5802 lines
218 KiB
Java
5802 lines
218 KiB
Java
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.util.regex;
|
|
|
|
import android.compat.Compatibility;
|
|
import android.compat.annotation.ChangeId;
|
|
import android.compat.annotation.EnabledSince;
|
|
|
|
import com.android.icu.util.regex.PatternNative;
|
|
|
|
import dalvik.annotation.compat.VersionCodes;
|
|
import dalvik.system.VMRuntime;
|
|
import java.util.ArrayList;
|
|
import java.util.Iterator;
|
|
import java.util.NoSuchElementException;
|
|
import java.util.Spliterator;
|
|
import java.util.Spliterators;
|
|
import java.util.function.Predicate;
|
|
import java.util.stream.Stream;
|
|
import java.util.stream.StreamSupport;
|
|
import libcore.util.EmptyArray;
|
|
|
|
// Android-changed: Document that named capturing is only available from API 26.
|
|
// Android-changed: Android always uses unicode character classes.
|
|
// Android-changed: Remove reference to Character.codePointOf(String) until it's implemented.
|
|
// Android-changed: UNICODE_CHARACTER_CLASS causes IllegalArgumentException on Android.
|
|
// Android-changed: POSIX character classes are Unicode-aware.
|
|
// Android-changed: Throw PatternSyntaxException for non-existent back references.
|
|
// Android-changed: Remove "Compatibility Properties of Unicode Regular Expression" table.
|
|
// Android-changed: Remove supported \b{g} Unicode extended grapheme cluster boundary.
|
|
// Android-changed: Prefix "Is" is supported since Android 10. http://b/110364810
|
|
/**
|
|
* A compiled representation of a regular expression.
|
|
*
|
|
* <p> A regular expression, specified as a string, must first be compiled into
|
|
* an instance of this class. The resulting pattern can then be used to create
|
|
* a {@link Matcher} object that can match arbitrary {@linkplain
|
|
* java.lang.CharSequence character sequences} against the regular
|
|
* expression. All of the state involved in performing a match resides in the
|
|
* matcher, so many matchers can share the same pattern.
|
|
*
|
|
* <p> A typical invocation sequence is thus
|
|
*
|
|
* <blockquote><pre>
|
|
* Pattern p = Pattern.{@link #compile compile}("a*b");
|
|
* Matcher m = p.{@link #matcher matcher}("aaaaab");
|
|
* boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
|
|
*
|
|
* <p> A {@link #matches matches} method is defined by this class as a
|
|
* convenience for when a regular expression is used just once. This method
|
|
* compiles an expression and matches an input sequence against it in a single
|
|
* invocation. The statement
|
|
*
|
|
* <blockquote><pre>
|
|
* boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
|
|
*
|
|
* is equivalent to the three statements above, though for repeated matches it
|
|
* is less efficient since it does not allow the compiled pattern to be reused.
|
|
*
|
|
* <p> Instances of this class are immutable and are safe for use by multiple
|
|
* concurrent threads. Instances of the {@link Matcher} class are not safe for
|
|
* such use.
|
|
*
|
|
*
|
|
* <h2><a id="sum">Summary of regular-expression constructs</a></h2>
|
|
*
|
|
* <table class="borderless">
|
|
* <caption style="display:none">Regular expression constructs, and what they match</caption>
|
|
* <thead style="text-align:left">
|
|
* <tr>
|
|
* <th id="construct">Construct</th>
|
|
* <th id="matches">Matches</th>
|
|
* </tr>
|
|
* </thead>
|
|
* <tbody style="text-align:left">
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="characters">Characters</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="x"><i>x</i></th>
|
|
* <td headers="matches characters x">The character <i>x</i></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="backslash">{@code \\}</th>
|
|
* <td headers="matches characters backslash">The backslash character</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="octal_n">{@code \0}<i>n</i></th>
|
|
* <td headers="matches characters octal_n">The character with octal value {@code 0}<i>n</i>
|
|
* (0 {@code <=} <i>n</i> {@code <=} 7)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="octal_nn">{@code \0}<i>nn</i></th>
|
|
* <td headers="matches characters octal_nn">The character with octal value {@code 0}<i>nn</i>
|
|
* (0 {@code <=} <i>n</i> {@code <=} 7)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="octal_nnn">{@code \0}<i>mnn</i></th>
|
|
* <td headers="matches characters octal_nnn">The character with octal value {@code 0}<i>mnn</i>
|
|
* (0 {@code <=} <i>m</i> {@code <=} 3,
|
|
* 0 {@code <=} <i>n</i> {@code <=} 7)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="hex_hh">{@code \x}<i>hh</i></th>
|
|
* <td headers="matches characters hex_hh">The character with hexadecimal value {@code 0x}<i>hh</i></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="hex_hhhh"><code>\u</code><i>hhhh</i></th>
|
|
* <td headers="matches characters hex_hhhh">The character with hexadecimal value {@code 0x}<i>hhhh</i></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="hex_h_h"><code>\x</code><i>{h...h}</i></th>
|
|
* <td headers="matches characters hex_h_h">The character with hexadecimal value {@code 0x}<i>h...h</i>
|
|
* ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
|
|
* <= {@code 0x}<i>h...h</i> <=
|
|
* {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight: normal" id="unicode_name"><code>\N{</code><i>name</i><code>}</code></th>
|
|
* <td headers="matches characters unicode_name">The character with Unicode character name <i>'name'</i></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="tab">{@code \t}</th>
|
|
* <td headers="matches characters tab">The tab character (<code>'\u0009'</code>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="newline">{@code \n}</th>
|
|
* <td headers="matches characters newline">The newline (line feed) character (<code>'\u000A'</code>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="return">{@code \r}</th>
|
|
* <td headers="matches characters return">The carriage-return character (<code>'\u000D'</code>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="form_feed">{@code \f}</th>
|
|
* <td headers="matches characters form_feed">The form-feed character (<code>'\u000C'</code>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="bell">{@code \a}</th>
|
|
* <td headers="matches characters bell">The alert (bell) character (<code>'\u0007'</code>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="escape">{@code \e}</th>
|
|
* <td headers="matches characters escape">The escape character (<code>'\u001B'</code>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="ctrl_x">{@code \c}<i>x</i></th>
|
|
* <td headers="matches characters ctrl_x">The control character corresponding to <i>x</i></td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="classes">Character classes</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="simple">{@code [abc]}</th>
|
|
* <td headers="matches classes simple">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="negation">{@code [^abc]}</th>
|
|
* <td headers="matches classes negation">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="range">{@code [a-zA-Z]}</th>
|
|
* <td headers="matches classes range">{@code a} through {@code z}
|
|
* or {@code A} through {@code Z}, inclusive (range)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="union">{@code [a-d[m-p]]}</th>
|
|
* <td headers="matches classes union">{@code a} through {@code d},
|
|
* or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="intersection">{@code [a-z&&[def]]}</th>
|
|
* <td headers="matches classes intersection">{@code d}, {@code e}, or {@code f} (intersection)</tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="subtraction1">{@code [a-z&&[^bc]]}</th>
|
|
* <td headers="matches classes subtraction1">{@code a} through {@code z},
|
|
* except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="subtraction2">{@code [a-z&&[^m-p]]}</th>
|
|
* <td headers="matches classes subtraction2">{@code a} through {@code z},
|
|
* and not {@code m} through {@code p}: {@code [a-lq-z]}(subtraction)</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="predef">Predefined character classes</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="any">{@code .}</th>
|
|
* <td headers="matches predef any">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="digit">{@code \d}</th>
|
|
* <td headers="matches predef digit">A digit: {@code \p{IsDigit}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_digit">{@code \D}</th>
|
|
* <td headers="matches predef non_digit">A non-digit: {@code [^\d]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="horiz_white">{@code \h}</th>
|
|
* <td headers="matches predef horiz_white">A horizontal whitespace character:
|
|
* <code>[ \t\xA0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]</code></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_horiz_white">{@code \H}</th>
|
|
* <td headers="matches predef non_horiz_white">A non-horizontal whitespace character: {@code [^\h]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="white">{@code \s}</th>
|
|
* <td headers="matches predef white">A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_white">{@code \S}</th>
|
|
* <td headers="matches predef non_white">A non-whitespace character: {@code [^\s]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="vert_white">{@code \v}</th>
|
|
* <td headers="matches predef vert_white">A vertical whitespace character: <code>[\n\x0B\f\r\x85\u2028\u2029]</code>
|
|
* </td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_vert_white">{@code \V}</th>
|
|
* <td headers="matches predef non_vert_white">A non-vertical whitespace character: {@code [^\v]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="word">{@code \w}</th>
|
|
* <td headers="matches predef word">A word character: {@code [\p{alpha}\p{gc=Mark}\p{digit}\p{gc=Connector_Punctuation}\p{Join_Control}]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_word">{@code \W}</th>
|
|
* <td headers="matches predef non_word">A non-word character: {@code [^\w]}</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="posix"><b>POSIX character classes (Unicode-aware)</b></th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Lower">{@code \p{Lower}}</th>
|
|
* <td headers="matches posix Lower">A lower-case alphabetic character: {@code \p{IsLowercase}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Upper">{@code \p{Upper}}</th>
|
|
* <td headers="matches posix Upper">An upper-case alphabetic character:{@code \p{IsUppercase}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="ASCII">{@code \p{ASCII}}</th>
|
|
* <td headers="matches posix ASCII">All ASCII:{@code [\x00-\x7F]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Alpha">{@code \p{Alpha}}</th>
|
|
* <td headers="matches posix Alpha">An alphabetic character:{@code [\p{IsAlphabetic}]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Digit">{@code \p{IsDigit}}</th>
|
|
* <td headers="matches posix Digit">A decimal digit: {@code \p{gc=Decimal_Number}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Alnum">{@code \p{Alnum}}</th>
|
|
* <td headers="matches posix Alnum">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Punct">{@code \p{Punct}}</th>
|
|
* <td headers="matches posix Punct">Punctuation: {@code \p{IsPunctuation}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Graph">{@code \p{Graph}}</th>
|
|
* <td headers="matches posix Graph">A visible character:
|
|
* {@code [^p{space}\p{gc=Control}\p{gc=Surrogate}\p{gc=Unassigned}]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Print">{@code \p{Print}}</th>
|
|
* <td headers="matches posix Print">A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Blank">{@code \p{Blank}}</th>
|
|
* <td headers="matches posix Blank">A space or a tab: {@code [\p{gc=Space_Separator}\N{CHARACTER TABULATION}]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Cntrl">{@code \p{Cntrl}}</th>
|
|
* <td headers="matches posix Cntrl">A control character: {@code \p{gc=Control}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="XDigit">{@code \p{XDigit}}</th>
|
|
* <td headers="matches posix XDigit">A hexadecimal digit: {@code [\p{gc=Decimal_Number}\p{IsHex_Digit}]}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Space">{@code \p{Space}}</th>
|
|
* <td headers="matches posix Space">A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="PosixCompatible">POSIX-Compatible expression</th>
|
|
* <td headers="matches posix PosixCompatible">See <a href="http://www.unicode.org/reports/tr18/#Compatibility_Properties">Unicode documentation</a></td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="java">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="javaLowerCase">{@code \p{javaLowerCase}}</th>
|
|
* <td headers="matches java javaLowerCase">Equivalent to java.lang.Character.isLowerCase()</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="javaUpperCase">{@code \p{javaUpperCase}}</th>
|
|
* <td headers="matches java javaUpperCase">Equivalent to java.lang.Character.isUpperCase()</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="javaWhitespace">{@code \p{javaWhitespace}}</th>
|
|
* <td headers="matches java javaWhitespace">Equivalent to java.lang.Character.isWhitespace()</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="javaMirrored">{@code \p{javaMirrored}}</th>
|
|
* <td headers="matches java javaMirrored">Equivalent to java.lang.Character.isMirrored()</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="IsLatin">{@code \p{IsLatin}}</th>
|
|
* <td headers="matches unicode IsLatin">A Latin script character (<a href="#usc">script</a>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="InGreek">{@code \p{InGreek}}</th>
|
|
* <td headers="matches unicode InGreek">A character in the Greek block (<a href="#ubc">block</a>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Lu">{@code \p{Lu}}</th>
|
|
* <td headers="matches unicode Lu">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="IsAlphabetic">{@code \p{IsAlphabetic}}</th>
|
|
* <td headers="matches unicode IsAlphabetic">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="Sc">{@code \p{Sc}}</th>
|
|
* <td headers="matches unicode Sc">A currency symbol</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="not_InGreek">{@code \P{InGreek}}</th>
|
|
* <td headers="matches unicode not_InGreek">Any character except one in the Greek block (negation)</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="not_uppercase">{@code [\p{L}&&[^\p{Lu}]]}</th>
|
|
* <td headers="matches unicode not_uppercase">Any letter except an uppercase letter (subtraction)</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="bounds">Boundary matchers</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="begin_line">{@code ^}</th>
|
|
* <td headers="matches bounds begin_line">The beginning of a line</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="end_line">{@code $}</th>
|
|
* <td headers="matches bounds end_line">The end of a line</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="word_boundary">{@code \b}</th>
|
|
* <td headers="matches bounds word_boundary">A word boundary</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_word_boundary">{@code \B}</th>
|
|
* <td headers="matches bounds non_word_boundary">A non-word boundary</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="begin_input">{@code \A}</th>
|
|
* <td headers="matches bounds begin_input">The beginning of the input</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="end_prev_match">{@code \G}</th>
|
|
* <td headers="matches bounds end_prev_match">The end of the previous match</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="end_input_except_term">{@code \Z}</th>
|
|
* <td headers="matches bounds end_input_except_term">The end of the input but for the final
|
|
* <a href="#lt">terminator</a>, if any</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="end_input">{@code \z}</th>
|
|
* <td headers="matches bounds end_input">The end of the input</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="linebreak">Linebreak matcher</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="any_unicode_linebreak">{@code \R}</th>
|
|
* <td headers="matches linebreak any_unicode_linebreak">Any Unicode linebreak sequence, is equivalent to
|
|
* <code>\u000D\u000A|[\u000A\u000B\u000C\u000D\u0085\u2028\u2029]
|
|
* </code></td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="grapheme">Unicode Extended Grapheme matcher</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_any">{@code \X}</th>
|
|
* <td headers="matches grapheme grapheme_any">Any Unicode extended grapheme cluster</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="greedy">Greedy quantifiers</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="greedy_once_or_not"><i>X</i>{@code ?}</th>
|
|
* <td headers="matches greedy greedy_once_or_not"><i>X</i>, once or not at all</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="greedy_zero_or_more"><i>X</i>{@code *}</th>
|
|
* <td headers="matches greedy greedy_zero_or_more"><i>X</i>, zero or more times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="greedy_one_or_more"><i>X</i>{@code +}</th>
|
|
* <td headers="matches greedy greedy_one_or_more"><i>X</i>, one or more times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="greedy_exactly"><i>X</i><code>{</code><i>n</i><code>}</code></th>
|
|
* <td headers="matches greedy greedy_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least"><i>X</i><code>{</code><i>n</i>{@code ,}}</th>
|
|
* <td headers="matches greedy greedy_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}</code></th>
|
|
* <td headers="matches greedy greedy_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="reluc">Reluctant quantifiers</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="reluc_once_or_not"><i>X</i>{@code ??}</th>
|
|
* <td headers="matches reluc reluc_once_or_not"><i>X</i>, once or not at all</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="reluc_zero_or_more"><i>X</i>{@code *?}</th>
|
|
* <td headers="matches reluc reluc_zero_or_more"><i>X</i>, zero or more times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="reluc_one_or_more"><i>X</i>{@code +?}</th>
|
|
* <td headers="matches reluc reluc_one_or_more"><i>X</i>, one or more times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="reluc_exactly"><i>X</i><code>{</code><i>n</i><code>}?</code></th>
|
|
* <td headers="matches reluc reluc_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least"><i>X</i><code>{</code><i>n</i><code>,}?</code></th>
|
|
* <td headers="matches reluc reluc_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}?</code></th>
|
|
* <td headers="matches reluc reluc_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="poss">Possessive quantifiers</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="poss_once_or_not"><i>X</i>{@code ?+}</th>
|
|
* <td headers="matches poss poss_once_or_not"><i>X</i>, once or not at all</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="poss_zero_or_more"><i>X</i>{@code *+}</th>
|
|
* <td headers="matches poss poss_zero_or_more"><i>X</i>, zero or more times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="poss_one_or_more"><i>X</i>{@code ++}</th>
|
|
* <td headers="matches poss poss_one_or_more"><i>X</i>, one or more times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="poss_exactly"><i>X</i><code>{</code><i>n</i><code>}+</code></th>
|
|
* <td headers="matches poss poss_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least"><i>X</i><code>{</code><i>n</i><code>,}+</code></th>
|
|
* <td headers="matches poss poss_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}+</code></th>
|
|
* <td headers="matches poss poss_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="logical">Logical operators</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="concat"><i>XY</i></th>
|
|
* <td headers="matches logical concat"><i>X</i> followed by <i>Y</i></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="alternate"><i>X</i>{@code |}<i>Y</i></th>
|
|
* <td headers="matches logical alternate">Either <i>X</i> or <i>Y</i></td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="group">{@code (}<i>X</i>{@code )}</th>
|
|
* <td headers="matches logical group">X, as a <a href="#cg">capturing group</a></td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="backref">Back references</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="back_nth">{@code \}<i>n</i></th>
|
|
* <td headers="matches backref back_nth">Whatever the <i>n</i><sup>th</sup>
|
|
* <a href="#cg">capturing group</a> matched</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="back_named">{@code \}<i>k</i><<i>name</i>></th>
|
|
* <td headers="matches backref back_named">Whatever the
|
|
* <a href="#groupname">named-capturing group</a> "name" matched. Only available for API 26 or above</td></tr>
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="quote">Quotation</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="quote_follow">{@code \}</th>
|
|
* <td headers="matches quote quote_follow">Nothing, but quotes the following character</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="quote_begin">{@code \Q}</th>
|
|
* <td headers="matches quote quote_begin">Nothing, but quotes all characters until {@code \E}</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="quote_end">{@code \E}</th>
|
|
* <td headers="matches quote quote_end">Nothing, but ends quoting started by {@code \Q}</td></tr>
|
|
* <!-- Metachars: !$()*+.<>?[\]^{|} -->
|
|
*
|
|
* <tr><th colspan="2" style="padding-top:20px" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
|
|
*
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="named_group"><code>(?<<a href="#groupname">name</a>></code><i>X</i>{@code )}</th>
|
|
* <td headers="matches special named_group"><i>X</i>, as a named-capturing group. Only available for API 26 or above.</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group">{@code (?:}<i>X</i>{@code )}</th>
|
|
* <td headers="matches special non_capture_group"><i>X</i>, as a non-capturing group</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="flags"><code>(?idmsux-idmsux) </code></th>
|
|
* <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
|
|
* <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
|
|
* on - off</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group_flags">{@code (?idmsuxU-idmsuxU:}<i>X</i>{@code )} </th>
|
|
* <td headers="matches special non_capture_group_flags"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
|
|
* given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
|
|
* <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
|
|
* <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a> on - off</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookahead">{@code (?=}<i>X</i>{@code )}</th>
|
|
* <td headers="matches special pos_lookahead"><i>X</i>, via zero-width positive lookahead</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookahead">{@code (?!}<i>X</i>{@code )}</th>
|
|
* <td headers="matches special neg_lookahead"><i>X</i>, via zero-width negative lookahead</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookbehind">{@code (?<=}<i>X</i>{@code )}</th>
|
|
* <td headers="matches special pos_lookbehind"><i>X</i>, via zero-width positive lookbehind</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookbehind">{@code (?<!}<i>X</i>{@code )}</th>
|
|
* <td headers="matches special neg_lookbehind"><i>X</i>, via zero-width negative lookbehind</td></tr>
|
|
* <tr><th style="vertical-align:top; font-weight:normal" id="indep_non_capture_group">{@code (?>}<i>X</i>{@code )}</th>
|
|
* <td headers="matches special indep_non_capture_group"><i>X</i>, as an independent, non-capturing group</td></tr>
|
|
*
|
|
* </tbody>
|
|
* </table>
|
|
*
|
|
* <hr>
|
|
*
|
|
*
|
|
* <h2><a id="bs">Backslashes, escapes, and quoting</a></h2>
|
|
*
|
|
* <p> The backslash character ({@code '\'}) serves to introduce escaped
|
|
* constructs, as defined in the table above, as well as to quote characters
|
|
* that otherwise would be interpreted as unescaped constructs. Thus the
|
|
* expression {@code \\} matches a single backslash and <code>\{</code> matches a
|
|
* left brace.
|
|
*
|
|
* <p> It is an error to use a backslash prior to any alphabetic character that
|
|
* does not denote an escaped construct; these are reserved for future
|
|
* extensions to the regular-expression language. A backslash may be used
|
|
* prior to a non-alphabetic character regardless of whether that character is
|
|
* part of an unescaped construct.
|
|
*
|
|
* <p> Backslashes within string literals in Java source code are interpreted
|
|
* as required by
|
|
* <cite>The Java Language Specification</cite>
|
|
* as either Unicode escapes (section {@jls 3.3}) or other character escapes (section {@jls 3.10.6})
|
|
* It is therefore necessary to double backslashes in string
|
|
* literals that represent regular expressions to protect them from
|
|
* interpretation by the Java bytecode compiler. The string literal
|
|
* <code>"\b"</code>, for example, matches a single backspace character when
|
|
* interpreted as a regular expression, while {@code "\\b"} matches a
|
|
* word boundary. The string literal {@code "\(hello\)"} is illegal
|
|
* and leads to a compile-time error; in order to match the string
|
|
* {@code (hello)} the string literal {@code "\\(hello\\)"}
|
|
* must be used.
|
|
*
|
|
* <h2><a id="cc">Character Classes</a></h2>
|
|
*
|
|
* <p> Character classes may appear within other character classes, and
|
|
* may be composed by the union operator (implicit) and the intersection
|
|
* operator ({@code &&}).
|
|
* The union operator denotes a class that contains every character that is
|
|
* in at least one of its operand classes. The intersection operator
|
|
* denotes a class that contains every character that is in both of its
|
|
* operand classes.
