) {
|
|
if (!isDetached())
|
|
removeAt(lastRet);
|
|
else {
|
|
final E lastItem = this.lastItem;
|
|
// assert lastItem != null;
|
|
this.lastItem = null;
|
|
if (itemAt(lastRet) == lastItem)
|
|
removeAt(lastRet);
|
|
}
|
|
} else if (lastRet == NONE)
|
|
throw new IllegalStateException();
|
|
// else lastRet == REMOVED and the last returned element was
|
|
// previously asynchronously removed via an operation other
|
|
// than this.remove(), so nothing to do.
|
|
|
|
if (cursor < 0 && nextIndex < 0)
|
|
detach();
|
|
} finally {
|
|
lock.unlock();
|
|
// assert lastRet == NONE;
|
|
// assert lastItem == null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called to notify the iterator that the queue is empty, or that it
|
|
* has fallen hopelessly behind, so that it should abandon any
|
|
* further iteration, except possibly to return one more element
|
|
* from next(), as promised by returning true from hasNext().
|
|
*/
|
|
void shutdown() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
cursor = NONE;
|
|
if (nextIndex >= 0)
|
|
nextIndex = REMOVED;
|
|
if (lastRet >= 0) {
|
|
lastRet = REMOVED;
|
|
lastItem = null;
|
|
}
|
|
prevTakeIndex = DETACHED;
|
|
// Don't set nextItem to null because we must continue to be
|
|
// able to return it on next().
|
|
//
|
|
// Caller will unlink from itrs when convenient.
|
|
}
|
|
|
|
private int distance(int index, int prevTakeIndex, int length) {
|
|
int distance = index - prevTakeIndex;
|
|
if (distance < 0)
|
|
distance += length;
|
|
return distance;
|
|
}
|
|
|
|
/**
|
|
* Called whenever an interior remove (not at takeIndex) occurred.
|
|
*
|
|
* @return true if this iterator should be unlinked from itrs
|
|
*/
|
|
boolean removedAt(int removedIndex) {
|
|
// assert lock.isHeldByCurrentThread();
|
|
if (isDetached())
|
|
return true;
|
|
|
|
final int takeIndex = ArrayBlockingQueue.this.takeIndex;
|
|
final int prevTakeIndex = this.prevTakeIndex;
|
|
final int len = items.length;
|
|
// distance from prevTakeIndex to removedIndex
|
|
final int removedDistance =
|
|
len * (itrs.cycles - this.prevCycles
|
|
+ ((removedIndex < takeIndex) ? 1 : 0))
|
|
+ (removedIndex - prevTakeIndex);
|
|
// assert itrs.cycles - this.prevCycles >= 0;
|
|
// assert itrs.cycles - this.prevCycles <= 1;
|
|
// assert removedDistance > 0;
|
|
// assert removedIndex != takeIndex;
|
|
int cursor = this.cursor;
|
|
if (cursor >= 0) {
|
|
int x = distance(cursor, prevTakeIndex, len);
|
|
if (x == removedDistance) {
|
|
if (cursor == putIndex)
|
|
this.cursor = cursor = NONE;
|
|
}
|
|
else if (x > removedDistance) {
|
|
// assert cursor != prevTakeIndex;
|
|
this.cursor = cursor = dec(cursor, len);
|
|
}
|
|
}
|
|
int lastRet = this.lastRet;
|
|
if (lastRet >= 0) {
|
|
int x = distance(lastRet, prevTakeIndex, len);
|
|
if (x == removedDistance)
|
|
this.lastRet = lastRet = REMOVED;
|
|
else if (x > removedDistance)
|
|
this.lastRet = lastRet = dec(lastRet, len);
|
|
}
|
|
int nextIndex = this.nextIndex;
|
|
if (nextIndex >= 0) {
|
|
int x = distance(nextIndex, prevTakeIndex, len);
|
|
if (x == removedDistance)
|
|
this.nextIndex = nextIndex = REMOVED;
|
|
else if (x > removedDistance)
|
|
this.nextIndex = nextIndex = dec(nextIndex, len);
|
|
}
|
|
if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
|
|
this.prevTakeIndex = DETACHED;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Called whenever takeIndex wraps around to zero.
|
|
*
|
|
* @return true if this iterator should be unlinked from itrs
|
|
*/
|
|
boolean takeIndexWrapped() {
|
|
// assert lock.isHeldByCurrentThread();
|
|
if (isDetached())
|
|
return true;
|
|
if (itrs.cycles - prevCycles > 1) {
|
|
// All the elements that existed at the time of the last
|
|
// operation are gone, so abandon further iteration.
|
|
shutdown();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// /** Uncomment for debugging. */
|
|
// public String toString() {
|
|
// return ("cursor=" + cursor + " " +
|
|
// "nextIndex=" + nextIndex + " " +
|
|
// "lastRet=" + lastRet + " " +
|
|
// "nextItem=" + nextItem + " " +
|
|
// "lastItem=" + lastItem + " " +
|
|
// "prevCycles=" + prevCycles + " " +
|
|
// "prevTakeIndex=" + prevTakeIndex + " " +
|
|
// "size()=" + size() + " " +
|
|
// "remainingCapacity()=" + remainingCapacity());
|
|
// }
|
|
}
|
|
|
|
/**
|
|
* Returns a {@link Spliterator} over the elements in this queue.
|
|
*
|
|
* <p>The returned spliterator is
|
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
|
|
*
|
|
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
|
|
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
|
|
*
|
|
* @implNote
|
|
* The {@code Spliterator} implements {@code trySplit} to permit limited
|
|
* parallelism.
|
|
*
|
|
* @return a {@code Spliterator} over the elements in this queue
|
|
* @since 1.8
|
|
*/
|
|
public Spliterator<E> spliterator() {
|
|
return Spliterators.spliterator
|
|
(this, (Spliterator.ORDERED |
|
|
Spliterator.NONNULL |
|
|
Spliterator.CONCURRENT));
|
|
}
|
|
|
|
/**
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
public void forEach(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (count > 0) {
|
|
final Object[] items = this.items;
|
|
for (int i = takeIndex, end = putIndex,
|
|
to = (i < end) ? end : items.length;
|
|
; i = 0, to = end) {
|
|
for (; i < to; i++)
|
|
action.accept(itemAt(items, i));
|
|
if (to == end) break;
|
|
}
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
Objects.requireNonNull(filter);
|
|
return bulkRemove(filter);
|
|
}
|
|
|
|
/**
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
public boolean removeAll(Collection<?> c) {
|
|
Objects.requireNonNull(c);
|
|
return bulkRemove(e -> c.contains(e));
|
|
}
|
|
|
|
/**
|
|
* @throws NullPointerException {@inheritDoc}
|
|
*/
|
|
public boolean retainAll(Collection<?> c) {
|
|
Objects.requireNonNull(c);
|
|
return bulkRemove(e -> !c.contains(e));
|
|
}
|
|
|
|
/** Implementation of bulk remove methods. */
|
|
private boolean bulkRemove(Predicate<? super E> filter) {
|
|
final ReentrantLock lock = this.lock;
|
|
lock.lock();
|
|
try {
|
|
if (itrs == null) { // check for active iterators
|
|
if (count > 0) {
|
|
final Object[] items = this.items;
|
|
// Optimize for initial run of survivors
|
|
for (int i = takeIndex, end = putIndex,
|
|
to = (i < end) ? end : items.length;
|
|
; i = 0, to = end) {
|
|
for (; i < to; i++)
|
|
if (filter.test(itemAt(items, i)))
|
|
return bulkRemoveModified(filter, i);
|
|
if (to == end) break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
} finally {
|
|
lock.unlock();
|
|
}
|
|
// Active iterators are too hairy!
|
|
// Punting (for now) to the slow n^2 algorithm ...
|
|
return super.removeIf(filter);
|
|
}
|
|
|
|
// A tiny bit set implementation
|
|
|
|
private static long[] nBits(int n) {
|
|
return new long[((n - 1) >> 6) + 1];
|
|
}
|
|
private static void setBit(long[] bits, int i) {
|
|
bits[i >> 6] |= 1L << i;
|
|
}
|
|
private static boolean isClear(long[] bits, int i) {
|
|
return (bits[i >> 6] & (1L << i)) == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns circular distance from i to j, disambiguating i == j to
|
|
* items.length; never returns 0.