|
|
*
|
|
* <p> The precedence of character-class operators is as follows, from
|
|
* highest to lowest:
|
|
*
|
|
* <table class="striped" style="margin-left: 2em;">
|
|
* <caption style="display:none">Precedence of character class operators.</caption>
|
|
* <thead>
|
|
* <tr><th scope="col">Precedence<th scope="col">Name<th scope="col">Example
|
|
* </thead>
|
|
* <tbody>
|
|
* <tr><th scope="row">1</th>
|
|
* <td>Literal escape </td>
|
|
* <td>{@code \x}</td></tr>
|
|
* <tr><th scope="row">2</th>
|
|
* <td>Grouping</td>
|
|
* <td>{@code [...]}</td></tr>
|
|
* <tr><th scope="row">3</th>
|
|
* <td>Range</td>
|
|
* <td>{@code a-z}</td></tr>
|
|
* <tr><th scope="row">4</th>
|
|
* <td>Union</td>
|
|
* <td>{@code [a-e][i-u]}</td></tr>
|
|
* <tr><th scope="row">5</th>
|
|
* <td>Intersection</td>
|
|
* <td>{@code [a-z&&[aeiou]]}</td></tr>
|
|
* </tbody>
|
|
* </table>
|
|
*
|
|
* <p> Note that a different set of metacharacters are in effect inside
|
|
* a character class than outside a character class. For instance, the
|
|
* regular expression {@code .} loses its special meaning inside a
|
|
* character class, while the expression {@code -} becomes a range
|
|
* forming metacharacter.
|
|
*
|
|
* <h2><a id="lt">Line terminators</a></h2>
|
|
*
|
|
* <p> A <i>line terminator</i> is a one- or two-character sequence that marks
|
|
* the end of a line of the input character sequence. The following are
|
|
* recognized as line terminators:
|
|
*
|
|
* <ul>
|
|
*
|
|
* <li> A newline (line feed) character ({@code '\n'}),
|
|
*
|
|
* <li> A carriage-return character followed immediately by a newline
|
|
* character ({@code "\r\n"}),
|
|
*
|
|
* <li> A standalone carriage-return character ({@code '\r'}),
|
|
*
|
|
* <li> A next-line character (<code>'\u0085'</code>),
|
|
*
|
|
* <li> A line-separator character (<code>'\u2028'</code>), or
|
|
*
|
|
* <li> A paragraph-separator character (<code>'\u2029'</code>).
|
|
*
|
|
* </ul>
|
|
* <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
|
|
* recognized are newline characters.
|
|
*
|
|
* <p> The regular expression {@code .} matches any character except a line
|
|
* terminator unless the {@link #DOTALL} flag is specified.
|
|
*
|
|
* <p> By default, the regular expressions {@code ^} and {@code $} ignore
|
|
* line terminators and only match at the beginning and the end, respectively,
|
|
* of the entire input sequence. If {@link #MULTILINE} mode is activated then
|
|
* {@code ^} matches at the beginning of input and after any line terminator
|
|
* except at the end of input. When in {@link #MULTILINE} mode {@code $}
|
|
* matches just before a line terminator or the end of the input sequence.
|
|
*
|
|
* <h2><a id="cg">Groups and capturing</a></h2>
|
|
*
|
|
* <h3><a id="gnumber">Group number</a></h3>
|
|
* <p> Capturing groups are numbered by counting their opening parentheses from
|
|
* left to right. In the expression {@code ((A)(B(C)))}, for example, there
|
|
* are four such groups: </p>
|
|
*
|
|
* <ol style="margin-left:2em;">
|
|
* <li> {@code ((A)(B(C)))}
|
|
* <li> {@code (A)}
|
|
* <li> {@code (B(C))}
|
|
* <li> {@code (C)}
|
|
* </ol>
|
|
*
|
|
* <p> Group zero always stands for the entire expression.
|
|
*
|
|
* <p> Capturing groups are so named because, during a match, each subsequence
|
|
* of the input sequence that matches such a group is saved. The captured
|
|
* subsequence may be used later in the expression, via a back reference, and
|
|
* may also be retrieved from the matcher once the match operation is complete.
|
|
*
|
|
* <h3><a id="groupname">Group name</a></h3>
|
|
* <p>The constructs and APIs are available since API level 26. A capturing group
|
|
* can also be assigned a "name", a {@code named-capturing group},
|
|
* and then be back-referenced later by the "name". Group names are composed of
|
|
* the following characters. The first character must be a {@code letter}.
|
|
*
|
|
* <ul>
|
|
* <li> The uppercase letters {@code 'A'} through {@code 'Z'}
|
|
* (<code>'\u0041'</code> through <code>'\u005a'</code>),
|
|
* <li> The lowercase letters {@code 'a'} through {@code 'z'}
|
|
* (<code>'\u0061'</code> through <code>'\u007a'</code>),
|
|
* <li> The digits {@code '0'} through {@code '9'}
|
|
* (<code>'\u0030'</code> through <code>'\u0039'</code>),
|
|
* </ul>
|
|
*
|
|
* <p> A {@code named-capturing group} is still numbered as described in
|
|
* <a href="#gnumber">Group number</a>.
|
|
*
|
|
* <p> The captured input associated with a group is always the subsequence
|
|
* that the group most recently matched. If a group is evaluated a second time
|
|
* because of quantification then its previously-captured value, if any, will
|
|
* be retained if the second evaluation fails. Matching the string
|
|
* {@code "aba"} against the expression {@code (a(b)?)+}, for example, leaves
|
|
* group two set to {@code "b"}. All captured input is discarded at the
|
|
* beginning of each match.
|
|
*
|
|
* <p> Groups beginning with {@code (?} are either pure, <i>non-capturing</i> groups
|
|
* that do not capture text and do not count towards the group total, or
|
|
* <i>named-capturing</i> group.
|
|
*
|
|
* <h2> Unicode support </h2>
|
|
*
|
|
* <p> This class is in conformance with Level 1 of <a
|
|
* href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
|
|
* Standard #18: Unicode Regular Expressions</i></a>, plus RL2.1
|
|
* Canonical Equivalents and RL2.2 Extended Grapheme Clusters.
|
|
* <p>
|
|
* <b>Unicode escape sequences</b> such as <code>\u2014</code> in Java source code
|
|
* are processed as described in section {@jls 3.3} of
|
|
* <cite>The Java Language Specification</cite>.
|
|
* Such escape sequences are also implemented directly by the regular-expression
|
|
* parser so that Unicode escapes can be used in expressions that are read from
|
|
* files or from the keyboard. Thus the strings <code>"\u2014"</code> and
|
|
* {@code "\\u2014"}, while not equal, compile into the same pattern, which
|
|
* matches the character with hexadecimal value {@code 0x2014}.
|
|
* <p>
|
|
* A Unicode character can also be represented by using its <b>Hex notation</b>
|
|
* (hexadecimal code point value) directly as described in construct
|
|
* <code>\x{...}</code>, for example a supplementary character U+2011F can be
|
|
* specified as <code>\x{2011F}</code>, instead of two consecutive Unicode escape
|
|
* sequences of the surrogate pair <code>\uD840</code><code>\uDD1F</code>.
|
|
* <p>
|
|
* <b>Unicode character names</b> are supported by the named character construct
|
|
* <code>\N{</code>...<code>}</code>, for example, <code>\N{WHITE SMILING FACE}</code>
|
|
* specifies character <code>\u263A</code>. The character names supported
|
|
* by this class are the valid Unicode character names matched by
|
|
* {@code java.lang.Character.codePointOf(String) Character.codePointOf(name)}.
|
|
* <p>
|
|
* <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
|
|
* <b>Unicode extended grapheme clusters</b></a> are supported by the grapheme
|
|
* cluster matcher {@code \X}.
|
|
* <p>
|
|
* Unicode scripts, blocks, categories and binary properties are written with
|
|
* the {@code \p} and {@code \P} constructs as in Perl.
|
|
* <code>\p{</code><i>prop</i><code>}</code> matches if
|
|
* the input has the property <i>prop</i>, while <code>\P{</code><i>prop</i><code>}</code>
|
|
* does not match if the input has that property.
|
|
* <p>
|
|
* Scripts, blocks, categories and binary properties can be used both inside
|
|
* and outside of a character class.
|
|
*
|
|
* <p>
|
|
* <b><a id="usc">Scripts</a></b> are specified either with the prefix {@code Is} supported since
|
|
* Android 10, as in {@code IsHiragana}, or by using the {@code script} keyword (or its short
|
|
* form {@code sc}) as in {@code script=Hiragana} or {@code sc=Hiragana}.
|
|
* <p>
|
|
* The script names supported by {@code Pattern} are the valid script names
|
|
* accepted and defined by
|
|
* {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
|
|
*
|
|
* <p>
|
|
* <b><a id="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
|
|
* {@code InMongolian}, or by using the keyword {@code block} (or its short
|
|
* form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
|
|
* <p>
|
|
* The block names supported by {@code Pattern} are the valid block names
|
|
* accepted and defined by
|
|
* {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
|
|
* <p>
|
|
*
|
|
* <b><a id="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
|
|
* Both {@code \p{IsL}} supported since Android 10 and {@code \p{L}} denote the category of Unicode
|
|
* letters. Same as scripts and blocks, categories can also be specified
|
|
* by using the keyword {@code general_category} (or its short form
|
|
* {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
|
|
* <p>
|
|
* The supported categories are those of
|
|
* <a href="http://www.unicode.org/standard/standard.html">
|
|
* <i>The Unicode Standard</i></a> in the version specified by the
|
|
* {@link java.lang.Character Character} class. The category names are those
|
|
* defined in the Standard, both normative and informative.
|
|
* <p>
|
|
*
|
|
* <b><a id="ubpc">Binary properties</a></b> are specified with the prefix {@code Is} since
|
|
* Android 10, as in {@code IsAlphabetic}. The prefix {@code Is} isn't needed before Android 10,
|
|
* as in {@code Alphabetic}. The supported binary properties by {@code Pattern}
|
|
* are
|
|
* <ul>
|
|
* <li> Alphabetic
|
|
* <li> Ideographic
|
|
* <li> Letter
|
|
* <li> Lowercase
|
|
* <li> Uppercase
|
|
* <li> Titlecase
|
|
* <li> Punctuation
|
|
* <Li> Control
|
|
* <li> White_Space
|
|
* <li> Digit
|
|
* <li> Hex_Digit
|
|
* <li> Join_Control
|
|
* <li> Noncharacter_Code_Point
|
|
* <li> Assigned
|
|
* </ul>
|
|
* <p>
|
|
* The <b>Predefined Character classes</b> and <b>POSIX character classes</b>
|
|
* are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
|
|
* of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical Standard #18:
|
|
* Unicode Regular Expressions</i></a>.
|
|
*
|
|
* <p>
|
|
* <a id="jcc">
|
|
* Categories that behave like the java.lang.Character
|
|
* boolean is<i>methodname</i> methods (except for the deprecated ones) are
|
|
* available through the same <code>\p{</code><i>prop</i><code>}</code> syntax where
|
|
* the specified property has the name <code>java<i>methodname</i></code></a>.
|
|
*
|
|
* <h3> Behavior starting from API level 10 (Android 2.3) </h3>
|
|
*
|
|
* <p> Starting from Android 2.3 Gingerbread, ICU4C becomes the backend of the regular expression
|
|
* implementation. Android could behave differently compared with other regex implementation, e.g.
|
|
* literal right brace ('}') has to be escaped on Android.</p>
|
|
*
|
|
* <p> Some other behavior differences can be found in the
|
|
* <a href="https://unicode-org.github.io/icu/userguide/strings/regexp.html#differences-with-java-regular-expressions">
|
|
* ICU documentation</a>. </p>
|
|
*
|
|
* <h2> Comparison to Perl 5 </h2>
|
|
*
|
|
* <p>The {@code Pattern} engine performs traditional NFA-based matching
|
|
* with ordered alternation as occurs in Perl 5.
|
|
*
|
|
* <p> Perl constructs not supported by this class: </p>
|
|
*
|
|
* <ul>
|
|
* <li><p> The backreference constructs, <code>\g{</code><i>n</i><code>}</code> for
|
|
* the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
|
|
* <code>\g{</code><i>name</i><code>}</code> for
|
|
* <a href="#groupname">named-capturing group</a>.
|
|
* </p></li>
|
|
*
|
|
* <li><p> The conditional constructs
|
|
* {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code )} and
|
|
* {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code |}<i>Y</i>{@code )},
|
|
* </p></li>
|
|
*
|
|
* <li><p> The embedded code constructs <code>(?{</code><i>code</i><code>})</code>
|
|
* and <code>(??{</code><i>code</i><code>})</code>,</p></li>
|
|
*
|
|
* <li><p> The embedded comment syntax {@code (?#comment)}, and </p></li>
|
|
*
|
|
* <li><p> The preprocessing operations {@code \l} <code>\u</code>,
|
|
* {@code \L}, and {@code \U}. </p></li>
|
|
*
|
|
* </ul>
|
|
*
|
|
* <p> Constructs supported by this class but not by Perl: </p>
|
|
*
|
|
* <ul>
|
|
*
|
|
* <li><p> Character-class union and intersection as described
|
|
* <a href="#cc">above</a>.</p></li>
|
|
*
|
|
* </ul>
|
|
*
|
|
* <p> Notable differences from Perl: </p>
|
|
*
|
|
* <ul>
|
|
*
|
|
* <li><p> In Perl, {@code \1} through {@code \9} are always interpreted
|
|
* as back references; a backslash-escaped number greater than {@code 9} is
|
|
* treated as a back reference if at least that many subexpressions exist,
|
|
* otherwise it is interpreted, if possible, as an octal escape. In this
|
|
* class octal escapes must always begin with a zero. In this class,
|
|
* {@link #compile(String)} throws {@link PatternSyntaxException} for any
|
|
* non-existent back references. Please use {@code \Q} and {@code \E} to
|
|
* quote any digit literals followed by back references.
|
|
* </p></li>
|
|
*
|
|
* <li><p> Perl uses the {@code g} flag to request a match that resumes
|
|
* where the last match left off. This functionality is provided implicitly
|
|
* by the {@link Matcher} class: Repeated invocations of the {@link
|
|
* Matcher#find find} method will resume where the last match left off,
|
|
* unless the matcher is reset. </p></li>
|
|
*
|
|
* <li><p> In Perl, embedded flags at the top level of an expression affect
|
|
* the whole expression. In this class, embedded flags always take effect
|
|
* at the point at which they appear, whether they are at the top level or
|
|
* within a group; in the latter case, flags are restored at the end of the
|
|
* group just as in Perl. </p></li>
|
|
*
|
|
* </ul>
|
|
*
|
|
*
|
|
* <p> For a more precise description of the behavior of regular expression
|
|
* constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
|
|
* <i>Mastering Regular Expressions, 3rd Edition</i>, Jeffrey E. F. Friedl,
|
|
* O'Reilly and Associates, 2006.</a>
|
|
* </p>
|
|
*
|
|
* @see java.lang.String#split(String, int)
|
|
* @see java.lang.String#split(String)
|
|
*
|
|
* @author Mike McCloskey
|
|
* @author Mark Reinhold
|
|
* @author JSR-51 Expert Group
|
|
* @since 1.4
|
|
*/
|
|
|
|
public final class Pattern
|
|
implements java.io.Serializable
|
|
{
|
|
|
|
/*
|
|
* Regular expression modifier values. Instead of being passed as
|
|
* arguments, they can also be passed as inline modifiers.
|
|
* For example, the following statements have the same effect.
|
|
*
|
|
* Pattern p1 = Pattern.compile("abc", Pattern.CASE_INSENSITIVE|Pattern.MULTILINE);
|
|
* Pattern p2 = Pattern.compile("(?im)abc", 0);
|
|
*/
|
|
|
|
/**
|
|
* Enables Unix lines mode.
|
|
*
|
|
* <p> In this mode, only the {@code '\n'} line terminator is recognized
|
|
* in the behavior of {@code .}, {@code ^}, and {@code $}.
|
|
*
|
|
* <p> Unix lines mode can also be enabled via the embedded flag
|
|
* expression {@code (?d)}.
|
|
*/
|
|
public static final int UNIX_LINES = 0x01;
|
|
|
|
// Android-changed: CASE_INSENSITIVE is Unicode-aware on Android.
|
|
/**
|
|
* Enables case-insensitive matching.
|
|
*
|
|
* <p> Case-insensitive matching is Unicode-aware on Android.
|
|
*
|
|
* <p> Case-insensitive matching can also be enabled via the embedded flag
|
|
* expression {@code (?i)}.
|
|
*
|
|
* <p> Specifying this flag may impose a slight performance penalty. </p>
|
|
*/
|
|
public static final int CASE_INSENSITIVE = 0x02;
|
|
|
|
/**
|
|
* Permits whitespace and comments in pattern.
|
|
*
|
|
* <p> In this mode, whitespace is ignored, and embedded comments starting
|
|
* with {@code #} are ignored until the end of a line.
|
|
*
|
|
* <p> Comments mode can also be enabled via the embedded flag
|
|
* expression {@code (?x)}.
|
|
*/
|
|
public static final int COMMENTS = 0x04;
|
|
|
|
/**
|
|
* Enables multiline mode.
|
|
*
|
|
* <p> In multiline mode the expressions {@code ^} and {@code $} match
|
|
* just after or just before, respectively, a line terminator or the end of
|
|
* the input sequence. By default these expressions only match at the
|
|
* beginning and the end of the entire input sequence.
|
|
*
|
|
* <p> Multiline mode can also be enabled via the embedded flag
|
|
* expression {@code (?m)}. </p>
|
|
*/
|
|
public static final int MULTILINE = 0x08;
|
|
|
|
/**
|
|
* Enables literal parsing of the pattern.
|
|
*
|
|
* <p> When this flag is specified then the input string that specifies
|
|
* the pattern is treated as a sequence of literal characters.
|
|
* Metacharacters or escape sequences in the input sequence will be
|
|
* given no special meaning.
|
|
*
|
|
* <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
|
|
* matching when used in conjunction with this flag. The other flags
|
|
* become superfluous.
|
|
*
|
|
* <p> There is no embedded flag character for enabling literal parsing.
|
|
* @since 1.5
|
|
*/
|
|
public static final int LITERAL = 0x10;
|
|
|
|
/**
|
|
* Enables dotall mode.
|
|
*
|
|
* <p> In dotall mode, the expression {@code .} matches any character,
|
|
* including a line terminator. By default this expression does not match
|
|
* line terminators.
|
|
*
|
|
* <p> Dotall mode can also be enabled via the embedded flag
|
|
* expression {@code (?s)}. (The {@code s} is a mnemonic for
|
|
* "single-line" mode, which is what this is called in Perl.) </p>
|
|
*/
|
|
public static final int DOTALL = 0x20;
|
|
|
|
// Android-changed: UNICODE_CASE flag is ignored.
|
|
/**
|
|
* Enables Unicode-aware case folding. This flag is ignoredon Android.
|
|
* When {@link #CASE_INSENSITIVE} flag is provided, case-insensitive
|
|
* matching is always done in a manner consistent with the Unicode Standard.
|
|
*
|
|
* <p> The embedded flag {@code (?u)} is ignored.
|
|
*
|
|
* <p> Specifying this flag may impose a performance penalty. </p>
|
|
*/
|
|
public static final int UNICODE_CASE = 0x40;
|
|
|
|
// Android-changed: Android does not support CANON_EQ flag.
|
|
/**
|
|
* This flag is not supported on Android.
|
|
*/
|
|
public static final int CANON_EQ = 0x80;
|
|
|
|
// Android-changed: Android always uses unicode character classes.
|
|
/**
|
|
* This flag is not supported on Android, and Unicode character classes are always
|
|
* used.
|
|
* <p>
|
|
* See the Unicode version of
|
|
* <i>Predefined character classes</i> and <i>POSIX character classes</i>
|
|
* are in conformance with
|
|
* <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
|
|
* Standard #18: Unicode Regular Expressions</i></a>
|
|
* <i>Annex C: Compatibility Properties</i>.
|
|
* <p>
|
|
* @since 1.7
|
|
*/
|
|
public static final int UNICODE_CHARACTER_CLASS = 0x100;
|
|
|
|
/**
|
|
* Contains all possible flags for compile(regex, flags).
|
|
*/
|
|
private static final int ALL_FLAGS = CASE_INSENSITIVE | MULTILINE |
|
|
// Android-changed: CANON_EQ and UNICODE_CHARACTER_CLASS flags aren't supported.
|
|
// DOTALL | UNICODE_CASE | CANON_EQ | UNIX_LINES | LITERAL |
|
|
// UNICODE_CHARACTER_CLASS | COMMENTS;
|
|
DOTALL | UNICODE_CASE | UNIX_LINES | LITERAL | COMMENTS;
|
|
|
|
/* Pattern has only two serialized components: The pattern string
|
|
* and the flags, which are all that is needed to recompile the pattern
|
|
* when it is deserialized.
|
|
*/
|
|
|
|
/** use serialVersionUID from Merlin b59 for interoperability */
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = 5073258162644648461L;
|
|
|
|
/**
|
|
* The original regular-expression pattern string.
|
|
*
|
|
* @serial
|
|
*/
|
|
// Android-changed: reimplement matching logic natively via ICU.
|
|
// private String pattern;
|
|
private final String pattern;
|
|
|
|
/**
|
|
* The original pattern flags.
|
|
*
|
|
* @serial
|
|
*/
|
|
// Android-changed: reimplement matching logic natively via ICU.
|
|
// private int flags;
|
|
private final int flags;
|
|
|
|
|
|
// BEGIN Android-changed: reimplement matching logic natively via ICU.
|
|
// We only need some tie-ins to native memory, instead of a large number
|
|
// of fields on the .java side.
|
|
/* package */ transient PatternNative nativePattern;
|
|
// END Android-changed: reimplement matching logic natively via ICU.
|
|
|
|
/**
|
|
* Compiles the given regular expression into a pattern.
|
|
*
|
|
* @param regex
|
|
* The expression to be compiled
|
|
* @return the given regular expression compiled into a pattern
|
|
* @throws PatternSyntaxException
|
|
* If the expression's syntax is invalid
|
|
*/
|
|
public static Pattern compile(String regex) {
|
|
return new Pattern(regex, 0);
|
|
}
|
|
|
|
// Android-changed: Android doesn't support CANON_EQ and UNICODE_CHARACTER_CLASS flags.
|
|
/**
|
|
* Compiles the given regular expression into a pattern with the given
|
|
* flags.
|
|
*
|
|
* @param regex
|
|
* The expression to be compiled
|
|
*
|
|
* @param flags
|
|
* Match flags, a bit mask that may include
|
|
* {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
|
|
* {@link #UNICODE_CASE}, {@link #UNIX_LINES}, {@link #LITERAL},
|
|
* and {@link #COMMENTS}
|
|
*
|
|
* @return the given regular expression compiled into a pattern with the given flags
|
|
* @throws IllegalArgumentException
|
|
* If bit values other than those corresponding to the defined
|
|
* match flags are set in {@code flags}
|
|
*
|
|
* @throws PatternSyntaxException
|
|
* If the expression's syntax is invalid
|
|
*/
|
|
public static Pattern compile(String regex, int flags) {
|
|
return new Pattern(regex, flags);
|
|
}
|
|
|
|
/**
|
|
* Returns the regular expression from which this pattern was compiled.
|
|
*
|
|
* @return The source of this pattern
|
|
*/
|
|
public String pattern() {
|
|
return pattern;
|
|
}
|
|
|
|
/**
|
|
* <p>Returns the string representation of this pattern. This
|
|
* is the regular expression from which this pattern was
|
|
* compiled.</p>
|
|
*
|
|
* @return The string representation of this pattern
|
|
* @since 1.5
|
|
*/
|
|
public String toString() {
|
|
return pattern;
|
|
}
|
|
|
|
/**
|
|
* Creates a matcher that will match the given input against this pattern.
|
|
*
|
|
* @param input
|
|
* The character sequence to be matched
|
|
*
|
|
* @return A new matcher for this pattern
|
|
*/
|
|
public Matcher matcher(CharSequence input) {
|
|
// Android-removed: Pattern is eagerly compiled() upon construction.
|
|
/*
|
|
if (!compiled) {
|
|
synchronized(this) {
|
|
if (!compiled)
|
|
compile();
|
|
}
|
|
}
|
|
*/
|
|
Matcher m = new Matcher(this, input);
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
* Returns this pattern's match flags.
|
|
*
|
|
* @return The match flags specified when this pattern was compiled
|
|
*/
|
|
public int flags() {
|
|
// Android-changed: We don't need the temporary pattern flags0.
|
|
// return flags0;
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* Compiles the given regular expression and attempts to match the given
|
|
* input against it.
|
|
*
|
|
* <p> An invocation of this convenience method of the form
|
|
*
|
|
* <blockquote><pre>
|
|
* Pattern.matches(regex, input);</pre></blockquote>
|
|
*
|
|
* behaves in exactly the same way as the expression
|
|
*
|
|
* <blockquote><pre>
|
|
* Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
|
|
*
|
|
* <p> If a pattern is to be used multiple times, compiling it once and reusing
|
|
* it will be more efficient than invoking this method each time. </p>
|
|
*
|
|
* @param regex
|
|
* The expression to be compiled
|
|
*
|
|
* @param input
|
|
* The character sequence to be matched
|
|
* @return whether or not the regular expression matches on the input
|
|
* @throws PatternSyntaxException
|
|
* If the expression's syntax is invalid
|
|
*/
|
|
public static boolean matches(String regex, CharSequence input) {
|
|
Pattern p = Pattern.compile(regex);
|
|
Matcher m = p.matcher(input);
|
|
return m.matches();
|
|
}
|
|
|
|
// Android-changed: Adopt split() behavior change only for apps targeting API > 28.
|
|
// http://b/109659282#comment7
|
|
/**
|
|
* Splits the given input sequence around matches of this pattern.
|
|
*
|
|
* <p> The array returned by this method contains each substring of the
|
|
* input sequence that is terminated by another subsequence that matches
|
|
* this pattern or is terminated by the end of the input sequence. The
|
|
* substrings in the array are in the order in which they occur in the
|
|
* input. If this pattern does not match any subsequence of the input then
|
|
* the resulting array has just one element, namely the input sequence in
|
|
* string form.
|
|
*
|
|
* <p> When there is a positive-width match at the beginning of the input
|
|
* sequence then an empty leading substring is included at the beginning
|
|
* of the resulting array. A zero-width match at the beginning however
|
|
* can only produce such an empty leading substring for apps running on or
|
|
* targeting API versions <= 28.
|
|
*
|
|
* <p> The {@code limit} parameter controls the number of times the
|
|
* pattern is applied and therefore affects the length of the resulting
|
|
* array.
|
|
* <ul>
|
|
* <li><p>
|
|
* If the <i>limit</i> is positive then the pattern will be applied
|
|
* at most <i>limit</i> - 1 times, the array's length will be
|
|
* no greater than <i>limit</i>, and the array's last entry will contain
|
|
* all input beyond the last matched delimiter.</p></li>
|
|
*
|
|
* <li><p>
|
|
* If the <i>limit</i> is zero then the pattern will be applied as
|
|
* many times as possible, the array can have any length, and trailing
|
|
* empty strings will be discarded.</p></li>
|
|
*
|
|
* <li><p>
|
|
* If the <i>limit</i> is negative then the pattern will be applied
|
|
* as many times as possible and the array can have any length.</p></li>
|
|
* </ul>
|
|
*
|
|
* <p> The input {@code "boo:and:foo"}, for example, yields the following
|
|
* results with these parameters:
|
|
*
|
|
* <table class="plain" style="margin-left:2em;">
|
|
* <caption style="display:none">Split example showing regex, limit, and result</caption>
|
|
* <thead>
|
|
* <tr>
|
|
* <th scope="col">Regex</th>
|
|
* <th scope="col">Limit</th>
|
|
* <th scope="col">Result</th>
|
|
* </tr>
|
|
* </thead>
|
|
* <tbody>
|
|
* <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
|
|
* <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
|
|
* <td>{@code { "boo", "and:foo" }}</td></tr>
|
|
* <tr><!-- : -->
|
|
* <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
|
|
* <td>{@code { "boo", "and", "foo" }}</td></tr>
|
|
* <tr><!-- : -->
|
|
* <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
|
|
* <td>{@code { "boo", "and", "foo" }}</td></tr>
|
|
* <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
|
|
* <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
|
|
* <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
|
|
* <tr><!-- o -->
|
|
* <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
|
|
* <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
|
|
* <tr><!-- o -->
|
|
* <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
|
|
* <td>{@code { "b", "", ":and:f" }}</td></tr>
|
|
* </tbody>
|
|
* </table>
|
|
*
|
|
* @param input
|
|
* The character sequence to be split
|
|
*
|
|
* @param limit
|
|
* The result threshold, as described above
|
|
*
|
|
* @return The array of strings computed by splitting the input
|
|
* around matches of this pattern
|
|
*/
|
|
public String[] split(CharSequence input, int limit) {
|
|
// BEGIN Android-added: fastSplit() to speed up simple cases.
|
|
String[] fast = fastSplit(pattern, input.toString(), limit);
|
|
if (fast != null) {
|
|
return fast;
|
|
}
|
|
// END Android-added: fastSplit() to speed up simple cases.
|
|
int index = 0;
|
|
boolean matchLimited = limit > 0;
|
|
ArrayList<String> matchList = new ArrayList<>();
|
|
Matcher m = matcher(input);
|
|
|
|
// Add segments before each match found
|
|
while(m.find()) {
|
|
if (!matchLimited || matchList.size() < limit - 1) {
|
|
if (index == 0 && index == m.start() && m.start() == m.end()) {
|
|
// no empty leading substring included for zero-width match
|
|
// at the beginning of the input char sequence.
|
|
// BEGIN Android-changed: split() compat behavior for apps targeting <= 28.
|
|
// continue;
|
|
int targetSdkVersion = VMRuntime.getRuntime().getTargetSdkVersion();
|
|
if (targetSdkVersion > 28) {
|
|
continue;
|
|
}
|
|
// END Android-changed: split() compat behavior for apps targeting <= 28.
|
|
}
|
|
String match = input.subSequence(index, m.start()).toString();
|
|
matchList.add(match);
|
|
index = m.end();
|
|
} else if (matchList.size() == limit - 1) { // last one
|
|
String match = input.subSequence(index,
|
|
input.length()).toString();
|
|
matchList.add(match);
|
|
index = m.end();
|
|
}
|
|
}
|
|
|
|
// If no match was found, return this
|
|
if (index == 0)
|
|
return new String[] {input.toString()};
|
|
|
|
// Add remaining segment
|
|
if (!matchLimited || matchList.size() < limit)
|
|
matchList.add(input.subSequence(index, input.length()).toString());
|
|
|
|
// Construct result
|
|
int resultSize = matchList.size();
|
|
if (limit == 0)
|
|
while (resultSize > 0 && matchList.get(resultSize-1).isEmpty())
|
|
resultSize--;
|
|
String[] result = new String[resultSize];
|
|
return matchList.subList(0, resultSize).toArray(result);
|
|
}
|
|
|
|
// BEGIN Android-added: fastSplit() to speed up simple cases.
|
|
private static final String FASTSPLIT_METACHARACTERS = "\\?*+[](){}^$.|";
|
|
|
|
/**
|
|
* Returns a result equivalent to {@code s.split(separator, limit)} if it's able
|
|
* to compute it more cheaply than native impl, or null if the caller should fall back to
|
|
* using native impl.
|
|
*
|
|
* fastpath will work if the regex is a
|
|
* (1)one-char String and this character is not one of the
|
|
* RegEx's meta characters ".$|()[{^?*+\\", or
|
|
* (2)two-char String and the first char is the backslash and
|
|
* the second is one of regEx's meta characters ".$|()[{^?*+\\".
|
|
* @hide
|
|
*/
|
|
public static String[] fastSplit(String re, String input, int limit) {
|
|
// Can we do it cheaply?
|
|
int len = re.length();
|
|
if (len == 0) {
|
|
return null;
|
|
}
|
|
char ch = re.charAt(0);
|
|
if (len == 1) {
|
|
if (Character.isSurrogate(ch)) {
|
|
// Single surrogate is an invalid UTF-16 sequence.
|
|
return null;
|
|
} else if (FASTSPLIT_METACHARACTERS.indexOf(ch) != -1) {
|
|
// We don't allow a single metacharacter.
|
|
return null;
|
|
}
|
|
// pass through
|
|
} else if (len == 2 && ch == '\\') {
|
|
// We're looking for a quoted character.
|
|
// Quoted metacharacters are effectively single non-metacharacters.
|
|
ch = re.charAt(1);
|
|
if (FASTSPLIT_METACHARACTERS.indexOf(ch) == -1) {
|
|
return null;
|
|
}
|
|
} else {
|
|
return null;
|
|
}
|
|
|
|
// We can do this cheaply...
|
|
|
|
// Unlike Perl, which considers the result of splitting the empty string to be the empty
|
|
// array, Java returns an array containing the empty string.
|
|
if (input.isEmpty()) {
|
|
return new String[] { "" };
|
|
}
|
|
|
|
// Count separators
|
|
int separatorCount = 0;
|
|
int begin = 0;
|
|
int end;
|
|
while (separatorCount + 1 != limit && (end = input.indexOf(ch, begin)) != -1) {
|
|
++separatorCount;
|
|
begin = end + 1;
|
|
}
|
|
int lastPartEnd = input.length();
|
|
if (limit == 0 && begin == lastPartEnd) {
|
|
// Last part is empty for limit == 0, remove all trailing empty matches.
|
|
if (separatorCount == lastPartEnd) {
|
|
// Input contains only separators.
|
|
return EmptyArray.STRING;
|
|
}
|
|
// Find the beginning of trailing separators.
|
|
do {
|
|
--begin;
|
|
} while (input.charAt(begin - 1) == ch);
|
|
// Reduce separatorCount and fix lastPartEnd.
|
|
separatorCount -= input.length() - begin;
|
|
lastPartEnd = begin;
|
|
}
|
|
|
|
// Collect the result parts.
|
|
String[] result = new String[separatorCount + 1];
|
|
begin = 0;
|
|
for (int i = 0; i != separatorCount; ++i) {
|
|
end = input.indexOf(ch, begin);
|
|
result[i] = input.substring(begin, end);
|
|
begin = end + 1;
|
|
}
|
|
// Add last part.
|
|
result[separatorCount] = input.substring(begin, lastPartEnd);
|
|
return result;
|
|
}
|
|
// END Android-added: fastSplit() to speed up simple cases.
|
|
|
|
/**
|
|
* Splits the given input sequence around matches of this pattern.
|
|
*
|
|
* <p> This method works as if by invoking the two-argument {@link
|
|
* #split(java.lang.CharSequence, int) split} method with the given input
|
|
* sequence and a limit argument of zero. Trailing empty strings are
|
|
* therefore not included in the resulting array. </p>
|
|
*
|
|
* <p> The input {@code "boo:and:foo"}, for example, yields the following
|
|
* results with these expressions:
|
|
*
|
|
* <table class="plain" style="margin-left:2em">
|
|
* <caption style="display:none">Split examples showing regex and result</caption>
|
|
* <thead>
|
|
* <tr>
|
|
* <th scope="col">Regex</th>
|
|
* <th scope="col">Result</th>
|
|
* </tr>
|
|
* </thead>
|
|
* <tbody>
|
|
* <tr><th scope="row" style="text-weight:normal">:</th>
|
|
* <td>{@code { "boo", "and", "foo" }}</td></tr>
|
|
* <tr><th scope="row" style="text-weight:normal">o</th>
|
|
* <td>{@code { "b", "", ":and:f" }}</td></tr>
|
|
* </tbody>
|
|
* </table>
|
|
*
|
|
*
|
|
* @param input
|
|
* The character sequence to be split
|
|
*
|
|
* @return The array of strings computed by splitting the input
|
|
* around matches of this pattern
|
|
*/
|
|
public String[] split(CharSequence input) {
|
|
return split(input, 0);
|
|
}
|
|
|
|
/**
|
|
* Returns a literal pattern {@code String} for the specified
|
|
* {@code String}.
|
|
*
|
|
* <p>This method produces a {@code String} that can be used to
|
|
* create a {@code Pattern} that would match the string
|
|
* {@code s} as if it were a literal pattern.</p> Metacharacters
|
|
* or escape sequences in the input sequence will be given no special
|
|
* meaning.
|
|
*
|
|
* @param s The string to be literalized
|
|
* @return A literal string replacement
|
|
* @since 1.5
|
|
*/
|
|
public static String quote(String s) {
|
|
int slashEIndex = s.indexOf("\\E");
|
|
if (slashEIndex == -1)
|
|
return "\\Q" + s + "\\E";
|
|
|
|
int lenHint = s.length();
|
|
lenHint = (lenHint < Integer.MAX_VALUE - 8 - lenHint) ?
|
|
(lenHint << 1) : (Integer.MAX_VALUE - 8);
|
|
|
|
StringBuilder sb = new StringBuilder(lenHint);
|
|
sb.append("\\Q");
|
|
int current = 0;
|
|
do {
|
|
sb.append(s, current, slashEIndex)
|
|
.append("\\E\\\\E\\Q");
|
|
current = slashEIndex + 2;
|
|
} while ((slashEIndex = s.indexOf("\\E", current)) != -1);
|
|
|
|
return sb.append(s, current, s.length())
|
|
.append("\\E")
|
|
.toString();
|
|
}
|
|
|
|
/**
|
|
* Recompile the Pattern instance from a stream. The original pattern
|
|
* string is read in and the object tree is recompiled from it.
|
|
*/
|
|
@java.io.Serial
|
|
private void readObject(java.io.ObjectInputStream s)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
|
|
// Read in all fields
|
|
s.defaultReadObject();
|
|
|
|
// Android-removed: reimplement matching logic natively via ICU.
|
|
/*
|
|
// reset the flags
|
|
flags0 = flags;
|
|
|
|
// Initialize counts
|
|
capturingGroupCount = 1;
|
|
localCount = 0;
|
|
localTCNCount = 0;
|
|
*/
|
|
|
|
// Android-changed: Pattern is eagerly compiled() upon construction.
|
|
/*
|
|
// if length > 0, the Pattern is lazily compiled
|
|
if (pattern.isEmpty()) {
|
|
root = new Start(lastAccept);
|
|
matchRoot = lastAccept;
|
|
compiled = true;
|
|
}
|
|
*/
|
|
compile();
|
|
}
|
|
|
|
// Android-changed: reimplement matching logic natively via ICU.
|
|
// Dropped documentation reference to Start and LastNode implementation
|
|
// details which do not apply on Android.
|
|
/**
|
|
* This private constructor is used to create all Patterns. The pattern
|
|
* string and match flags are all that is needed to completely describe
|
|
* a Pattern.
|
|
*/
|
|
private Pattern(String p, int f) {
|
|
// BEGIN Android-added: CANON_EQ and UNICODE_CHARACTER_CLASS flags are not supported.
|
|
if ((f & CANON_EQ) != 0) {
|
|
throw new IllegalArgumentException("CANON_EQ flag isn't supported");
|
|
}
|
|
if ((f & UNICODE_CHARACTER_CLASS) != 0) {
|
|
throw new IllegalArgumentException("UNICODE_CHARACTER_CLASS flag not supported");
|
|
}
|
|
// END Android-added: CANON_EQ and UNICODE_CHARACTER_CLASS flags are not supported.
|
|
if ((f & ~ALL_FLAGS) != 0) {
|
|
throw new IllegalArgumentException("Unknown flag 0x"
|
|
+ Integer.toHexString(f));
|
|
}
|
|
pattern = p;
|
|
flags = f;
|
|
|
|
// Android-changed: Pattern is eagerly compiled() upon construction.
|
|
// BEGIN Android-changed: Reimplement matching logic via ICU4C, and shouldn't overflow.
|
|
/*
|
|
// to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
|
|
if ((flags & UNICODE_CHARACTER_CLASS) != 0)
|
|
flags |= UNICODE_CASE;
|
|
|
|
// 'flags' for compiling
|
|
flags0 = flags;
|
|
|
|
// Reset group index count
|
|
capturingGroupCount = 1;
|
|
localCount = 0;
|
|
localTCNCount = 0;
|
|
|
|
if (!pattern.isEmpty()) {
|
|
try {
|
|
compile();
|
|
} catch (StackOverflowError soe) {
|
|
throw error("Stack overflow during pattern compilation");
|
|
}
|
|
} else {
|
|
root = new Start(lastAccept);
|
|
matchRoot = lastAccept;
|
|
}
|
|
*/
|
|
compile();
|
|
// END Android-changed: Reimplement matching logic via ICU4C, and shouldn't overflow.
|
|
}
|
|
|
|
// BEGIN Android-removed: Reimplement matching logic via ICU4C.
|
|
/**
|
|
* The pattern is converted to normalized form ({@link
|
|
* java.text.Normalizer.Form#NFC NFC}, canonical decomposition,
|
|
* followed by canonical composition for the character class
|
|
* part, and {@link java.text.Normalizer.Form#NFD NFD},
|
|
* canonical decomposition for the rest), and then a pure
|
|
* group is constructed to match canonical equivalences of the
|
|
* characters.
|
|
*
|
|
private static String normalize(String pattern) {
|
|
int plen = pattern.length();
|
|
StringBuilder pbuf = new StringBuilder(plen);
|
|
char last = 0;
|
|
int lastStart = 0;
|
|
char cc = 0;
|
|
for (int i = 0; i < plen;) {
|
|
char c = pattern.charAt(i);
|
|
if (cc == 0 && // top level
|
|
c == '\\' && i + 1 < plen && pattern.charAt(i + 1) == '\\') {
|
|
i += 2; last = 0;
|
|
continue;
|
|
}
|
|
if (c == '[' && last != '\\') {
|
|
if (cc == 0) {
|
|
if (lastStart < i)
|
|
normalizeSlice(pattern, lastStart, i, pbuf);
|
|
lastStart = i;
|
|
}
|
|
cc++;
|
|
} else if (c == ']' && last != '\\') {
|
|
cc--;
|
|
if (cc == 0) {
|
|
normalizeClazz(pattern, lastStart, i + 1, pbuf);
|
|
lastStart = i + 1;
|
|
}
|
|
}
|
|
last = c;
|
|
i++;
|
|
}
|
|
assert (cc == 0);
|
|
if (lastStart < plen)
|
|
normalizeSlice(pattern, lastStart, plen, pbuf);
|
|
return pbuf.toString();
|
|
}
|
|
|
|
private static void normalizeSlice(String src, int off, int limit,
|
|
StringBuilder dst)
|
|
{
|
|
int len = src.length();
|
|
int off0 = off;
|
|
while (off < limit && ASCII.isAscii(src.charAt(off))) {
|
|
off++;
|
|
}
|
|
if (off == limit) {
|
|
dst.append(src, off0, limit);
|
|
return;
|
|
}
|
|
off--;
|
|
if (off < off0)
|
|
off = off0;
|
|
else
|
|
dst.append(src, off0, off);
|
|
while (off < limit) {
|
|
int ch0 = src.codePointAt(off);
|
|
if (".$|()[]{}^?*+\\".indexOf(ch0) != -1) {
|
|
dst.append((char)ch0);
|
|
off++;
|
|
continue;
|
|
}
|
|
int j = Grapheme.nextBoundary(src, off, limit);
|
|
int ch1;
|
|
String seq = src.substring(off, j);
|
|
String nfd = Normalizer.normalize(seq, Normalizer.Form.NFD);
|
|
off = j;
|
|
if (nfd.codePointCount(0, nfd.length()) > 1) {
|
|
ch0 = nfd.codePointAt(0);
|
|
ch1 = nfd.codePointAt(Character.charCount(ch0));
|
|
if (Character.getType(ch1) == Character.NON_SPACING_MARK) {
|
|
Set<String> altns = new LinkedHashSet<>();
|
|
altns.add(seq);
|
|
produceEquivalentAlternation(nfd, altns);
|
|
dst.append("(?:");
|
|
altns.forEach( s -> dst.append(s).append('|'));
|
|
dst.delete(dst.length() - 1, dst.length());
|
|
dst.append(")");
|
|
continue;
|
|
}
|
|
}
|
|
String nfc = Normalizer.normalize(seq, Normalizer.Form.NFC);
|
|
if (!seq.equals(nfc) && !nfd.equals(nfc))
|
|
dst.append("(?:" + seq + "|" + nfd + "|" + nfc + ")");
|
|
else if (!seq.equals(nfd))
|
|
dst.append("(?:" + seq + "|" + nfd + ")");
|
|
else
|
|
dst.append(seq);
|
|
}
|
|
}
|
|
|
|
private static void normalizeClazz(String src, int off, int limit,
|
|
StringBuilder dst)
|
|
{
|
|
dst.append(Normalizer.normalize(src.substring(off, limit), Form.NFC));
|
|
}
|
|
|
|
/**
|
|
* Given a specific sequence composed of a regular character and
|
|
* combining marks that follow it, produce the alternation that will
|
|
* match all canonical equivalences of that sequence.
|
|
*
|
|
private static void produceEquivalentAlternation(String src,
|
|
Set<String> dst)
|
|
{
|
|
int len = countChars(src, 0, 1);
|
|
if (src.length() == len) {
|
|
dst.add(src); // source has one character.
|
|
return;
|
|
}
|
|
String base = src.substring(0,len);
|
|
String combiningMarks = src.substring(len);
|
|
String[] perms = producePermutations(combiningMarks);
|
|
// Add combined permutations
|
|
for(int x = 0; x < perms.length; x++) {
|
|
String next = base + perms[x];
|
|
dst.add(next);
|
|
next = composeOneStep(next);
|
|
if (next != null) {
|
|
produceEquivalentAlternation(next, dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an array of strings that have all the possible
|
|
* permutations of the characters in the input string.