|
|
*/
|
|
private int distanceNonEmpty(int i, int j) {
|
|
if ((j -= i) <= 0) j += items.length;
|
|
return j;
|
|
}
|
|
|
|
/**
|
|
* Helper for bulkRemove, in case of at least one deletion.
|
|
* Tolerate predicates that reentrantly access the collection for
|
|
* read (but not write), so traverse once to find elements to
|
|
* delete, a second pass to physically expunge.
|
|
*
|
|
* @param beg valid index of first element to be deleted
|
|
*/
|
|
private boolean bulkRemoveModified(
|
|
Predicate<? super E> filter, final int beg) {
|
|
final Object[] es = items;
|
|
final int capacity = items.length;
|
|
final int end = putIndex;
|
|
final long[] deathRow = nBits(distanceNonEmpty(beg, putIndex));
|
|
deathRow[0] = 1L; // set bit 0
|
|
for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
|
|
; i = 0, to = end, k -= capacity) {
|
|
for (; i < to; i++)
|
|
if (filter.test(itemAt(es, i)))
|
|
setBit(deathRow, i - k);
|
|
if (to == end) break;
|
|
}
|
|
// a two-finger traversal, with hare i reading, tortoise w writing
|
|
int w = beg;
|
|
for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
|
|
; w = 0) { // w rejoins i on second leg
|
|
// In this loop, i and w are on the same leg, with i > w
|
|
for (; i < to; i++)
|
|
if (isClear(deathRow, i - k))
|
|
es[w++] = es[i];
|
|
if (to == end) break;
|
|
// In this loop, w is on the first leg, i on the second
|
|
for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
|
|
if (isClear(deathRow, i - k))
|
|
es[w++] = es[i];
|
|
if (i >= to) {
|
|
if (w == capacity) w = 0; // "corner" case
|
|
break;
|
|
}
|
|
}
|
|
count -= distanceNonEmpty(w, end);
|
|
circularClear(es, putIndex = w, end);
|
|
return true;
|
|
}
|
|
|
|
/** debugging */
|
|
void checkInvariants() {
|
|
// meta-assertions
|
|
// assert lock.isHeldByCurrentThread();
|
|
if (!invariantsSatisfied()) {
|
|
String detail = String.format(
|
|
"takeIndex=%d putIndex=%d count=%d capacity=%d items=%s",
|
|
takeIndex, putIndex, count, items.length,
|
|
Arrays.toString(items));
|
|
System.err.println(detail);
|
|
throw new AssertionError(detail);
|
|
}
|
|
}
|
|
|
|
private boolean invariantsSatisfied() {
|
|
// Unlike ArrayDeque, we have a count field but no spare slot.
|
|
// We prefer ArrayDeque's strategy (and the names of its fields!),
|
|
// but our field layout is baked into the serial form, and so is
|
|
// too annoying to change.
|
|
//
|
|
// putIndex == takeIndex must be disambiguated by checking count.
|
|
int capacity = items.length;
|
|
return capacity > 0
|
|
&& items.getClass() == Object[].class
|
|
&& (takeIndex | putIndex | count) >= 0
|
|
&& takeIndex < capacity
|
|
&& putIndex < capacity
|
|
&& count <= capacity
|
|
&& (putIndex - takeIndex - count) % capacity == 0
|
|
&& (count == 0 || items[takeIndex] != null)
|
|
&& (count == capacity || items[putIndex] == null)
|
|
&& (count == 0 || items[dec(putIndex, capacity)] != null);
|
|
}
|
|
|
|
/**
|
|
* Reconstitutes this queue from a stream (that is, deserializes it).
|
|
*
|
|
* @param s the stream
|
|
* @throws ClassNotFoundException if the class of a serialized object
|
|
* could not be found
|
|
* @throws java.io.InvalidObjectException if invariants are violated
|
|
* @throws java.io.IOException if an I/O error occurs
|
|
*/
|
|
private void readObject(java.io.ObjectInputStream s)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
|
|
// Read in items array and various fields
|
|
s.defaultReadObject();
|
|
|
|
if (!invariantsSatisfied())
|
|
throw new java.io.InvalidObjectException("invariants violated");
|
|
}
|
|
}
|