|
|
* This is used to get a list of all possible orderings
|
|
* of a set of combining marks. Note that some of the permutations
|
|
* are invalid because of combining class collisions, and these
|
|
* possibilities must be removed because they are not canonically
|
|
* equivalent.
|
|
*
|
|
private static String[] producePermutations(String input) {
|
|
if (input.length() == countChars(input, 0, 1))
|
|
return new String[] {input};
|
|
|
|
if (input.length() == countChars(input, 0, 2)) {
|
|
int c0 = Character.codePointAt(input, 0);
|
|
int c1 = Character.codePointAt(input, Character.charCount(c0));
|
|
if (getClass(c1) == getClass(c0)) {
|
|
return new String[] {input};
|
|
}
|
|
String[] result = new String[2];
|
|
result[0] = input;
|
|
StringBuilder sb = new StringBuilder(2);
|
|
sb.appendCodePoint(c1);
|
|
sb.appendCodePoint(c0);
|
|
result[1] = sb.toString();
|
|
return result;
|
|
}
|
|
|
|
int length = 1;
|
|
int nCodePoints = countCodePoints(input);
|
|
for(int x=1; x<nCodePoints; x++)
|
|
length = length * (x+1);
|
|
|
|
String[] temp = new String[length];
|
|
|
|
int combClass[] = new int[nCodePoints];
|
|
for(int x=0, i=0; x<nCodePoints; x++) {
|
|
int c = Character.codePointAt(input, i);
|
|
combClass[x] = getClass(c);
|
|
i += Character.charCount(c);
|
|
}
|
|
|
|
// For each char, take it out and add the permutations
|
|
// of the remaining chars
|
|
int index = 0;
|
|
int len;
|
|
// offset maintains the index in code units.
|
|
loop: for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
|
|
len = countChars(input, offset, 1);
|
|
for(int y=x-1; y>=0; y--) {
|
|
if (combClass[y] == combClass[x]) {
|
|
continue loop;
|
|
}
|
|
}
|
|
StringBuilder sb = new StringBuilder(input);
|
|
String otherChars = sb.delete(offset, offset+len).toString();
|
|
String[] subResult = producePermutations(otherChars);
|
|
|
|
String prefix = input.substring(offset, offset+len);
|
|
for (String sre : subResult)
|
|
temp[index++] = prefix + sre;
|
|
}
|
|
String[] result = new String[index];
|
|
System.arraycopy(temp, 0, result, 0, index);
|
|
return result;
|
|
}
|
|
|
|
private static int getClass(int c) {
|
|
return sun.text.Normalizer.getCombiningClass(c);
|
|
}
|
|
|
|
/**
|
|
* Attempts to compose input by combining the first character
|
|
* with the first combining mark following it. Returns a String
|
|
* that is the composition of the leading character with its first
|
|
* combining mark followed by the remaining combining marks. Returns
|
|
* null if the first two characters cannot be further composed.
|
|
*
|
|
private static String composeOneStep(String input) {
|
|
int len = countChars(input, 0, 2);
|
|
String firstTwoCharacters = input.substring(0, len);
|
|
String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
|
|
if (result.equals(firstTwoCharacters))
|
|
return null;
|
|
else {
|
|
String remainder = input.substring(len);
|
|
return result + remainder;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Preprocess any \Q...\E sequences in `temp', meta-quoting them.
|
|
* See the description of `quotemeta' in perlfunc(1).
|
|
*
|
|
private void RemoveQEQuoting() {
|
|
final int pLen = patternLength;
|
|
int i = 0;
|
|
while (i < pLen-1) {
|
|
if (temp[i] != '\\')
|
|
i += 1;
|
|
else if (temp[i + 1] != 'Q')
|
|
i += 2;
|
|
else
|
|
break;
|
|
}
|
|
if (i >= pLen - 1) // No \Q sequence found
|
|
return;
|
|
int j = i;
|
|
i += 2;
|
|
int newTempLen;
|
|
try {
|
|
newTempLen = Math.addExact(j + 2, Math.multiplyExact(3, pLen - i));
|
|
} catch (ArithmeticException ae) {
|
|
throw new OutOfMemoryError("Required pattern length too large");
|
|
}
|
|
int[] newtemp = new int[newTempLen];
|
|
System.arraycopy(temp, 0, newtemp, 0, j);
|
|
|
|
boolean inQuote = true;
|
|
boolean beginQuote = true;
|
|
while (i < pLen) {
|
|
int c = temp[i++];
|
|
if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
|
|
newtemp[j++] = c;
|
|
} else if (ASCII.isDigit(c)) {
|
|
if (beginQuote) {
|
|
/*
|
|
* A unicode escape \[0xu] could be before this quote,
|
|
* and we don't want this numeric char to processed as
|
|
* part of the escape.
|
|
*
|
|
newtemp[j++] = '\\';
|
|
newtemp[j++] = 'x';
|
|
newtemp[j++] = '3';
|
|
}
|
|
newtemp[j++] = c;
|
|
} else if (c != '\\') {
|
|
if (inQuote) newtemp[j++] = '\\';
|
|
newtemp[j++] = c;
|
|
} else if (inQuote) {
|
|
if (temp[i] == 'E') {
|
|
i++;
|
|
inQuote = false;
|
|
} else {
|
|
newtemp[j++] = '\\';
|
|
newtemp[j++] = '\\';
|
|
}
|
|
} else {
|
|
if (temp[i] == 'Q') {
|
|
i++;
|
|
inQuote = true;
|
|
beginQuote = true;
|
|
continue;
|
|
} else {
|
|
newtemp[j++] = c;
|
|
if (i != pLen)
|
|
newtemp[j++] = temp[i++];
|
|
}
|
|
}
|
|
|
|
beginQuote = false;
|
|
}
|
|
|
|
patternLength = j;
|
|
temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
|
|
}
|
|
|
|
/**
|
|
* Copies regular expression to an int array and invokes the parsing
|
|
* of the expression which will create the object tree.
|
|
*
|
|
private void compile() {
|
|
// Handle canonical equivalences
|
|
if (has(CANON_EQ) && !has(LITERAL)) {
|
|
normalizedPattern = normalize(pattern);
|
|
} else {
|
|
normalizedPattern = pattern;
|
|
}
|
|
patternLength = normalizedPattern.length();
|
|
|
|
// Copy pattern to int array for convenience
|
|
// Use double zero to terminate pattern
|
|
temp = new int[patternLength + 2];
|
|
|
|
hasSupplementary = false;
|
|
int c, count = 0;
|
|
// Convert all chars into code points
|
|
for (int x = 0; x < patternLength; x += Character.charCount(c)) {
|
|
c = normalizedPattern.codePointAt(x);
|
|
if (isSupplementary(c)) {
|
|
hasSupplementary = true;
|
|
}
|
|
temp[count++] = c;
|
|
}
|
|
|
|
patternLength = count; // patternLength now in code points
|
|
|
|
if (! has(LITERAL))
|
|
RemoveQEQuoting();
|
|
|
|
// Allocate all temporary objects here.
|
|
buffer = new int[32];
|
|
groupNodes = new GroupHead[10];
|
|
namedGroups = null;
|
|
topClosureNodes = new ArrayList<>(10);
|
|
|
|
if (has(LITERAL)) {
|
|
// Literal pattern handling
|
|
matchRoot = newSlice(temp, patternLength, hasSupplementary);
|
|
matchRoot.next = lastAccept;
|
|
} else {
|
|
// Start recursive descent parsing
|
|
matchRoot = expr(lastAccept);
|
|
// Check extra pattern characters
|
|
if (patternLength != cursor) {
|
|
if (peek() == ')') {
|
|
throw error("Unmatched closing ')'");
|
|
} else {
|
|
throw error("Unexpected internal error");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Peephole optimization
|
|
if (matchRoot instanceof Slice) {
|
|
root = BnM.optimize(matchRoot);
|
|
if (root == matchRoot) {
|
|
root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
|
|
}
|
|
} else if (matchRoot instanceof Begin || matchRoot instanceof First) {
|
|
root = matchRoot;
|
|
} else {
|
|
root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
|
|
}
|
|
|
|
// Optimize the greedy Loop to prevent exponential backtracking, IF there
|
|
// is no group ref in this pattern. With a non-negative localTCNCount value,
|
|
// the greedy type Loop, Curly will skip the backtracking for any starting
|
|
// position "i" that failed in the past.
|
|
if (!hasGroupRef) {
|
|
for (Node node : topClosureNodes) {
|
|
if (node instanceof Loop) {
|
|
// non-deterministic-greedy-group
|
|
((Loop)node).posIndex = localTCNCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Release temporary storage
|
|
temp = null;
|
|
buffer = null;
|
|
groupNodes = null;
|
|
patternLength = 0;
|
|
compiled = true;
|
|
topClosureNodes = null;
|
|
}
|
|
|
|
Map<String, Integer> namedGroups() {
|
|
Map<String, Integer> groups = namedGroups;
|
|
if (groups == null) {
|
|
namedGroups = groups = new HashMap<>(2);
|
|
}
|
|
return groups;
|
|
}
|
|
|
|
/**
|
|
* Used to accumulate information about a subtree of the object graph
|
|
* so that optimizations can be applied to the subtree.
|
|
*
|
|
static final class TreeInfo {
|
|
int minLength;
|
|
int maxLength;
|
|
boolean maxValid;
|
|
boolean deterministic;
|
|
|
|
TreeInfo() {
|
|
reset();
|
|
}
|
|
void reset() {
|
|
minLength = 0;
|
|
maxLength = 0;
|
|
maxValid = true;
|
|
deterministic = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following private methods are mainly used to improve the
|
|
* readability of the code. In order to let the Java compiler easily
|
|
* inline them, we should not put many assertions or error checks in them.
|
|
*
|
|
|
|
/**
|
|
* Indicates whether a particular flag is set or not.
|
|
*
|
|
private boolean has(int f) {
|
|
return (flags0 & f) != 0;
|
|
}
|
|
|
|
/**
|
|
* Match next character, signal error if failed.
|
|
*
|
|
private void accept(int ch, String s) {
|
|
int testChar = temp[cursor++];
|
|
if (has(COMMENTS))
|
|
testChar = parsePastWhitespace(testChar);
|
|
if (ch != testChar) {
|
|
throw error(s);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Mark the end of pattern with a specific character.
|
|
*
|
|
private void mark(int c) {
|
|
temp[patternLength] = c;
|
|
}
|
|
|
|
/**
|
|
* Peek the next character, and do not advance the cursor.
|
|
*
|
|
private int peek() {
|
|
int ch = temp[cursor];
|
|
if (has(COMMENTS))
|
|
ch = peekPastWhitespace(ch);
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* Read the next character, and advance the cursor by one.
|
|
*
|
|
private int read() {
|
|
int ch = temp[cursor++];
|
|
if (has(COMMENTS))
|
|
ch = parsePastWhitespace(ch);
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* Read the next character, and advance the cursor by one,
|
|
* ignoring the COMMENTS setting
|
|
*
|
|
private int readEscaped() {
|
|
int ch = temp[cursor++];
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* Advance the cursor by one, and peek the next character.
|
|
*
|
|
private int next() {
|
|
int ch = temp[++cursor];
|
|
if (has(COMMENTS))
|
|
ch = peekPastWhitespace(ch);
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* Advance the cursor by one, and peek the next character,
|
|
* ignoring the COMMENTS setting
|
|
*
|
|
private int nextEscaped() {
|
|
int ch = temp[++cursor];
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* If in xmode peek past whitespace and comments.
|
|
*
|
|
private int peekPastWhitespace(int ch) {
|
|
while (ASCII.isSpace(ch) || ch == '#') {
|
|
while (ASCII.isSpace(ch))
|
|
ch = temp[++cursor];
|
|
if (ch == '#') {
|
|
ch = peekPastLine();
|
|
}
|
|
}
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* If in xmode parse past whitespace and comments.
|
|
*
|
|
private int parsePastWhitespace(int ch) {
|
|
while (ASCII.isSpace(ch) || ch == '#') {
|
|
while (ASCII.isSpace(ch))
|
|
ch = temp[cursor++];
|
|
if (ch == '#')
|
|
ch = parsePastLine();
|
|
}
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* xmode parse past comment to end of line.
|
|
*
|
|
private int parsePastLine() {
|
|
int ch = temp[cursor++];
|
|
while (ch != 0 && !isLineSeparator(ch))
|
|
ch = temp[cursor++];
|
|
if (ch == 0 && cursor > patternLength) {
|
|
cursor = patternLength;
|
|
ch = temp[cursor++];
|
|
}
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* xmode peek past comment to end of line.
|
|
*
|
|
private int peekPastLine() {
|
|
int ch = temp[++cursor];
|
|
while (ch != 0 && !isLineSeparator(ch))
|
|
ch = temp[++cursor];
|
|
if (ch == 0 && cursor > patternLength) {
|
|
cursor = patternLength;
|
|
ch = temp[cursor];
|
|
}
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* Determines if character is a line separator in the current mode
|
|
*
|
|
private boolean isLineSeparator(int ch) {
|
|
if (has(UNIX_LINES)) {
|
|
return ch == '\n';
|
|
} else {
|
|
return (ch == '\n' ||
|
|
ch == '\r' ||
|
|
(ch|1) == '\u2029' ||
|
|
ch == '\u0085');
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Read the character after the next one, and advance the cursor by two.
|
|
*
|
|
private int skip() {
|
|
int i = cursor;
|
|
int ch = temp[i+1];
|
|
cursor = i + 2;
|
|
return ch;
|
|
}
|
|
|
|
/**
|
|
* Unread one next character, and retreat cursor by one.
|
|
*
|
|
private void unread() {
|
|
cursor--;
|
|
}
|
|
|
|
/**
|
|
* Internal method used for handling all syntax errors. The pattern is
|
|
* displayed with a pointer to aid in locating the syntax error.
|
|
*
|
|
private PatternSyntaxException error(String s) {
|
|
return new PatternSyntaxException(s, normalizedPattern, cursor - 1);
|
|
}
|
|
|
|
/**
|
|
* Determines if there is any supplementary character or unpaired
|
|
* surrogate in the specified range.
|
|
*
|
|
private boolean findSupplementary(int start, int end) {
|
|
for (int i = start; i < end; i++) {
|
|
if (isSupplementary(temp[i]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Determines if the specified code point is a supplementary
|
|
* character or unpaired surrogate.
|
|
*
|
|
private static final boolean isSupplementary(int ch) {
|
|
return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
|
|
Character.isSurrogate((char)ch);
|
|
}
|
|
|
|
/**
|
|
* The following methods handle the main parsing. They are sorted
|
|
* according to their precedence order, the lowest one first.
|
|
*
|
|
|
|
/**
|
|
* The expression is parsed with branch nodes added for alternations.
|
|
* This may be called recursively to parse sub expressions that may
|
|
* contain alternations.
|
|
*
|
|
private Node expr(Node end) {
|
|
Node prev = null;
|
|
Node firstTail = null;
|
|
Branch branch = null;
|
|
Node branchConn = null;
|
|
|
|
for (;;) {
|
|
Node node = sequence(end);
|
|
Node nodeTail = root; //double return
|
|
if (prev == null) {
|
|
prev = node;
|
|
firstTail = nodeTail;
|
|
} else {
|
|
// Branch
|
|
if (branchConn == null) {
|
|
branchConn = new BranchConn();
|
|
branchConn.next = end;
|
|
}
|
|
if (node == end) {
|
|
// if the node returned from sequence() is "end"
|
|
// we have an empty expr, set a null atom into
|
|
// the branch to indicate to go "next" directly.
|
|
node = null;
|
|
} else {
|
|
// the "tail.next" of each atom goes to branchConn
|
|
nodeTail.next = branchConn;
|
|
}
|
|
if (prev == branch) {
|
|
branch.add(node);
|
|
} else {
|
|
if (prev == end) {
|
|
prev = null;
|
|
} else {
|
|
// replace the "end" with "branchConn" at its tail.next
|
|
// when put the "prev" into the branch as the first atom.
|
|
firstTail.next = branchConn;
|
|
}
|
|
prev = branch = new Branch(prev, node, branchConn);
|
|
}
|
|
}
|
|
if (peek() != '|') {
|
|
return prev;
|
|
}
|
|
next();
|
|
}
|
|
}
|
|
|
|
@SuppressWarnings("fallthrough")
|
|
/**
|
|
* Parsing of sequences between alternations.
|
|
*
|
|
private Node sequence(Node end) {
|
|
Node head = null;
|
|
Node tail = null;
|
|
Node node;
|
|
LOOP:
|
|
for (;;) {
|
|
int ch = peek();
|
|
switch (ch) {
|
|
case '(':
|
|
// Because group handles its own closure,
|
|
// we need to treat it differently
|
|
node = group0();
|
|
// Check for comment or flag group
|
|
if (node == null)
|
|
continue;
|
|
if (head == null)
|
|
head = node;
|
|
else
|
|
tail.next = node;
|
|
// Double return: Tail was returned in root
|
|
tail = root;
|
|
continue;
|
|
case '[':
|
|
if (has(CANON_EQ) && !has(LITERAL))
|
|
node = new NFCCharProperty(clazz(true));
|
|
else
|
|
node = newCharProperty(clazz(true));
|
|
break;
|
|
case '\\':
|
|
ch = nextEscaped();
|
|
if (ch == 'p' || ch == 'P') {
|
|
boolean oneLetter = true;
|
|
boolean comp = (ch == 'P');
|
|
ch = next(); // Consume { if present
|
|
if (ch != '{') {
|
|
unread();
|
|
} else {
|
|
oneLetter = false;
|
|
}
|
|
// node = newCharProperty(family(oneLetter, comp));
|
|
if (has(CANON_EQ) && !has(LITERAL))
|
|
node = new NFCCharProperty(family(oneLetter, comp));
|
|
else
|
|
node = newCharProperty(family(oneLetter, comp));
|
|
} else {
|
|
unread();
|
|
node = atom();
|
|
}
|
|
break;
|
|
case '^':
|
|
next();
|
|
if (has(MULTILINE)) {
|
|
if (has(UNIX_LINES))
|
|
node = new UnixCaret();
|
|
else
|
|
node = new Caret();
|
|
} else {
|
|
node = new Begin();
|
|
}
|
|
break;
|
|
case '$':
|
|
next();
|
|
if (has(UNIX_LINES))
|
|
node = new UnixDollar(has(MULTILINE));
|
|
else
|
|
node = new Dollar(has(MULTILINE));
|
|
break;
|
|
case '.':
|
|
next();
|
|
if (has(DOTALL)) {
|
|
node = new CharProperty(ALL());
|
|
} else {
|
|
if (has(UNIX_LINES)) {
|
|
node = new CharProperty(UNIXDOT());
|
|
} else {
|
|
node = new CharProperty(DOT());
|
|
}
|
|
}
|
|
break;
|
|
case '|':
|
|
case ')':
|
|
break LOOP;
|
|
case ']': // Now interpreting dangling ] and } as literals
|
|
case '}':
|
|
node = atom();
|
|
break;
|
|
case '?':
|
|
case '*':
|
|
case '+':
|
|
next();
|
|
throw error("Dangling meta character '" + ((char)ch) + "'");
|
|
case 0:
|
|
if (cursor >= patternLength) {
|
|
break LOOP;
|
|
}
|
|
// Fall through
|
|
default:
|
|
node = atom();
|
|
break;
|
|
}
|
|
|
|
node = closure(node);
|
|
/* save the top dot-greedy nodes (.*, .+) as well
|
|
if (node instanceof GreedyCharProperty &&
|
|
((GreedyCharProperty)node).cp instanceof Dot) {
|
|
topClosureNodes.add(node);
|
|
}
|
|
*
|
|
if (head == null) {
|
|
head = tail = node;
|
|
} else {
|
|
tail.next = node;
|
|
tail = node;
|
|
}
|
|
}
|
|
if (head == null) {
|
|
return end;
|
|
}
|
|
tail.next = end;
|
|
root = tail; //double return
|
|
return head;
|
|
}
|
|
|
|
@SuppressWarnings("fallthrough")
|
|
/**
|
|
* Parse and add a new Single or Slice.
|
|
*
|
|
private Node atom() {
|
|
int first = 0;
|
|
int prev = -1;
|
|
boolean hasSupplementary = false;
|
|
int ch = peek();
|
|
for (;;) {
|
|
switch (ch) {
|
|
case '*':
|
|
case '+':
|
|
case '?':
|
|
case '{':
|
|
if (first > 1) {
|
|
cursor = prev; // Unwind one character
|
|
first--;
|
|
}
|
|
break;
|
|
case '$':
|
|
case '.':
|
|
case '^':
|
|
case '(':
|
|
case '[':
|
|
case '|':
|
|
case ')':
|
|
break;
|
|
case '\\':
|
|
ch = nextEscaped();
|
|
if (ch == 'p' || ch == 'P') { // Property
|
|
if (first > 0) { // Slice is waiting; handle it first
|
|
unread();
|
|
break;
|
|
} else { // No slice; just return the family node
|
|
boolean comp = (ch == 'P');
|
|
boolean oneLetter = true;
|
|
ch = next(); // Consume { if present
|
|
if (ch != '{')
|
|
unread();
|
|
else
|
|
oneLetter = false;
|
|
if (has(CANON_EQ) && !has(LITERAL))
|
|
return new NFCCharProperty(family(oneLetter, comp));
|
|
else
|
|
return newCharProperty(family(oneLetter, comp));
|
|
}
|
|
}
|
|
unread();
|
|
prev = cursor;
|
|
ch = escape(false, first == 0, false);
|
|
if (ch >= 0) {
|
|
append(ch, first);
|
|
first++;
|
|
if (isSupplementary(ch)) {
|
|
hasSupplementary = true;
|
|
}
|
|
ch = peek();
|
|
continue;
|
|
} else if (first == 0) {
|
|
return root;
|
|
}
|
|
// Unwind meta escape sequence
|
|
cursor = prev;
|
|
break;
|
|
case 0:
|
|
if (cursor >= patternLength) {
|
|
break;
|
|
}
|
|
// Fall through
|
|
default:
|
|
prev = cursor;
|
|
append(ch, first);
|
|
first++;
|
|
if (isSupplementary(ch)) {
|
|
hasSupplementary = true;
|
|
}
|
|
ch = next();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (first == 1) {
|
|
return newCharProperty(single(buffer[0]));
|
|
} else {
|
|
return newSlice(buffer, first, hasSupplementary);
|
|
}
|
|
}
|
|
|
|
private void append(int ch, int index) {
|
|
int len = buffer.length;
|
|
if (index - len >= 0) {
|
|
len = ArraysSupport.newLength(len,
|
|
1 + index - len, /* minimum growth * /
|
|
len /* preferred growth * /);
|
|
buffer = Arrays.copyOf(buffer, len);
|
|
}
|
|
buffer[index] = ch;
|
|
}
|
|
|
|
/**
|
|
* Parses a backref greedily, taking as many numbers as it
|
|
* can. The first digit is always treated as a backref, but
|
|
* multi digit numbers are only treated as a backref if at
|
|
* least that many backrefs exist at this point in the regex.
|
|
*
|
|
private Node ref(int refNum) {
|
|
boolean done = false;
|
|
while(!done) {
|
|
int ch = peek();
|
|
switch (ch) {
|
|
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' -> {
|
|
int newRefNum = (refNum * 10) + (ch - '0');
|
|
// Add another number if it doesn't make a group
|
|
// that doesn't exist
|
|
if (capturingGroupCount - 1 < newRefNum) {
|
|
done = true;
|
|
break;
|
|
}
|
|
refNum = newRefNum;
|
|
read();
|
|
}
|
|
default -> done = true;
|
|
}
|
|
}
|
|
hasGroupRef = true;
|
|
if (has(CASE_INSENSITIVE))
|
|
return new CIBackRef(refNum, has(UNICODE_CASE));
|
|
else
|
|
return new BackRef(refNum);
|
|
}
|
|
|
|
/**
|
|
* Parses an escape sequence to determine the actual value that needs
|
|
* to be matched.
|
|
* If -1 is returned and create was true a new object was added to the tree
|
|
* to handle the escape sequence.
|
|
* If the returned value is greater than zero, it is the value that
|
|
* matches the escape sequence.
|
|
*
|
|
private int escape(boolean inclass, boolean create, boolean isrange) {
|
|
int ch = skip();
|
|
switch (ch) {
|
|
case '0':
|
|
return o();
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
if (inclass) break;
|
|
if (create) {
|
|
root = ref((ch - '0'));
|
|
}
|
|
return -1;
|
|
case 'A':
|
|
if (inclass) break;
|
|
if (create) root = new Begin();
|
|
return -1;
|
|
case 'B':
|
|
if (inclass) break;
|
|
if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
|
|
return -1;
|
|
case 'C':
|
|
break;
|
|
case 'D':
|
|
if (create) {
|
|
predicate = has(UNICODE_CHARACTER_CLASS) ?
|
|
CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
|
|
predicate = predicate.negate();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'E':
|
|
case 'F':
|
|
break;
|
|
case 'G':
|
|
if (inclass) break;
|
|
if (create) root = new LastMatch();
|
|
return -1;
|
|
case 'H':
|
|
if (create) {
|
|
predicate = HorizWS().negate();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
break;
|
|
case 'N':
|
|
return N();
|
|
case 'O':
|
|
case 'P':
|
|
case 'Q':
|
|
break;
|
|
case 'R':
|
|
if (inclass) break;
|
|
if (create) root = new LineEnding();
|
|
return -1;
|
|
case 'S':
|
|
if (create) {
|
|
predicate = has(UNICODE_CHARACTER_CLASS) ?
|
|
CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
|
|
predicate = predicate.negate();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'T':
|
|
case 'U':
|
|
break;
|
|
case 'V':
|
|
if (create) {
|
|
predicate = VertWS().negate();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'W':
|
|
if (create) {
|
|
predicate = has(UNICODE_CHARACTER_CLASS) ?
|
|
CharPredicates.WORD() : CharPredicates.ASCII_WORD();
|
|
predicate = predicate.negate();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'X':
|
|
if (inclass) break;
|
|
if (create) {
|
|
root = new XGrapheme();
|
|
}
|
|
return -1;
|
|
case 'Y':
|
|
break;
|
|
case 'Z':
|
|
if (inclass) break;
|
|
if (create) {
|
|
if (has(UNIX_LINES))
|
|
root = new UnixDollar(false);
|
|
else
|
|
root = new Dollar(false);
|
|
}
|
|
return -1;
|
|
case 'a':
|
|
return '\007';
|
|
case 'b':
|
|
if (inclass) break;
|
|
if (create) {
|
|
if (peek() == '{') {
|
|
if (skip() == 'g') {
|
|
if (read() == '}') {
|
|
root = new GraphemeBound();
|
|
return -1;
|
|
}
|
|
break; // error missing trailing }
|
|
}
|
|
unread(); unread();
|
|
}
|
|
root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
|
|
}
|
|
return -1;
|
|
case 'c':
|
|
return c();
|
|
case 'd':
|
|
if (create) {
|
|
predicate = has(UNICODE_CHARACTER_CLASS) ?
|
|
CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'e':
|
|
return '\033';
|
|
case 'f':
|
|
return '\f';
|
|
case 'g':
|
|
break;
|
|
case 'h':
|
|
if (create) {
|
|
predicate = HorizWS();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'i':
|
|
case 'j':
|
|
break;
|
|
case 'k':
|
|
if (inclass)
|
|
break;
|
|
if (read() != '<')
|
|
throw error("\\k is not followed by '<' for named capturing group");
|
|
String name = groupname(read());
|
|
if (!namedGroups().containsKey(name))
|
|
throw error("named capturing group <" + name + "> does not exist");
|
|
if (create) {
|
|
hasGroupRef = true;
|
|
if (has(CASE_INSENSITIVE))
|
|
root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
|
|
else
|
|
root = new BackRef(namedGroups().get(name));
|
|
}
|
|
return -1;
|
|
case 'l':
|
|
case 'm':
|
|
break;
|
|
case 'n':
|
|
return '\n';
|
|
case 'o':
|
|
case 'p':
|
|
case 'q':
|
|
break;
|
|
case 'r':
|
|
return '\r';
|
|
case 's':
|
|
if (create) {
|
|
predicate = has(UNICODE_CHARACTER_CLASS) ?
|
|
CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 't':
|
|
return '\t';
|
|
case 'u':
|
|
return u();
|
|
case 'v':
|
|
// '\v' was implemented as VT/0x0B in releases < 1.8 (though
|
|
// undocumented). In JDK8 '\v' is specified as a predefined
|
|
// character class for all vertical whitespace characters.
|
|
// So [-1, root=VertWS node] pair is returned (instead of a
|
|
// single 0x0B). This breaks the range if '\v' is used as
|
|
// the start or end value, such as [\v-...] or [...-\v], in
|
|
// which a single definite value (0x0B) is expected. For
|
|
// compatibility concern '\013'/0x0B is returned if isrange.
|
|
if (isrange)
|
|
return '\013';
|
|
if (create) {
|
|
predicate = VertWS();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'w':
|
|
if (create) {
|
|
predicate = has(UNICODE_CHARACTER_CLASS) ?
|
|
CharPredicates.WORD() : CharPredicates.ASCII_WORD();
|
|
if (!inclass)
|
|
root = newCharProperty(predicate);
|
|
}
|
|
return -1;
|
|
case 'x':
|
|
return x();
|
|
case 'y':
|
|
break;
|
|
case 'z':
|
|
if (inclass) break;
|
|
if (create) root = new End();
|
|
return -1;
|
|
default:
|
|
return ch;
|
|
}
|
|
throw error("Illegal/unsupported escape sequence");
|
|
}
|
|
|
|
/**
|
|
* Parse a character class, and return the node that matches it.
|
|
*
|
|
* Consumes a ] on the way out if consume is true. Usually consume
|
|
* is true except for the case of [abc&&def] where def is a separate
|
|
* right hand node with "understood" brackets.
|
|
*
|
|
private CharPredicate clazz(boolean consume) {
|
|
CharPredicate prev = null;
|
|
CharPredicate curr = null;
|
|
BitClass bits = new BitClass();
|
|
|
|
boolean isNeg = false;
|
|
boolean hasBits = false;
|
|
int ch = next();
|
|
|
|
// Negates if first char in a class, otherwise literal
|
|
if (ch == '^' && temp[cursor-1] == '[') {
|
|
ch = next();
|
|
isNeg = true;
|
|
}
|
|
for (;;) {
|
|
switch (ch) {
|
|
case '[':
|
|
curr = clazz(true);
|
|
if (prev == null)
|
|
prev = curr;
|
|
else
|
|
prev = prev.union(curr);
|
|
ch = peek();
|
|
continue;
|
|
case '&':
|
|
ch = next();
|
|
if (ch == '&') {
|
|
ch = next();
|
|
CharPredicate right = null;
|
|
while (ch != ']' && ch != '&') {
|
|
if (ch == '[') {
|
|
if (right == null)
|
|
right = clazz(true);
|
|
else
|
|
right = right.union(clazz(true));
|
|
} else { // abc&&def
|
|
unread();
|
|
if (right == null) {
|
|
right = clazz(false);
|
|
} else {
|
|
right = right.union(clazz(false));
|
|
}
|
|
}
|
|
ch = peek();
|
|
}
|
|
if (hasBits) {
|
|
// bits used, union has high precedence
|
|
if (prev == null) {
|
|
prev = curr = bits;
|
|
} else {
|
|
prev = prev.union(bits);
|
|
}
|
|
hasBits = false;
|
|
}
|
|
if (right != null)
|
|
curr = right;
|
|
if (prev == null) {
|
|
if (right == null)
|
|
throw error("Bad class syntax");
|
|
else
|
|
prev = right;
|
|
} else {
|
|
prev = prev.and(curr);
|
|
}
|
|
} else {
|
|
// treat as a literal &
|
|
unread();
|
|
break;
|
|
}
|
|
continue;
|
|
case 0:
|
|
if (cursor >= patternLength)
|
|
throw error("Unclosed character class");
|
|
break;
|
|
case ']':
|
|
if (prev != null || hasBits) {
|
|
if (consume)
|
|
next();
|
|
if (prev == null)
|
|
prev = bits;
|
|
else if (hasBits)
|
|
prev = prev.union(bits);
|
|
if (isNeg)
|
|
return prev.negate();
|
|
return prev;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
curr = range(bits);
|
|
if (curr == null) { // the bits used
|
|
hasBits = true;
|
|
} else {
|
|
if (prev == null)
|
|
prev = curr;
|
|
else if (prev != curr)
|
|
prev = prev.union(curr);
|
|
}
|
|
ch = peek();
|
|
}
|
|
}
|
|
|
|
private CharPredicate bitsOrSingle(BitClass bits, int ch) {
|
|
/* Bits can only handle codepoints in [u+0000-u+00ff] range.
|
|
Use "single" node instead of bits when dealing with unicode
|
|
case folding for codepoints listed below.
|
|
(1)Uppercase out of range: u+00ff, u+00b5
|
|
toUpperCase(u+00ff) -> u+0178
|
|
toUpperCase(u+00b5) -> u+039c
|
|
(2)LatinSmallLetterLongS u+17f
|
|
toUpperCase(u+017f) -> u+0053
|
|
(3)LatinSmallLetterDotlessI u+131
|
|
toUpperCase(u+0131) -> u+0049
|
|
(4)LatinCapitalLetterIWithDotAbove u+0130
|
|
toLowerCase(u+0130) -> u+0069
|
|
(5)KelvinSign u+212a
|
|
toLowerCase(u+212a) ==> u+006B
|
|
(6)AngstromSign u+212b
|
|
toLowerCase(u+212b) ==> u+00e5
|
|
*
|
|
if (ch < 256 &&
|
|
!(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
|
|
(ch == 0xff || ch == 0xb5 ||
|
|
ch == 0x49 || ch == 0x69 || //I and i
|
|
ch == 0x53 || ch == 0x73 || //S and s
|
|
ch == 0x4b || ch == 0x6b || //K and k
|
|
ch == 0xc5 || ch == 0xe5))) { //A+ring
|
|
bits.add(ch, flags0);
|
|
return null;
|
|
}
|
|
return single(ch);
|
|
}
|
|
|
|
/**
|
|
* Returns a suitably optimized, single character predicate
|
|
*
|
|
private CharPredicate single(final int ch) {
|
|
if (has(CASE_INSENSITIVE)) {
|
|
int lower, upper;
|
|
if (has(UNICODE_CASE)) {
|
|
upper = Character.toUpperCase(ch);
|
|
lower = Character.toLowerCase(upper);
|
|
// Unicode case insensitive matches
|
|
if (upper != lower)
|
|
return SingleU(lower);
|
|
} else if (ASCII.isAscii(ch)) {
|
|
lower = ASCII.toLower(ch);
|
|
upper = ASCII.toUpper(ch);
|
|
// Case insensitive matches a given BMP character
|
|
if (lower != upper)
|
|
return SingleI(lower, upper);
|
|
}
|
|
}
|
|
if (isSupplementary(ch))
|
|
return SingleS(ch);
|
|
return Single(ch); // Match a given BMP character
|
|
}
|
|
|
|
/**
|
|
* Parse a single character or a character range in a character class
|
|
* and return its representative node.
|
|
*
|
|
private CharPredicate range(BitClass bits) {
|
|
int ch = peek();
|
|
if (ch == '\\') {
|
|
ch = nextEscaped();
|
|
if (ch == 'p' || ch == 'P') { // A property
|
|
boolean comp = (ch == 'P');
|
|
boolean oneLetter = true;
|
|
// Consume { if present
|
|
ch = next();
|
|
if (ch != '{')
|
|
unread();
|
|
else
|
|
oneLetter = false;
|
|
return family(oneLetter, comp);
|
|
} else { // ordinary escape
|
|
boolean isrange = temp[cursor+1] == '-';
|
|
unread();
|
|
ch = escape(true, true, isrange);
|
|
if (ch == -1)
|
|
return predicate;
|
|
}
|
|
} else {
|
|
next();
|
|
}
|
|
if (ch >= 0) {
|
|
if (peek() == '-') {
|
|
int endRange = temp[cursor+1];
|
|
if (endRange == '[') {
|
|
return bitsOrSingle(bits, ch);
|
|
}
|
|
if (endRange != ']') {
|
|
next();
|
|
int m = peek();
|
|
if (m == '\\') {
|
|
m = escape(true, false, true);
|
|
} else {
|
|
next();
|
|
}
|
|
if (m < ch) {
|
|
throw error("Illegal character range");
|
|
}
|
|
if (has(CASE_INSENSITIVE)) {
|
|
if (has(UNICODE_CASE))
|
|
return CIRangeU(ch, m);
|
|
return CIRange(ch, m);
|
|
} else {
|
|
return Range(ch, m);
|
|
}
|
|
}
|
|
}
|
|
return bitsOrSingle(bits, ch);
|
|
}
|
|
throw error("Unexpected character '"+((char)ch)+"'");
|
|
}
|
|
|
|
/**
|
|
* Parses a Unicode character family and returns its representative node.
|
|
*
|
|
private CharPredicate family(boolean singleLetter, boolean isComplement) {
|
|
next();
|
|
String name;
|
|
CharPredicate p = null;
|
|
|
|
if (singleLetter) {
|
|
int c = temp[cursor];
|
|
if (!Character.isSupplementaryCodePoint(c)) {
|
|
name = String.valueOf((char)c);
|
|
} else {
|
|
name = new String(temp, cursor, 1);
|
|
}
|
|
read();
|
|
} else {
|
|
int i = cursor;
|
|
mark('}');
|
|
while(read() != '}') {
|
|
}
|
|
mark('\000');
|
|
int j = cursor;
|
|
if (j > patternLength)
|
|
throw error("Unclosed character family");
|
|
if (i + 1 >= j)
|
|
throw error("Empty character family");
|
|
name = new String(temp, i, j-i-1);
|
|
}
|
|
|
|
int i = name.indexOf('=');
|
|
if (i != -1) {
|
|
// property construct \p{name=value}
|
|
String value = name.substring(i + 1);
|
|
name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
|
|
switch (name) {
|
|
case "sc":
|
|
case "script":
|
|
p = CharPredicates.forUnicodeScript(value);
|
|
break;
|
|
case "blk":
|
|
case "block":
|
|
p = CharPredicates.forUnicodeBlock(value);
|
|
break;
|
|
case "gc":
|
|
case "general_category":
|
|
p = CharPredicates.forProperty(value, has(CASE_INSENSITIVE));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (p == null)
|
|
throw error("Unknown Unicode property {name=<" + name + ">, "
|
|
+ "value=<" + value + ">}");
|
|
|
|
} else {
|
|
if (name.startsWith("In")) {
|
|
// \p{InBlockName}
|
|
p = CharPredicates.forUnicodeBlock(name.substring(2));
|
|
} else if (name.startsWith("Is")) {
|
|
// \p{IsGeneralCategory} and \p{IsScriptName}
|
|
String shortName = name.substring(2);
|
|
p = CharPredicates.forUnicodeProperty(shortName, has(CASE_INSENSITIVE));
|
|
if (p == null)
|
|
p = CharPredicates.forProperty(shortName, has(CASE_INSENSITIVE));
|
|
if (p == null)
|
|
p = CharPredicates.forUnicodeScript(shortName);
|
|
} else {
|
|
if (has(UNICODE_CHARACTER_CLASS))
|
|
p = CharPredicates.forPOSIXName(name, has(CASE_INSENSITIVE));
|
|
if (p == null)
|
|
p = CharPredicates.forProperty(name, has(CASE_INSENSITIVE));
|
|
}
|
|
if (p == null)
|
|
throw error("Unknown character property name {" + name + "}");
|
|
}
|
|
if (isComplement) {
|
|
// it might be too expensive to detect if a complement of
|
|
// CharProperty can match "certain" supplementary. So just
|
|
// go with StartS.
|
|
hasSupplementary = true;
|
|
p = p.negate();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
private CharProperty newCharProperty(CharPredicate p) {
|
|
if (p == null)
|
|
return null;
|
|
if (p instanceof BmpCharPredicate)
|
|
return new BmpCharProperty((BmpCharPredicate)p);
|
|
else {
|
|
hasSupplementary = true;
|
|
return new CharProperty(p);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parses and returns the name of a "named capturing group", the trailing
|
|
* ">" is consumed after parsing.
|
|
*
|
|
private String groupname(int ch) {
|
|
StringBuilder sb = new StringBuilder();
|
|
if (!ASCII.isAlpha(ch))
|
|
throw error("capturing group name does not start with a Latin letter");
|
|
do {
|
|
sb.append((char) ch);
|
|
} while (ASCII.isAlnum(ch=read()));
|
|
if (ch != '>')
|
|
throw error("named capturing group is missing trailing '>'");
|
|
return sb.toString();
|
|
}
|
|
|
|
/**
|
|
* Parses a group and returns the head node of a set of nodes that process
|
|
* the group. Sometimes a double return system is used where the tail is
|
|
* returned in root.
|
|
*
|
|
private Node group0() {
|
|
boolean capturingGroup = false;
|
|
Node head;
|
|
Node tail;
|
|
int save = flags0;
|
|
int saveTCNCount = topClosureNodes.size();
|
|
root = null;
|
|
int ch = next();
|
|
if (ch == '?') {
|
|
ch = skip();
|
|
switch (ch) {
|
|
case ':' -> { // (?:xxx) pure group
|
|
head = createGroup(true);
|
|
tail = root;
|
|
head.next = expr(tail);
|
|
}
|
|
case '=', '!' -> { // (?=xxx) and (?!xxx) lookahead
|
|
head = createGroup(true);
|
|
tail = root;
|
|
head.next = expr(tail);
|
|
if (ch == '=') {
|
|
head = tail = new Pos(head);
|
|
} else {
|
|
head = tail = new Neg(head);
|
|
}
|
|
}
|
|
case '>' -> { // (?>xxx) independent group
|
|
head = createGroup(true);
|
|
tail = root;
|
|
head.next = expr(tail);
|
|
head = tail = new Ques(head, Qtype.INDEPENDENT);
|
|
}
|
|
case '<' -> { // (?<xxx) look behind
|
|
ch = read();
|
|
if (ch != '=' && ch != '!') {
|
|
// named captured group
|
|
String name = groupname(ch);
|
|
if (namedGroups().containsKey(name))
|
|
throw error("Named capturing group <" + name
|
|
+ "> is already defined");
|
|
capturingGroup = true;
|
|
head = createGroup(false);
|
|
tail = root;
|
|
namedGroups().put(name, capturingGroupCount - 1);
|
|
head.next = expr(tail);
|
|
break;
|
|
}
|
|
int start = cursor;
|
|
head = createGroup(true);
|
|
tail = root;
|
|
head.next = expr(tail);
|
|
tail.next = LookBehindEndNode.INSTANCE;
|
|
TreeInfo info = new TreeInfo();
|
|
head.study(info);
|
|
if (info.maxValid == false) {
|
|
throw error("Look-behind group does not have "
|
|
+ "an obvious maximum length");
|
|
}
|
|
boolean hasSupplementary = findSupplementary(start, patternLength);
|
|
if (ch == '=') {
|
|
head = tail = (hasSupplementary ?
|
|
new BehindS(head, info.maxLength,
|
|
info.minLength) :
|
|
new Behind(head, info.maxLength,
|
|
info.minLength));
|
|
} else { // if (ch == '!')
|
|
head = tail = (hasSupplementary ?
|
|
new NotBehindS(head, info.maxLength,
|
|
info.minLength) :
|
|
new NotBehind(head, info.maxLength,
|
|
info.minLength));
|
|
}
|
|
// clear all top-closure-nodes inside lookbehind
|
|
if (saveTCNCount < topClosureNodes.size())
|
|
topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
|
|
}
|
|
case '$', '@' -> throw error("Unknown group type");
|
|
default -> { // (?xxx:) inlined match flags
|
|
unread();
|
|
addFlag();
|
|
ch = read();
|
|
if (ch == ')') {
|
|
return null; // Inline modifier only
|
|
}
|
|
if (ch != ':') {
|
|
throw error("Unknown inline modifier");
|
|
}
|
|
head = createGroup(true);
|
|
tail = root;
|
|
head.next = expr(tail);
|
|
}
|
|
}
|
|
} else { // (xxx) a regular group
|
|
capturingGroup = true;
|
|
head = createGroup(false);
|
|
tail = root;
|
|
head.next = expr(tail);
|
|
}
|
|
|
|
accept(')', "Unclosed group");
|
|
flags0 = save;
|
|
|
|
// Check for quantifiers
|
|
Node node = closure(head);
|
|
if (node == head) { // No closure
|
|
root = tail;
|
|
return node; // Dual return
|
|
}
|
|
if (head == tail) { // Zero length assertion
|
|
root = node;
|
|
return node; // Dual return
|
|
}
|
|
|
|
// have group closure, clear all inner closure nodes from the
|
|
// top list (no backtracking stopper optimization for inner
|
|
if (saveTCNCount < topClosureNodes.size())
|
|
topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
|
|
|
|
if (node instanceof Ques ques) {
|
|
if (ques.type == Qtype.POSSESSIVE) {
|
|
root = node;
|
|
return node;
|
|
}
|
|
tail.next = new BranchConn();
|
|
tail = tail.next;
|
|
if (ques.type == Qtype.GREEDY) {
|
|
head = new Branch(head, null, tail);
|
|
} else { // Reluctant quantifier
|
|
head = new Branch(null, head, tail);
|
|
}
|
|
root = tail;
|
|
return head;
|
|
} else if (node instanceof Curly curly) {
|
|
if (curly.type == Qtype.POSSESSIVE) {
|
|
root = node;
|
|
return node;
|
|
}
|
|
// Discover if the group is deterministic
|
|
TreeInfo info = new TreeInfo();
|
|
if (head.study(info)) { // Deterministic
|
|
GroupTail temp = (GroupTail) tail;
|
|
head = root = new GroupCurly(head.next, curly.cmin,
|
|
curly.cmax, curly.type,
|
|
((GroupTail)tail).localIndex,
|
|
((GroupTail)tail).groupIndex,
|
|
capturingGroup);
|
|
return head;
|
|
} else { // Non-deterministic
|
|
int temp = ((GroupHead) head).localIndex;
|
|
Loop loop;
|
|
if (curly.type == Qtype.GREEDY) {
|
|
loop = new Loop(this.localCount, temp);
|
|
// add the max_reps greedy to the top-closure-node list
|
|
if (curly.cmax == MAX_REPS)
|
|
topClosureNodes.add(loop);
|
|
} else { // Reluctant Curly
|
|
loop = new LazyLoop(this.localCount, temp);
|
|
}
|
|
Prolog prolog = new Prolog(loop);
|
|
this.localCount += 1;
|
|
loop.cmin = curly.cmin;
|
|
loop.cmax = curly.cmax;
|
|
loop.body = head;
|
|
tail.next = loop;
|
|
root = loop;
|
|
return prolog; // Dual return
|
|
}
|
|
}
|
|
throw error("Internal logic error");
|
|
}
|
|
|
|
/**
|
|
* Create group head and tail nodes using double return. If the group is
|
|
* created with anonymous true then it is a pure group and should not
|
|
* affect group counting.
|
|
*
|
|
private Node createGroup(boolean anonymous) {
|
|
int localIndex = localCount++;
|
|
int groupIndex = 0;
|
|
if (!anonymous)
|
|
groupIndex = capturingGroupCount++;
|
|
GroupHead head = new GroupHead(localIndex);
|
|
root = new GroupTail(localIndex, groupIndex);
|
|
|
|
// for debug/print only, head.match does NOT need the "tail" info
|
|
head.tail = (GroupTail)root;
|
|
|
|
if (!anonymous && groupIndex < 10)
|
|
groupNodes[groupIndex] = head;
|
|
return head;
|
|
}
|
|
|
|
@SuppressWarnings("fallthrough")
|
|
/**
|
|
* Parses inlined match flags and set them appropriately.
|
|
*
|
|
private void addFlag() {
|
|
int ch = peek();
|
|
for (;;) {
|
|
switch (ch) {
|
|
case 'i':
|
|
flags0 |= CASE_INSENSITIVE;
|
|
break;
|
|
case 'm':
|
|
flags0 |= MULTILINE;
|
|
break;
|
|
case 's':
|
|
flags0 |= DOTALL;
|
|
break;
|
|
case 'd':
|
|
flags0 |= UNIX_LINES;
|
|
break;
|
|
case 'u':
|
|
flags0 |= UNICODE_CASE;
|
|
break;
|
|
case 'c':
|
|
flags0 |= CANON_EQ;
|
|
break;
|
|
case 'x':
|
|
flags0 |= COMMENTS;
|
|
break;
|
|
case 'U':
|
|
flags0 |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
|
|
break;
|
|
case '-': // subFlag then fall through
|
|
ch = next();
|
|
subFlag();
|
|
default:
|
|
return;
|
|
}
|
|
ch = next();
|
|
}
|
|
}
|
|
|
|
@SuppressWarnings("fallthrough")
|
|
/**
|
|
* Parses the second part of inlined match flags and turns off
|
|
* flags appropriately.
|
|
*
|
|
private void subFlag() {
|
|
int ch = peek();
|
|
for (;;) {
|
|
switch (ch) {
|
|
case 'i':
|
|
flags0 &= ~CASE_INSENSITIVE;
|
|
break;
|
|
case 'm':
|
|
flags0 &= ~MULTILINE;
|
|
break;
|
|
case 's':
|
|
flags0 &= ~DOTALL;
|
|
break;
|
|
case 'd':
|
|
flags0 &= ~UNIX_LINES;
|
|
break;
|
|
case 'u':
|
|
flags0 &= ~UNICODE_CASE;
|
|
break;
|
|
case 'c':
|
|
flags0 &= ~CANON_EQ;
|
|
break;
|
|
case 'x':
|
|
flags0 &= ~COMMENTS;
|
|
break;
|
|
case 'U':
|
|
flags0 &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
ch = next();
|
|
}
|
|
}
|
|
|
|
static final int MAX_REPS = 0x7FFFFFFF;
|
|
|
|
static enum Qtype {
|
|
GREEDY, LAZY, POSSESSIVE, INDEPENDENT
|
|
}
|
|
|
|
private Qtype qtype() {
|
|
int ch = next();
|
|
if (ch == '?') {
|
|
next();
|
|
return Qtype.LAZY;
|
|
} else if (ch == '+') {
|
|
next();
|
|
return Qtype.POSSESSIVE;
|
|
}
|
|
return Qtype.GREEDY;
|
|
}
|
|
|
|
private Node curly(Node prev, int cmin) {
|
|
Qtype qtype = qtype();
|
|
if (qtype == Qtype.GREEDY) {
|
|
if (prev instanceof BmpCharProperty) {
|
|
return new BmpCharPropertyGreedy((BmpCharProperty)prev, cmin);
|
|
} else if (prev instanceof CharProperty) {
|
|
return new CharPropertyGreedy((CharProperty)prev, cmin);
|
|
}
|
|
}
|
|
return new Curly(prev, cmin, MAX_REPS, qtype);
|
|
}
|
|
|
|
/**
|
|
* Processes repetition. If the next character peeked is a quantifier
|
|
* then new nodes must be appended to handle the repetition.
|
|
* Prev could be a single or a group, so it could be a chain of nodes.
|
|
*
|
|
private Node closure(Node prev) {
|
|
int ch = peek();
|
|
switch (ch) {
|
|
case '?':
|
|
return new Ques(prev, qtype());
|
|
case '*':
|
|
return curly(prev, 0);
|
|
case '+':
|
|
return curly(prev, 1);
|
|
case '{':
|
|
ch = skip();
|
|
if (ASCII.isDigit(ch)) {
|
|
int cmin = 0, cmax;
|
|
try {
|
|
do {
|
|
cmin = Math.addExact(Math.multiplyExact(cmin, 10),
|
|
ch - '0');
|
|
} while (ASCII.isDigit(ch = read()));
|
|
if (ch == ',') {
|
|
ch = read();
|
|
if (ch == '}') {
|
|
unread();
|
|
return curly(prev, cmin);
|
|
} else {
|
|
cmax = 0;
|
|
while (ASCII.isDigit(ch)) {
|
|
cmax = Math.addExact(Math.multiplyExact(cmax, 10),
|
|
ch - '0');
|
|
ch = read();
|
|
}
|
|
}
|
|
} else {
|
|
cmax = cmin;
|
|
}
|
|
} catch (ArithmeticException ae) {
|
|
throw error("Illegal repetition range");
|
|
}
|
|
if (ch != '}')
|
|
throw error("Unclosed counted closure");
|
|
if (cmax < cmin)
|
|
throw error("Illegal repetition range");
|
|
unread();
|
|
return (cmin == 0 && cmax == 1)
|
|
? new Ques(prev, qtype())
|
|
: new Curly(prev, cmin, cmax, qtype());
|
|
} else {
|
|
throw error("Illegal repetition");
|
|
}
|
|
default:
|
|
return prev;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Utility method for parsing control escape sequences.
|
|
*
|
|
private int c() {
|
|
if (cursor < patternLength) {
|
|
return read() ^ 64;
|
|
}
|
|
throw error("Illegal control escape sequence");
|
|
}
|
|
|
|
/**
|
|
* Utility method for parsing octal escape sequences.
|
|
*
|
|
private int o() {
|
|
int n = read();
|
|
if (((n-'0')|('7'-n)) >= 0) {
|
|
int m = read();
|
|
if (((m-'0')|('7'-m)) >= 0) {
|
|
int o = read();
|
|
if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
|
|
return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
|
|
}
|
|
unread();
|
|
return (n - '0') * 8 + (m - '0');
|
|
}
|
|
unread();
|
|
return (n - '0');
|
|
}
|
|
throw error("Illegal octal escape sequence");
|
|
}
|
|
|
|
/**
|
|
* Utility method for parsing hexadecimal escape sequences.
|
|
*
|
|
private int x() {
|
|
int n = read();
|
|
if (ASCII.isHexDigit(n)) {
|
|
int m = read();
|
|
if (ASCII.isHexDigit(m)) {
|
|
return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
|
|
}
|
|
} else if (n == '{' && ASCII.isHexDigit(peek())) {
|
|
int ch = 0;
|
|
while (ASCII.isHexDigit(n = read())) {
|
|
ch = (ch << 4) + ASCII.toDigit(n);
|
|
if (ch > Character.MAX_CODE_POINT)
|
|
throw error("Hexadecimal codepoint is too big");
|
|
}
|
|
if (n != '}')
|
|
throw error("Unclosed hexadecimal escape sequence");
|
|
return ch;
|
|
}
|
|
throw error("Illegal hexadecimal escape sequence");
|
|
}
|
|
|
|
/**
|
|
* Utility method for parsing unicode escape sequences.
|
|
*
|
|
private int cursor() {
|
|
return cursor;
|
|
}
|
|
|
|
private void setcursor(int pos) {
|
|
cursor = pos;
|
|
}
|
|
|
|
private int uxxxx() {
|
|
int n = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
int ch = read();
|
|
if (!ASCII.isHexDigit(ch)) {
|
|
throw error("Illegal Unicode escape sequence");
|
|
}
|
|
n = n * 16 + ASCII.toDigit(ch);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private int u() {
|
|
int n = uxxxx();
|
|
if (Character.isHighSurrogate((char)n)) {
|
|
int cur = cursor();
|
|
if (read() == '\\' && read() == 'u') {
|
|
int n2 = uxxxx();
|
|
if (Character.isLowSurrogate((char)n2))
|
|
return Character.toCodePoint((char)n, (char)n2);
|
|
}
|
|
setcursor(cur);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private int N() {
|
|
if (read() == '{') {
|
|
int i = cursor;
|
|
while (read() != '}') {
|
|
if (cursor >= patternLength)
|
|
throw error("Unclosed character name escape sequence");
|
|
}
|
|
String name = new String(temp, i, cursor - i - 1);
|
|
try {
|
|
return Character.codePointOf(name);
|
|
} catch (IllegalArgumentException x) {
|
|
throw error("Unknown character name [" + name + "]");
|
|
}
|
|
}
|
|
throw error("Illegal character name escape sequence");
|
|
}
|
|
|
|
//
|
|
// Utility methods for code point support
|
|
//
|
|
private static final int countChars(CharSequence seq, int index,
|
|
int lengthInCodePoints) {
|
|
// optimization
|
|
if (lengthInCodePoints == 1 && index >= 0 && index < seq.length() &&
|
|
!Character.isHighSurrogate(seq.charAt(index))) {
|
|
return 1;
|
|
}
|
|
int length = seq.length();
|
|
int x = index;
|
|
if (lengthInCodePoints >= 0) {
|
|
assert ((length == 0 && index == 0) || index >= 0 && index < length);
|
|
for (int i = 0; x < length && i < lengthInCodePoints; i++) {
|
|
if (Character.isHighSurrogate(seq.charAt(x++))) {
|
|
if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
|
|
x++;
|
|
}
|
|
}
|
|
}
|
|
return x - index;
|
|
}
|
|
|
|
assert (index >= 0 && index <= length);
|
|
if (index == 0) {
|
|
return 0;
|
|
}
|
|
int len = -lengthInCodePoints;
|
|
for (int i = 0; x > 0 && i < len; i++) {
|
|
if (Character.isLowSurrogate(seq.charAt(--x))) {
|
|
if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
|
|
x--;
|
|
}
|
|
}
|
|
}
|
|
return index - x;
|
|
}
|
|
|
|
private static final int countCodePoints(CharSequence seq) {
|
|
int length = seq.length();
|
|
int n = 0;
|
|
for (int i = 0; i < length; ) {
|
|
n++;
|
|
if (Character.isHighSurrogate(seq.charAt(i++))) {
|
|
if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Creates a bit vector for matching Latin-1 values. A normal BitClass
|
|
* never matches values above Latin-1, and a complemented BitClass always
|
|
* matches values above Latin-1.
|
|
*
|
|
static final class BitClass implements BmpCharPredicate {
|
|
final boolean[] bits;
|
|
BitClass() {
|
|
bits = new boolean[256];
|
|
}
|
|
BitClass add(int c, int flags) {
|
|
assert c >= 0 && c <= 255;
|
|
if ((flags & CASE_INSENSITIVE) != 0) {
|
|
if (ASCII.isAscii(c)) {
|
|
bits[ASCII.toUpper(c)] = true;
|
|
bits[ASCII.toLower(c)] = true;
|
|
} else if ((flags & UNICODE_CASE) != 0) {
|
|
bits[Character.toLowerCase(c)] = true;
|
|
bits[Character.toUpperCase(c)] = true;
|
|
}
|
|
}
|
|
bits[c] = true;
|
|
return this;
|
|
}
|
|
public boolean is(int ch) {
|
|
return ch < 256 && bits[ch];
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Utility method for creating a string slice matcher.
|
|
*
|
|
private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
|
|
int[] tmp = new int[count];
|
|
if (has(CASE_INSENSITIVE)) {
|
|
if (has(UNICODE_CASE)) {
|
|
for (int i = 0; i < count; i++) {
|
|
tmp[i] = Character.toLowerCase(
|
|
Character.toUpperCase(buf[i]));
|
|
}
|
|
return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
|
|
}
|
|
for (int i = 0; i < count; i++) {
|
|
tmp[i] = ASCII.toLower(buf[i]);
|
|
}
|
|
return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
|
|
}
|
|
for (int i = 0; i < count; i++) {
|
|
tmp[i] = buf[i];
|
|
}
|
|
return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
|
|
}
|
|
*/
|
|
// END Android-removed: Reimplement matching logic via ICU4C.
|
|
|
|
// BEGIN Android-changed: reimplement matching logic natively via ICU.
|
|
// Use native implementation instead of > 3000 lines of helper methods.
|
|
private void compile() throws PatternSyntaxException {
|
|
if (pattern == null) {
|
|
throw new NullPointerException("pattern == null");
|
|
}
|
|
|
|
String icuPattern = pattern;
|
|
if ((flags & LITERAL) != 0) {
|
|
icuPattern = quote(pattern);
|
|
}
|
|
|
|
// These are the flags natively supported by ICU.
|
|
// They even have the same value in native code.
|
|
int icuFlags = flags & (CASE_INSENSITIVE | COMMENTS | MULTILINE | DOTALL | UNIX_LINES);
|
|
nativePattern = PatternNative.create(icuPattern, icuFlags);
|
|
}
|
|
// END Android-changed: reimplement matching logic natively via ICU.
|
|
|
|
// BEGIN Android-removed: Reimplement matching logic via ICU4C.
|
|
/**
|
|
* Node to anchor at the beginning of input. This object implements the
|
|
* match for a \A sequence, and the caret anchor will use this if not in
|
|
* multiline mode.
|
|
*
|
|
static final class Begin extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int fromIndex = (matcher.anchoringBounds) ?
|
|
matcher.from : 0;
|
|
if (i == fromIndex && next.match(matcher, i, seq)) {
|
|
matcher.first = i;
|
|
matcher.groups[0] = i;
|
|
matcher.groups[1] = matcher.last;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node to anchor at the end of input. This is the absolute end, so this
|
|
* should not match at the last newline before the end as $ will.
|
|
*
|
|
static final class End extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int endIndex = (matcher.anchoringBounds) ?
|
|
matcher.to : matcher.getTextLength();
|
|
if (i == endIndex) {
|
|
matcher.hitEnd = true;
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node to anchor at the beginning of a line. This is essentially the
|
|
* object to match for the multiline ^.
|
|
*
|
|
static final class Caret extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int startIndex = matcher.from;
|
|
int endIndex = matcher.to;
|
|
if (!matcher.anchoringBounds) {
|
|
startIndex = 0;
|
|
endIndex = matcher.getTextLength();
|
|
}
|
|
// Perl does not match ^ at end of input even after newline
|
|
if (i == endIndex) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
if (i > startIndex) {
|
|
char ch = seq.charAt(i-1);
|
|
if (ch != '\n' && ch != '\r'
|
|
&& (ch|1) != '\u2029'
|
|
&& ch != '\u0085' ) {
|
|
return false;
|
|
}
|
|
// Should treat /r/n as one newline
|
|
if (ch == '\r' && seq.charAt(i) == '\n')
|
|
return false;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node to anchor at the beginning of a line when in unixdot mode.
|
|
*
|
|
static final class UnixCaret extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int startIndex = matcher.from;
|
|
int endIndex = matcher.to;
|
|
if (!matcher.anchoringBounds) {
|
|
startIndex = 0;
|
|
endIndex = matcher.getTextLength();
|
|
}
|
|
// Perl does not match ^ at end of input even after newline
|
|
if (i == endIndex) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
if (i > startIndex) {
|
|
char ch = seq.charAt(i-1);
|
|
if (ch != '\n') {
|
|
return false;
|
|
}
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node to match the location where the last match ended.
|
|
* This is used for the \G construct.
|
|
*
|
|
static final class LastMatch extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
if (i != matcher.oldLast)
|
|
return false;
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node to anchor at the end of a line or the end of input based on the
|
|
* multiline mode.
|
|
*
|
|
* When not in multiline mode, the $ can only match at the very end
|
|
* of the input, unless the input ends in a line terminator in which
|
|
* it matches right before the last line terminator.
|
|
*
|
|
* Note that \r\n is considered an atomic line terminator.
|
|
*
|
|
* Like ^ the $ operator matches at a position, it does not match the
|
|
* line terminators themselves.
|
|
*
|
|
static final class Dollar extends Node {
|
|
boolean multiline;
|
|
Dollar(boolean mul) {
|
|
multiline = mul;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int endIndex = (matcher.anchoringBounds) ?
|
|
matcher.to : matcher.getTextLength();
|
|
if (!multiline) {
|
|
if (i < endIndex - 2)
|
|
return false;
|
|
if (i == endIndex - 2) {
|
|
char ch = seq.charAt(i);
|
|
if (ch != '\r')
|
|
return false;
|
|
ch = seq.charAt(i + 1);
|
|
if (ch != '\n')
|
|
return false;
|
|
}
|
|
}
|
|
// Matches before any line terminator; also matches at the
|
|
// end of input
|
|
// Before line terminator:
|
|
// If multiline, we match here no matter what
|
|
// If not multiline, fall through so that the end
|
|
// is marked as hit; this must be a /r/n or a /n
|
|
// at the very end so the end was hit; more input
|
|
// could make this not match here
|
|
if (i < endIndex) {
|
|
char ch = seq.charAt(i);
|
|
if (ch == '\n') {
|
|
// No match between \r\n
|
|
if (i > 0 && seq.charAt(i-1) == '\r')
|
|
return false;
|
|
if (multiline)
|
|
return next.match(matcher, i, seq);
|
|
} else if (ch == '\r' || ch == '\u0085' ||
|
|
(ch|1) == '\u2029') {
|
|
if (multiline)
|
|
return next.match(matcher, i, seq);
|
|
} else { // No line terminator, no match
|
|
return false;
|
|
}
|
|
}
|
|
// Matched at current end so hit end
|
|
matcher.hitEnd = true;
|
|
// If a $ matches because of end of input, then more input
|
|
// could cause it to fail!
|
|
matcher.requireEnd = true;
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
next.study(info);
|
|
return info.deterministic;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node to anchor at the end of a line or the end of input based on the
|
|
* multiline mode when in unix lines mode.
|
|
*
|
|
static final class UnixDollar extends Node {
|
|
boolean multiline;
|
|
UnixDollar(boolean mul) {
|
|
multiline = mul;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int endIndex = (matcher.anchoringBounds) ?
|
|
matcher.to : matcher.getTextLength();
|
|
if (i < endIndex) {
|
|
char ch = seq.charAt(i);
|
|
if (ch == '\n') {
|
|
// If not multiline, then only possible to
|
|
// match at very end or one before end
|
|
if (multiline == false && i != endIndex - 1)
|
|
return false;
|
|
// If multiline return next.match without setting
|
|
// matcher.hitEnd
|
|
if (multiline)
|
|
return next.match(matcher, i, seq);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
// Matching because at the end or 1 before the end;
|
|
// more input could change this so set hitEnd
|
|
matcher.hitEnd = true;
|
|
// If a $ matches because of end of input, then more input
|
|
// could cause it to fail!
|
|
matcher.requireEnd = true;
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
next.study(info);
|
|
return info.deterministic;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class that matches a Unicode line ending '\R'
|
|
*
|
|
static final class LineEnding extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
// (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
|
|
if (i < matcher.to) {
|
|
int ch = seq.charAt(i);
|
|
if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
|
|
ch == 0x85 || ch == 0x2028 || ch == 0x2029)
|
|
return next.match(matcher, i + 1, seq);
|
|
if (ch == 0x0D) {
|
|
i++;
|
|
if (i < matcher.to) {
|
|
if (seq.charAt(i) == 0x0A &&
|
|
next.match(matcher, i + 1, seq)) {
|
|
return true;
|
|
}
|
|
} else {
|
|
matcher.hitEnd = true;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
} else {
|
|
matcher.hitEnd = true;
|
|
}
|
|
return false;
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.minLength++;
|
|
info.maxLength += 2;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Abstract node class to match one character satisfying some
|
|
* boolean property.
|
|
*
|
|
static class CharProperty extends Node {
|
|
final CharPredicate predicate;
|
|
|
|
CharProperty (CharPredicate predicate) {
|
|
this.predicate = predicate;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
if (i < matcher.to) {
|
|
int ch = Character.codePointAt(seq, i);
|
|
i += Character.charCount(ch);
|
|
if (i <= matcher.to) {
|
|
return predicate.is(ch) &&
|
|
next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.minLength++;
|
|
info.maxLength++;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of CharProperty that works only for
|
|
* properties never satisfied by Supplementary characters.
|
|
*
|
|
private static class BmpCharProperty extends CharProperty {
|
|
BmpCharProperty (BmpCharPredicate predicate) {
|
|
super(predicate);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
if (i < matcher.to) {
|
|
return predicate.is(seq.charAt(i)) &&
|
|
next.match(matcher, i + 1, seq);
|
|
} else {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
private static class NFCCharProperty extends Node {
|
|
CharPredicate predicate;
|
|
NFCCharProperty (CharPredicate predicate) {
|
|
this.predicate = predicate;
|
|
}
|
|
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
if (i < matcher.to) {
|
|
int ch0 = Character.codePointAt(seq, i);
|
|
int n = Character.charCount(ch0);
|
|
int j = Grapheme.nextBoundary(seq, i, matcher.to);
|
|
if (i + n == j) { // single cp grapheme, assume nfc
|
|
if (predicate.is(ch0))
|
|
return next.match(matcher, j, seq);
|
|
} else {
|
|
while (i + n < j) {
|
|
String nfc = Normalizer.normalize(
|
|
seq.toString().substring(i, j), Normalizer.Form.NFC);
|
|
if (nfc.codePointCount(0, nfc.length()) == 1) {
|
|
if (predicate.is(nfc.codePointAt(0)) &&
|
|
next.match(matcher, j, seq)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
ch0 = Character.codePointBefore(seq, j);
|
|
j -= Character.charCount(ch0);
|
|
}
|
|
}
|
|
if (j < matcher.to)
|
|
return false;
|
|
}
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
|
|
boolean study(TreeInfo info) {
|
|
info.minLength++;
|
|
info.deterministic = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class that matches an unicode extended grapheme cluster
|
|
*
|
|
static class XGrapheme extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
if (i < matcher.to) {
|
|
i = Grapheme.nextBoundary(seq, i, matcher.to);
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
|
|
boolean study(TreeInfo info) {
|
|
info.minLength++;
|
|
info.deterministic = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class that handles grapheme boundaries
|
|
*
|
|
static class GraphemeBound extends Node {
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int startIndex = matcher.from;
|
|
int endIndex = matcher.to;
|
|
if (matcher.transparentBounds) {
|
|
startIndex = 0;
|
|
endIndex = matcher.getTextLength();
|
|
}
|
|
if (i == startIndex) {
|
|
// continue with return below
|
|
} else if (i < endIndex) {
|
|
if (Character.isSurrogatePair(seq.charAt(i - 1), seq.charAt(i))) {
|
|
return false;
|
|
}
|
|
if (Grapheme.nextBoundary(seq, matcher.last, endIndex) > i) {
|
|
return false;
|
|
}
|
|
} else {
|
|
matcher.hitEnd = true;
|
|
matcher.requireEnd = true;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Base class for all Slice nodes
|
|
*
|
|
static class SliceNode extends Node {
|
|
int[] buffer;
|
|
SliceNode(int[] buf) {
|
|
buffer = buf;
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.minLength += buffer.length;
|
|
info.maxLength += buffer.length;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class for a case sensitive/BMP-only sequence of literal
|
|
* characters.
|
|
*
|
|
static class Slice extends SliceNode {
|
|
Slice(int[] buf) {
|
|
super(buf);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] buf = buffer;
|
|
int len = buf.length;
|
|
for (int j=0; j<len; j++) {
|
|
if ((i+j) >= matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
if (buf[j] != seq.charAt(i+j))
|
|
return false;
|
|
}
|
|
return next.match(matcher, i+len, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class for a case_insensitive/BMP-only sequence of literal
|
|
* characters.
|
|
*
|
|
static class SliceI extends SliceNode {
|
|
SliceI(int[] buf) {
|
|
super(buf);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] buf = buffer;
|
|
int len = buf.length;
|
|
for (int j=0; j<len; j++) {
|
|
if ((i+j) >= matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
int c = seq.charAt(i+j);
|
|
if (buf[j] != c &&
|
|
buf[j] != ASCII.toLower(c))
|
|
return false;
|
|
}
|
|
return next.match(matcher, i+len, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class for a unicode_case_insensitive/BMP-only sequence of
|
|
* literal characters. Uses unicode case folding.
|
|
*
|
|
static final class SliceU extends SliceNode {
|
|
SliceU(int[] buf) {
|
|
super(buf);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] buf = buffer;
|
|
int len = buf.length;
|
|
for (int j=0; j<len; j++) {
|
|
if ((i+j) >= matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
int c = seq.charAt(i+j);
|
|
if (buf[j] != c &&
|
|
buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
|
|
return false;
|
|
}
|
|
return next.match(matcher, i+len, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class for a case sensitive sequence of literal characters
|
|
* including supplementary characters.
|
|
*
|
|
static final class SliceS extends Slice {
|
|
SliceS(int[] buf) {
|
|
super(buf);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] buf = buffer;
|
|
int x = i;
|
|
for (int j = 0; j < buf.length; j++) {
|
|
if (x >= matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
int c = Character.codePointAt(seq, x);
|
|
if (buf[j] != c)
|
|
return false;
|
|
x += Character.charCount(c);
|
|
if (x > matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
}
|
|
return next.match(matcher, x, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class for a case insensitive sequence of literal characters
|
|
* including supplementary characters.
|
|
*
|
|
static class SliceIS extends SliceNode {
|
|
SliceIS(int[] buf) {
|
|
super(buf);
|
|
}
|
|
int toLower(int c) {
|
|
return ASCII.toLower(c);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] buf = buffer;
|
|
int x = i;
|
|
for (int j = 0; j < buf.length; j++) {
|
|
if (x >= matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
int c = Character.codePointAt(seq, x);
|
|
if (buf[j] != c && buf[j] != toLower(c))
|
|
return false;
|
|
x += Character.charCount(c);
|
|
if (x > matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
}
|
|
return next.match(matcher, x, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Node class for a case insensitive sequence of literal characters.
|
|
* Uses unicode case folding.
|
|
*
|
|
static final class SliceUS extends SliceIS {
|
|
SliceUS(int[] buf) {
|
|
super(buf);
|
|
}
|
|
int toLower(int c) {
|
|
return Character.toLowerCase(Character.toUpperCase(c));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The 0 or 1 quantifier. This one class implements all three types.
|
|
*
|
|
static final class Ques extends Node {
|
|
Node atom;
|
|
Qtype type;
|
|
Ques(Node node, Qtype type) {
|
|
this.atom = node;
|
|
this.type = type;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
switch (type) {
|
|
case GREEDY:
|
|
return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
|
|
|| next.match(matcher, i, seq);
|
|
case LAZY:
|
|
return next.match(matcher, i, seq)
|
|
|| (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
|
|
case POSSESSIVE:
|
|
if (atom.match(matcher, i, seq)) i = matcher.last;
|
|
return next.match(matcher, i, seq);
|
|
default:
|
|
return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
|
|
}
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
if (type != Qtype.INDEPENDENT) {
|
|
int minL = info.minLength;
|
|
atom.study(info);
|
|
info.minLength = minL;
|
|
info.deterministic = false;
|
|
return next.study(info);
|
|
} else {
|
|
atom.study(info);
|
|
return next.study(info);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles the greedy style repetition with the specified minimum
|
|
* and the maximum equal to MAX_REPS, for *, + and {N,} quantifiers.
|
|
*
|
|
static class CharPropertyGreedy extends Node {
|
|
final CharPredicate predicate;
|
|
final int cmin;
|
|
|
|
CharPropertyGreedy(CharProperty cp, int cmin) {
|
|
this.predicate = cp.predicate;
|
|
this.cmin = cmin;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int starti = i;
|
|
int n = 0;
|
|
int to = matcher.to;
|
|
// greedy, all the way down
|
|
while (i < to) {
|
|
int ch = Character.codePointAt(seq, i);
|
|
int len = Character.charCount(ch);
|
|
if (i + len > to) {
|
|
// the region cut off the high half of a surrogate pair
|
|
matcher.hitEnd = true;
|
|
ch = seq.charAt(i);
|
|
len = 1;
|
|
}
|
|
if (!predicate.is(ch))
|
|
break;
|
|
i += len;
|
|
n++;
|
|
}
|
|
if (i >= to) {
|
|
matcher.hitEnd = true;
|
|
}
|
|
while (n >= cmin) {
|
|
if (next.match(matcher, i, seq))
|
|
return true;
|
|
if (n == cmin)
|
|
return false;
|
|
// backing off if match fails
|
|
int ch = Character.codePointBefore(seq, i);
|
|
// check if the region cut off the low half of a surrogate pair
|
|
i = Math.max(starti, i - Character.charCount(ch));
|
|
n--;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
boolean study(TreeInfo info) {
|
|
info.minLength += cmin;
|
|
if (info.maxValid) {
|
|
info.maxLength += MAX_REPS;
|
|
}
|
|
info.deterministic = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
static final class BmpCharPropertyGreedy extends CharPropertyGreedy {
|
|
|
|
BmpCharPropertyGreedy(BmpCharProperty bcp, int cmin) {
|
|
super(bcp, cmin);
|
|
}
|
|
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int n = 0;
|
|
int to = matcher.to;
|
|
while (i < to && predicate.is(seq.charAt(i))) {
|
|
i++; n++;
|
|
}
|
|
if (i >= to) {
|
|
matcher.hitEnd = true;
|
|
}
|
|
while (n >= cmin) {
|
|
if (next.match(matcher, i, seq))
|
|
return true;
|
|
i--; n--; // backing off if match fails
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles the curly-brace style repetition with a specified minimum and
|
|
* maximum occurrences. The * quantifier is handled as a special case.
|
|
* This class handles the three types.
|
|
*
|
|
static final class Curly extends Node {
|
|
Node atom;
|
|
Qtype type;
|
|
int cmin;
|
|
int cmax;
|
|
|
|
Curly(Node node, int cmin, int cmax, Qtype type) {
|
|
this.atom = node;
|
|
this.type = type;
|
|
this.cmin = cmin;
|
|
this.cmax = cmax;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int j;
|
|
for (j = 0; j < cmin; j++) {
|
|
if (atom.match(matcher, i, seq)) {
|
|
i = matcher.last;
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
if (type == Qtype.GREEDY)
|
|
return match0(matcher, i, j, seq);
|
|
else if (type == Qtype.LAZY)
|
|
return match1(matcher, i, j, seq);
|
|
else
|
|
return match2(matcher, i, j, seq);
|
|
}
|
|
// Greedy match.
|
|
// i is the index to start matching at
|
|
// j is the number of atoms that have matched
|
|
boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
|
|
if (j >= cmax) {
|
|
// We have matched the maximum... continue with the rest of
|
|
// the regular expression
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
int backLimit = j;
|
|
while (atom.match(matcher, i, seq)) {
|
|
// k is the length of this match
|
|
int k = matcher.last - i;
|
|
if (k == 0) // Zero length match
|
|
break;
|
|
// Move up index and number matched
|
|
i = matcher.last;
|
|
j++;
|
|
// We are greedy so match as many as we can
|
|
while (j < cmax) {
|
|
if (!atom.match(matcher, i, seq))
|
|
break;
|
|
if (i + k != matcher.last) {
|
|
if (match0(matcher, matcher.last, j+1, seq))
|
|
return true;
|
|
break;
|
|
}
|
|
i += k;
|
|
j++;
|
|
}
|
|
// Handle backing off if match fails
|
|
while (j >= backLimit) {
|
|
if (next.match(matcher, i, seq))
|
|
return true;
|
|
i -= k;
|
|
j--;
|
|
}
|
|
return false;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
// Reluctant match. At this point, the minimum has been satisfied.
|
|
// i is the index to start matching at
|
|
// j is the number of atoms that have matched
|
|
boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
|
|
for (;;) {
|
|
// Try finishing match without consuming any more
|
|
if (next.match(matcher, i, seq))
|
|
return true;
|
|
// At the maximum, no match found
|
|
if (j >= cmax)
|
|
return false;
|
|
// Okay, must try one more atom
|
|
if (!atom.match(matcher, i, seq))
|
|
return false;
|
|
// If we haven't moved forward then must break out
|
|
if (i == matcher.last)
|
|
return false;
|
|
// Move up index and number matched
|
|
i = matcher.last;
|
|
j++;
|
|
}
|
|
}
|
|
boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
|
|
for (; j < cmax; j++) {
|
|
if (!atom.match(matcher, i, seq))
|
|
break;
|
|
if (i == matcher.last)
|
|
break;
|
|
i = matcher.last;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
// Save original info
|
|
int minL = info.minLength;
|
|
int maxL = info.maxLength;
|
|
boolean maxV = info.maxValid;
|
|
boolean detm = info.deterministic;
|
|
info.reset();
|
|
|
|
atom.study(info);
|
|
|
|
int temp = info.minLength * cmin + minL;
|
|
if (temp < minL) {
|
|
temp = 0xFFFFFFF; // arbitrary large number
|
|
}
|
|
info.minLength = temp;
|
|
|
|
if (maxV & info.maxValid) {
|
|
temp = info.maxLength * cmax + maxL;
|
|
info.maxLength = temp;
|
|
if (temp < maxL) {
|
|
info.maxValid = false;
|
|
}
|
|
} else {
|
|
info.maxValid = false;
|
|
}
|
|
|
|
if (info.deterministic && cmin == cmax)
|
|
info.deterministic = detm;
|
|
else
|
|
info.deterministic = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles the curly-brace style repetition with a specified minimum and
|
|
* maximum occurrences in deterministic cases. This is an iterative
|
|
* optimization over the Prolog and Loop system which would handle this
|
|
* in a recursive way. The * quantifier is handled as a special case.
|
|
* If capture is true then this class saves group settings and ensures
|
|
* that groups are unset when backing off of a group match.
|
|
*
|
|
static final class GroupCurly extends Node {
|
|
Node atom;
|
|
Qtype type;
|
|
int cmin;
|
|
int cmax;
|
|
int localIndex;
|
|
int groupIndex;
|
|
boolean capture;
|
|
|
|
GroupCurly(Node node, int cmin, int cmax, Qtype type, int local,
|
|
int group, boolean capture) {
|
|
this.atom = node;
|
|
this.type = type;
|
|
this.cmin = cmin;
|
|
this.cmax = cmax;
|
|
this.localIndex = local;
|
|
this.groupIndex = group;
|
|
this.capture = capture;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] groups = matcher.groups;
|
|
int[] locals = matcher.locals;
|
|
int save0 = locals[localIndex];
|
|
int save1 = 0;
|
|
int save2 = 0;
|
|
|
|
if (capture) {
|
|
save1 = groups[groupIndex];
|
|
save2 = groups[groupIndex+1];
|
|
}
|
|
|
|
// Notify GroupTail there is no need to setup group info
|
|
// because it will be set here
|
|
locals[localIndex] = -1;
|
|
|
|
boolean ret = true;
|
|
for (int j = 0; j < cmin; j++) {
|
|
if (atom.match(matcher, i, seq)) {
|
|
if (capture) {
|
|
groups[groupIndex] = i;
|
|
groups[groupIndex+1] = matcher.last;
|
|
}
|
|
i = matcher.last;
|
|
} else {
|
|
ret = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ret) {
|
|
if (type == Qtype.GREEDY) {
|
|
ret = match0(matcher, i, cmin, seq);
|
|
} else if (type == Qtype.LAZY) {
|
|
ret = match1(matcher, i, cmin, seq);
|
|
} else {
|
|
ret = match2(matcher, i, cmin, seq);
|
|
}
|
|
}
|
|
if (!ret) {
|
|
locals[localIndex] = save0;
|
|
if (capture) {
|
|
groups[groupIndex] = save1;
|
|
groups[groupIndex+1] = save2;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
// Aggressive group match
|
|
boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
|
|
// don't back off passing the starting "j"
|
|
int min = j;
|
|
int[] groups = matcher.groups;
|
|
int save0 = 0;
|
|
int save1 = 0;
|
|
if (capture) {
|
|
save0 = groups[groupIndex];
|
|
save1 = groups[groupIndex+1];
|
|
}
|
|
for (;;) {
|
|
if (j >= cmax)
|
|
break;
|
|
if (!atom.match(matcher, i, seq))
|
|
break;
|
|
int k = matcher.last - i;
|
|
if (k <= 0) {
|
|
if (capture) {
|
|
groups[groupIndex] = i;
|
|
groups[groupIndex+1] = i + k;
|
|
}
|
|
i = i + k;
|
|
break;
|
|
}
|
|
for (;;) {
|
|
if (capture) {
|
|
groups[groupIndex] = i;
|
|
groups[groupIndex+1] = i + k;
|
|
}
|
|
i = i + k;
|
|
if (++j >= cmax)
|
|
break;
|
|
if (!atom.match(matcher, i, seq))
|
|
break;
|
|
if (i + k != matcher.last) {
|
|
if (match0(matcher, i, j, seq))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
while (j > min) {
|
|
if (next.match(matcher, i, seq)) {
|
|
if (capture) {
|
|
groups[groupIndex+1] = i;
|
|
groups[groupIndex] = i - k;
|
|
}
|
|
return true;
|
|
}
|
|
// backing off
|
|
i = i - k;
|
|
if (capture) {
|
|
groups[groupIndex+1] = i;
|
|
groups[groupIndex] = i - k;
|
|
}
|
|
j--;
|
|
|
|
}
|
|
break;
|
|
}
|
|
if (capture) {
|
|
groups[groupIndex] = save0;
|
|
groups[groupIndex+1] = save1;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
// Reluctant matching
|
|
boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
|
|
for (;;) {
|
|
if (next.match(matcher, i, seq))
|
|
return true;
|
|
if (j >= cmax)
|
|
return false;
|
|
if (!atom.match(matcher, i, seq))
|
|
return false;
|
|
if (i == matcher.last)
|
|
return false;
|
|
if (capture) {
|
|
matcher.groups[groupIndex] = i;
|
|
matcher.groups[groupIndex+1] = matcher.last;
|
|
}
|
|
i = matcher.last;
|
|
j++;
|
|
}
|
|
}
|
|
// Possessive matching
|
|
boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
|
|
for (; j < cmax; j++) {
|
|
if (!atom.match(matcher, i, seq)) {
|
|
break;
|
|
}
|
|
if (capture) {
|
|
matcher.groups[groupIndex] = i;
|
|
matcher.groups[groupIndex+1] = matcher.last;
|
|
}
|
|
if (i == matcher.last) {
|
|
break;
|
|
}
|
|
i = matcher.last;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
// Save original info
|
|
int minL = info.minLength;
|
|
int maxL = info.maxLength;
|
|
boolean maxV = info.maxValid;
|
|
boolean detm = info.deterministic;
|
|
info.reset();
|
|
|
|
atom.study(info);
|
|
|
|
int temp = info.minLength * cmin + minL;
|
|
if (temp < minL) {
|
|
temp = 0xFFFFFFF; // Arbitrary large number
|
|
}
|
|
info.minLength = temp;
|
|
|
|
if (maxV & info.maxValid) {
|
|
temp = info.maxLength * cmax + maxL;
|
|
info.maxLength = temp;
|
|
if (temp < maxL) {
|
|
info.maxValid = false;
|
|
}
|
|
} else {
|
|
info.maxValid = false;
|
|
}
|
|
|
|
if (info.deterministic && cmin == cmax) {
|
|
info.deterministic = detm;
|
|
} else {
|
|
info.deterministic = false;
|
|
}
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A Guard node at the end of each atom node in a Branch. It
|
|
* serves the purpose of chaining the "match" operation to
|
|
* "next" but not the "study", so we can collect the TreeInfo
|
|
* of each atom node without including the TreeInfo of the
|
|
* "next".
|
|
*
|
|
static final class BranchConn extends Node {
|
|
BranchConn() {}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
return info.deterministic;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles the branching of alternations. Note this is also used for
|
|
* the ? quantifier to branch between the case where it matches once
|
|
* and where it does not occur.
|
|
*
|
|
static final class Branch extends Node {
|
|
Node[] atoms = new Node[2];
|
|
int size = 2;
|
|
Node conn;
|
|
Branch(Node first, Node second, Node branchConn) {
|
|
conn = branchConn;
|
|
atoms[0] = first;
|
|
atoms[1] = second;
|
|
}
|
|
|
|
void add(Node node) {
|
|
if (size >= atoms.length) {
|
|
Node[] tmp = new Node[atoms.length*2];
|
|
System.arraycopy(atoms, 0, tmp, 0, atoms.length);
|
|
atoms = tmp;
|
|
}
|
|
atoms[size++] = node;
|
|
}
|
|
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
for (int n = 0; n < size; n++) {
|
|
if (atoms[n] == null) {
|
|
if (conn.next.match(matcher, i, seq))
|
|
return true;
|
|
} else if (atoms[n].match(matcher, i, seq)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
boolean study(TreeInfo info) {
|
|
int minL = info.minLength;
|
|
int maxL = info.maxLength;
|
|
boolean maxV = info.maxValid;
|
|
|
|
int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
|
|
int maxL2 = -1;
|
|
for (int n = 0; n < size; n++) {
|
|
info.reset();
|
|
if (atoms[n] != null)
|
|
atoms[n].study(info);
|
|
minL2 = Math.min(minL2, info.minLength);
|
|
maxL2 = Math.max(maxL2, info.maxLength);
|
|
maxV = (maxV & info.maxValid);
|
|
}
|
|
|
|
minL += minL2;
|
|
maxL += maxL2;
|
|
|
|
info.reset();
|
|
conn.next.study(info);
|
|
|
|
info.minLength += minL;
|
|
info.maxLength += maxL;
|
|
info.maxValid &= maxV;
|
|
info.deterministic = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The GroupHead saves the location where the group begins in the locals
|
|
* and restores them when the match is done.
|
|
*
|
|
* The matchRef is used when a reference to this group is accessed later
|
|
* in the expression. The locals will have a negative value in them to
|
|
* indicate that we do not want to unset the group if the reference
|
|
* doesn't match.
|
|
*
|
|
static final class GroupHead extends Node {
|
|
int localIndex;
|
|
GroupTail tail; // for debug/print only, match does not need to know
|
|
GroupHead(int localCount) {
|
|
localIndex = localCount;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int save = matcher.locals[localIndex];
|
|
matcher.locals[localIndex] = i;
|
|
boolean ret = next.match(matcher, i, seq);
|
|
matcher.locals[localIndex] = save;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The GroupTail handles the setting of group beginning and ending
|
|
* locations when groups are successfully matched. It must also be able to
|
|
* unset groups that have to be backed off of.
|
|
*
|
|
* The GroupTail node is also used when a previous group is referenced,
|
|
* and in that case no group information needs to be set.
|
|
*
|
|
static final class GroupTail extends Node {
|
|
int localIndex;
|
|
int groupIndex;
|
|
GroupTail(int localCount, int groupCount) {
|
|
localIndex = localCount;
|
|
groupIndex = groupCount + groupCount;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int tmp = matcher.locals[localIndex];
|
|
if (tmp >= 0) { // This is the normal group case.
|
|
// Save the group so we can unset it if it
|
|
// backs off of a match.
|
|
int groupStart = matcher.groups[groupIndex];
|
|
int groupEnd = matcher.groups[groupIndex+1];
|
|
|
|
matcher.groups[groupIndex] = tmp;
|
|
matcher.groups[groupIndex+1] = i;
|
|
if (next.match(matcher, i, seq)) {
|
|
return true;
|
|
}
|
|
matcher.groups[groupIndex] = groupStart;
|
|
matcher.groups[groupIndex+1] = groupEnd;
|
|
return false;
|
|
} else {
|
|
// This is a group reference case. We don't need to save any
|
|
// group info because it isn't really a group.
|
|
matcher.last = i;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This sets up a loop to handle a recursive quantifier structure.
|
|
*
|
|
static final class Prolog extends Node {
|
|
Loop loop;
|
|
Prolog(Loop loop) {
|
|
this.loop = loop;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
return loop.matchInit(matcher, i, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
return loop.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles the repetition count for a greedy Curly. The matchInit
|
|
* is called from the Prolog to save the index of where the group
|
|
* beginning is stored. A zero length group check occurs in the
|
|
* normal match but is skipped in the matchInit.
|
|
*
|
|
static class Loop extends Node {
|
|
Node body;
|
|
int countIndex; // local count index in matcher locals
|
|
int beginIndex; // group beginning index
|
|
int cmin, cmax;
|
|
int posIndex;
|
|
Loop(int countIndex, int beginIndex) {
|
|
this.countIndex = countIndex;
|
|
this.beginIndex = beginIndex;
|
|
this.posIndex = -1;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
// Avoid infinite loop in zero-length case.
|
|
if (i > matcher.locals[beginIndex]) {
|
|
int count = matcher.locals[countIndex];
|
|
|
|
// This block is for before we reach the minimum
|
|
// iterations required for the loop to match
|
|
if (count < cmin) {
|
|
matcher.locals[countIndex] = count + 1;
|
|
boolean b = body.match(matcher, i, seq);
|
|
// If match failed we must backtrack, so
|
|
// the loop count should NOT be incremented
|
|
if (!b)
|
|
matcher.locals[countIndex] = count;
|
|
// Return success or failure since we are under
|
|
// minimum
|
|
return b;
|
|
}
|
|
// This block is for after we have the minimum
|
|
// iterations required for the loop to match
|
|
if (count < cmax) {
|
|
// Let's check if we have already tried and failed
|
|
// at this starting position "i" in the past.
|
|
// If yes, then just return false wihtout trying
|
|
// again, to stop the exponential backtracking.
|
|
if (posIndex != -1 &&
|
|
matcher.localsPos[posIndex].contains(i)) {
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
matcher.locals[countIndex] = count + 1;
|
|
boolean b = body.match(matcher, i, seq);
|
|
// If match failed we must backtrack, so
|
|
// the loop count should NOT be incremented
|
|
if (b)
|
|
return true;
|
|
matcher.locals[countIndex] = count;
|
|
// save the failed position
|
|
if (posIndex != -1) {
|
|
matcher.localsPos[posIndex].add(i);
|
|
}
|
|
}
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean matchInit(Matcher matcher, int i, CharSequence seq) {
|
|
int save = matcher.locals[countIndex];
|
|
boolean ret;
|
|
if (posIndex != -1 && matcher.localsPos[posIndex] == null) {
|
|
matcher.localsPos[posIndex] = new IntHashSet();
|
|
}
|
|
if (0 < cmin) {
|
|
matcher.locals[countIndex] = 1;
|
|
ret = body.match(matcher, i, seq);
|
|
} else if (0 < cmax) {
|
|
matcher.locals[countIndex] = 1;
|
|
ret = body.match(matcher, i, seq);
|
|
if (ret == false)
|
|
ret = next.match(matcher, i, seq);
|
|
} else {
|
|
ret = next.match(matcher, i, seq);
|
|
}
|
|
matcher.locals[countIndex] = save;
|
|
return ret;
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.maxValid = false;
|
|
info.deterministic = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles the repetition count for a reluctant Curly. The matchInit
|
|
* is called from the Prolog to save the index of where the group
|
|
* beginning is stored. A zero length group check occurs in the
|
|
* normal match but is skipped in the matchInit.
|
|
*
|
|
static final class LazyLoop extends Loop {
|
|
LazyLoop(int countIndex, int beginIndex) {
|
|
super(countIndex, beginIndex);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
// Check for zero length group
|
|
if (i > matcher.locals[beginIndex]) {
|
|
int count = matcher.locals[countIndex];
|
|
if (count < cmin) {
|
|
matcher.locals[countIndex] = count + 1;
|
|
boolean result = body.match(matcher, i, seq);
|
|
// If match failed we must backtrack, so
|
|
// the loop count should NOT be incremented
|
|
if (!result)
|
|
matcher.locals[countIndex] = count;
|
|
return result;
|
|
}
|
|
if (next.match(matcher, i, seq))
|
|
return true;
|
|
if (count < cmax) {
|
|
matcher.locals[countIndex] = count + 1;
|
|
boolean result = body.match(matcher, i, seq);
|
|
// If match failed we must backtrack, so
|
|
// the loop count should NOT be incremented
|
|
if (!result)
|
|
matcher.locals[countIndex] = count;
|
|
return result;
|
|
}
|
|
return false;
|
|
}
|
|
return next.match(matcher, i, seq);
|
|
}
|
|
boolean matchInit(Matcher matcher, int i, CharSequence seq) {
|
|
int save = matcher.locals[countIndex];
|
|
boolean ret = false;
|
|
if (0 < cmin) {
|
|
matcher.locals[countIndex] = 1;
|
|
ret = body.match(matcher, i, seq);
|
|
} else if (next.match(matcher, i, seq)) {
|
|
ret = true;
|
|
} else if (0 < cmax) {
|
|
matcher.locals[countIndex] = 1;
|
|
ret = body.match(matcher, i, seq);
|
|
}
|
|
matcher.locals[countIndex] = save;
|
|
return ret;
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.maxValid = false;
|
|
info.deterministic = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Refers to a group in the regular expression. Attempts to match
|
|
* whatever the group referred to last matched.
|
|
*
|
|
static class BackRef extends Node {
|
|
int groupIndex;
|
|
BackRef(int groupCount) {
|
|
super();
|
|
groupIndex = groupCount + groupCount;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int j = matcher.groups[groupIndex];
|
|
int k = matcher.groups[groupIndex+1];
|
|
|
|
int groupSize = k - j;
|
|
// If the referenced group didn't match, neither can this
|
|
if (j < 0)
|
|
return false;
|
|
|
|
// If there isn't enough input left no match
|
|
if (i + groupSize > matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
// Check each new char to make sure it matches what the group
|
|
// referenced matched last time around
|
|
for (int index=0; index<groupSize; index++)
|
|
if (seq.charAt(i+index) != seq.charAt(j+index))
|
|
return false;
|
|
|
|
return next.match(matcher, i+groupSize, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.maxValid = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
static class CIBackRef extends Node {
|
|
int groupIndex;
|
|
boolean doUnicodeCase;
|
|
CIBackRef(int groupCount, boolean doUnicodeCase) {
|
|
super();
|
|
groupIndex = groupCount + groupCount;
|
|
this.doUnicodeCase = doUnicodeCase;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int j = matcher.groups[groupIndex];
|
|
int k = matcher.groups[groupIndex+1];
|
|
|
|
int groupSize = k - j;
|
|
|
|
// If the referenced group didn't match, neither can this
|
|
if (j < 0)
|
|
return false;
|
|
|
|
// If there isn't enough input left no match
|
|
if (i + groupSize > matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
|
|
// Check each new char to make sure it matches what the group
|
|
// referenced matched last time around
|
|
int x = i;
|
|
for (int index=0; index<groupSize; index++) {
|
|
int c1 = Character.codePointAt(seq, x);
|
|
int c2 = Character.codePointAt(seq, j);
|
|
if (c1 != c2) {
|
|
if (doUnicodeCase) {
|
|
int cc1 = Character.toUpperCase(c1);
|
|
int cc2 = Character.toUpperCase(c2);
|
|
if (cc1 != cc2 &&
|
|
Character.toLowerCase(cc1) !=
|
|
Character.toLowerCase(cc2))
|
|
return false;
|
|
} else {
|
|
if (ASCII.toLower(c1) != ASCII.toLower(c2))
|
|
return false;
|
|
}
|
|
}
|
|
x += Character.charCount(c1);
|
|
j += Character.charCount(c2);
|
|
}
|
|
|
|
return next.match(matcher, i+groupSize, seq);
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.maxValid = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Searches until the next instance of its atom. This is useful for
|
|
* finding the atom efficiently without passing an instance of it
|
|
* (greedy problem) and without a lot of wasted search time (reluctant
|
|
* problem).
|
|
*
|
|
static final class First extends Node {
|
|
Node atom;
|
|
First(Node node) {
|
|
this.atom = BnM.optimize(node);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
if (atom instanceof BnM) {
|
|
return atom.match(matcher, i, seq)
|
|
&& next.match(matcher, matcher.last, seq);
|
|
}
|
|
for (;;) {
|
|
if (i > matcher.to) {
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
if (atom.match(matcher, i, seq)) {
|
|
return next.match(matcher, matcher.last, seq);
|
|
}
|
|
i += countChars(seq, i, 1);
|
|
matcher.first++;
|
|
}
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
atom.study(info);
|
|
info.maxValid = false;
|
|
info.deterministic = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero width positive lookahead.
|
|
*
|
|
static final class Pos extends Node {
|
|
Node cond;
|
|
Pos(Node cond) {
|
|
this.cond = cond;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int savedTo = matcher.to;
|
|
boolean conditionMatched;
|
|
|
|
// Relax transparent region boundaries for lookahead
|
|
if (matcher.transparentBounds)
|
|
matcher.to = matcher.getTextLength();
|
|
try {
|
|
conditionMatched = cond.match(matcher, i, seq);
|
|
} finally {
|
|
// Reinstate region boundaries
|
|
matcher.to = savedTo;
|
|
}
|
|
return conditionMatched && next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero width negative lookahead.
|
|
*
|
|
static final class Neg extends Node {
|
|
Node cond;
|
|
Neg(Node cond) {
|
|
this.cond = cond;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int savedTo = matcher.to;
|
|
boolean conditionMatched;
|
|
|
|
// Relax transparent region boundaries for lookahead
|
|
if (matcher.transparentBounds)
|
|
matcher.to = matcher.getTextLength();
|
|
try {
|
|
if (i < matcher.to) {
|
|
conditionMatched = !cond.match(matcher, i, seq);
|
|
} else {
|
|
// If a negative lookahead succeeds then more input
|
|
// could cause it to fail!
|
|
matcher.requireEnd = true;
|
|
conditionMatched = !cond.match(matcher, i, seq);
|
|
}
|
|
} finally {
|
|
// Reinstate region boundaries
|
|
matcher.to = savedTo;
|
|
}
|
|
return conditionMatched && next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For use with lookbehinds; matches the position where the lookbehind
|
|
* was encountered.
|
|
*
|
|
static class LookBehindEndNode extends Node {
|
|
private LookBehindEndNode() {} // Singleton
|
|
|
|
static LookBehindEndNode INSTANCE = new LookBehindEndNode();
|
|
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
return i == matcher.lookbehindTo;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero width positive lookbehind.
|
|
*
|
|
static class Behind extends Node {
|
|
Node cond;
|
|
int rmax, rmin;
|
|
Behind(Node cond, int rmax, int rmin) {
|
|
this.cond = cond;
|
|
this.rmax = rmax;
|
|
this.rmin = rmin;
|
|
}
|
|
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int savedFrom = matcher.from;
|
|
boolean conditionMatched = false;
|
|
int startIndex = (!matcher.transparentBounds) ?
|
|
matcher.from : 0;
|
|
int from = Math.max(i - rmax, startIndex);
|
|
// Set end boundary
|
|
int savedLBT = matcher.lookbehindTo;
|
|
matcher.lookbehindTo = i;
|
|
// Relax transparent region boundaries for lookbehind
|
|
if (matcher.transparentBounds)
|
|
matcher.from = 0;
|
|
for (int j = i - rmin; !conditionMatched && j >= from; j--) {
|
|
conditionMatched = cond.match(matcher, j, seq);
|
|
}
|
|
matcher.from = savedFrom;
|
|
matcher.lookbehindTo = savedLBT;
|
|
return conditionMatched && next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero width positive lookbehind, including supplementary
|
|
* characters or unpaired surrogates.
|
|
*
|
|
static final class BehindS extends Behind {
|
|
BehindS(Node cond, int rmax, int rmin) {
|
|
super(cond, rmax, rmin);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int rmaxChars = countChars(seq, i, -rmax);
|
|
int rminChars = countChars(seq, i, -rmin);
|
|
int savedFrom = matcher.from;
|
|
int startIndex = (!matcher.transparentBounds) ?
|
|
matcher.from : 0;
|
|
boolean conditionMatched = false;
|
|
int from = Math.max(i - rmaxChars, startIndex);
|
|
// Set end boundary
|
|
int savedLBT = matcher.lookbehindTo;
|
|
matcher.lookbehindTo = i;
|
|
// Relax transparent region boundaries for lookbehind
|
|
if (matcher.transparentBounds)
|
|
matcher.from = 0;
|
|
|
|
for (int j = i - rminChars;
|
|
!conditionMatched && j >= from;
|
|
j -= j>from ? countChars(seq, j, -1) : 1) {
|
|
conditionMatched = cond.match(matcher, j, seq);
|
|
}
|
|
matcher.from = savedFrom;
|
|
matcher.lookbehindTo = savedLBT;
|
|
return conditionMatched && next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero width negative lookbehind.
|
|
*
|
|
static class NotBehind extends Node {
|
|
Node cond;
|
|
int rmax, rmin;
|
|
NotBehind(Node cond, int rmax, int rmin) {
|
|
this.cond = cond;
|
|
this.rmax = rmax;
|
|
this.rmin = rmin;
|
|
}
|
|
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int savedLBT = matcher.lookbehindTo;
|
|
int savedFrom = matcher.from;
|
|
boolean conditionMatched = false;
|
|
int startIndex = (!matcher.transparentBounds) ?
|
|
matcher.from : 0;
|
|
int from = Math.max(i - rmax, startIndex);
|
|
matcher.lookbehindTo = i;
|
|
// Relax transparent region boundaries for lookbehind
|
|
if (matcher.transparentBounds)
|
|
matcher.from = 0;
|
|
for (int j = i - rmin; !conditionMatched && j >= from; j--) {
|
|
conditionMatched = cond.match(matcher, j, seq);
|
|
}
|
|
// Reinstate region boundaries
|
|
matcher.from = savedFrom;
|
|
matcher.lookbehindTo = savedLBT;
|
|
return !conditionMatched && next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero width negative lookbehind, including supplementary
|
|
* characters or unpaired surrogates.
|
|
*
|
|
static final class NotBehindS extends NotBehind {
|
|
NotBehindS(Node cond, int rmax, int rmin) {
|
|
super(cond, rmax, rmin);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int rmaxChars = countChars(seq, i, -rmax);
|
|
int rminChars = countChars(seq, i, -rmin);
|
|
int savedFrom = matcher.from;
|
|
int savedLBT = matcher.lookbehindTo;
|
|
boolean conditionMatched = false;
|
|
int startIndex = (!matcher.transparentBounds) ?
|
|
matcher.from : 0;
|
|
int from = Math.max(i - rmaxChars, startIndex);
|
|
matcher.lookbehindTo = i;
|
|
// Relax transparent region boundaries for lookbehind
|
|
if (matcher.transparentBounds)
|
|
matcher.from = 0;
|
|
for (int j = i - rminChars;
|
|
!conditionMatched && j >= from;
|
|
j -= j>from ? countChars(seq, j, -1) : 1) {
|
|
conditionMatched = cond.match(matcher, j, seq);
|
|
}
|
|
//Reinstate region boundaries
|
|
matcher.from = savedFrom;
|
|
matcher.lookbehindTo = savedLBT;
|
|
return !conditionMatched && next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Handles word boundaries. Includes a field to allow this one class to
|
|
* deal with the different types of word boundaries we can match. The word
|
|
* characters include underscores, letters, and digits. Non spacing marks
|
|
* can are also part of a word if they have a base character, otherwise
|
|
* they are ignored for purposes of finding word boundaries.
|
|
*
|
|
static final class Bound extends Node {
|
|
static int LEFT = 0x1;
|
|
static int RIGHT= 0x2;
|
|
static int BOTH = 0x3;
|
|
static int NONE = 0x4;
|
|
int type;
|
|
boolean useUWORD;
|
|
Bound(int n, boolean useUWORD) {
|
|
type = n;
|
|
this.useUWORD = useUWORD;
|
|
}
|
|
|
|
boolean isWord(int ch) {
|
|
return useUWORD ? CharPredicates.WORD().is(ch)
|
|
: (ch == '_' || Character.isLetterOrDigit(ch));
|
|
}
|
|
|
|
int check(Matcher matcher, int i, CharSequence seq) {
|
|
int ch;
|
|
boolean left = false;
|
|
int startIndex = matcher.from;
|
|
int endIndex = matcher.to;
|
|
if (matcher.transparentBounds) {
|
|
startIndex = 0;
|
|
endIndex = matcher.getTextLength();
|
|
}
|
|
if (i > startIndex) {
|
|
ch = Character.codePointBefore(seq, i);
|
|
left = (isWord(ch) ||
|
|
((Character.getType(ch) == Character.NON_SPACING_MARK)
|
|
&& hasBaseCharacter(matcher, i-1, seq)));
|
|
}
|
|
boolean right = false;
|
|
if (i < endIndex) {
|
|
ch = Character.codePointAt(seq, i);
|
|
right = (isWord(ch) ||
|
|
((Character.getType(ch) == Character.NON_SPACING_MARK)
|
|
&& hasBaseCharacter(matcher, i, seq)));
|
|
} else {
|
|
// Tried to access char past the end
|
|
matcher.hitEnd = true;
|
|
// The addition of another char could wreck a boundary
|
|
matcher.requireEnd = true;
|
|
}
|
|
return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
return (check(matcher, i, seq) & type) > 0
|
|
&& next.match(matcher, i, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Non spacing marks only count as word characters in bounds calculations
|
|
* if they have a base character.
|
|
*
|
|
private static boolean hasBaseCharacter(Matcher matcher, int i,
|
|
CharSequence seq)
|
|
{
|
|
int start = (!matcher.transparentBounds) ?
|
|
matcher.from : 0;
|
|
for (int x=i; x >= start; x--) {
|
|
int ch = Character.codePointAt(seq, x);
|
|
if (Character.isLetterOrDigit(ch))
|
|
return true;
|
|
if (Character.getType(ch) == Character.NON_SPACING_MARK)
|
|
continue;
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Attempts to match a slice in the input using the Boyer-Moore string
|
|
* matching algorithm. The algorithm is based on the idea that the
|
|
* pattern can be shifted farther ahead in the search text if it is
|
|
* matched right to left.
|
|
* <p>
|
|
* The pattern is compared to the input one character at a time, from
|
|
* the rightmost character in the pattern to the left. If the characters
|
|
* all match the pattern has been found. If a character does not match,
|
|
* the pattern is shifted right a distance that is the maximum of two
|
|
* functions, the bad character shift and the good suffix shift. This
|
|
* shift moves the attempted match position through the input more
|
|
* quickly than a naive one position at a time check.
|
|
* <p>
|
|
* The bad character shift is based on the character from the text that
|
|
* did not match. If the character does not appear in the pattern, the
|
|
* pattern can be shifted completely beyond the bad character. If the
|
|
* character does occur in the pattern, the pattern can be shifted to
|
|
* line the pattern up with the next occurrence of that character.
|
|
* <p>
|
|
* The good suffix shift is based on the idea that some subset on the right
|
|
* side of the pattern has matched. When a bad character is found, the
|
|
* pattern can be shifted right by the pattern length if the subset does
|
|
* not occur again in pattern, or by the amount of distance to the
|
|
* next occurrence of the subset in the pattern.
|
|
*
|
|
* Boyer-Moore search methods adapted from code by Amy Yu.
|
|
*
|
|
static class BnM extends Node {
|
|
int[] buffer;
|
|
int[] lastOcc;
|
|
int[] optoSft;
|
|
|
|
/**
|
|
* Pre calculates arrays needed to generate the bad character
|
|
* shift and the good suffix shift. Only the last seven bits
|
|
* are used to see if chars match; This keeps the tables small
|
|
* and covers the heavily used ASCII range, but occasionally
|
|
* results in an aliased match for the bad character shift.
|
|
*
|
|
static Node optimize(Node node) {
|
|
if (!(node instanceof Slice)) {
|
|
return node;
|
|
}
|
|
|
|
int[] src = ((Slice) node).buffer;
|
|
int patternLength = src.length;
|
|
// The BM algorithm requires a bit of overhead;
|
|
// If the pattern is short don't use it, since
|
|
// a shift larger than the pattern length cannot
|
|
// be used anyway.
|
|
if (patternLength < 4) {
|
|
return node;
|
|
}
|
|
int i, j;
|
|
int[] lastOcc = new int[128];
|
|
int[] optoSft = new int[patternLength];
|
|
// Precalculate part of the bad character shift
|
|
// It is a table for where in the pattern each
|
|
// lower 7-bit value occurs
|
|
for (i = 0; i < patternLength; i++) {
|
|
lastOcc[src[i]&0x7F] = i + 1;
|
|
}
|
|
// Precalculate the good suffix shift
|
|
// i is the shift amount being considered
|
|
NEXT: for (i = patternLength; i > 0; i--) {
|
|
// j is the beginning index of suffix being considered
|
|
for (j = patternLength - 1; j >= i; j--) {
|
|
// Testing for good suffix
|
|
if (src[j] == src[j-i]) {
|
|
// src[j..len] is a good suffix
|
|
optoSft[j-1] = i;
|
|
} else {
|
|
// No match. The array has already been
|
|
// filled up with correct values before.
|
|
continue NEXT;
|
|
}
|
|
}
|
|
// This fills up the remaining of optoSft
|
|
// any suffix can not have larger shift amount
|
|
// then its sub-suffix. Why???
|
|
while (j > 0) {
|
|
optoSft[--j] = i;
|
|
}
|
|
}
|
|
// Set the guard value because of unicode compression
|
|
optoSft[patternLength-1] = 1;
|
|
if (node instanceof SliceS)
|
|
return new BnMS(src, lastOcc, optoSft, node.next);
|
|
return new BnM(src, lastOcc, optoSft, node.next);
|
|
}
|
|
BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
|
|
this.buffer = src;
|
|
this.lastOcc = lastOcc;
|
|
this.optoSft = optoSft;
|
|
this.next = next;
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] src = buffer;
|
|
int patternLength = src.length;
|
|
int last = matcher.to - patternLength;
|
|
|
|
// Loop over all possible match positions in text
|
|
NEXT: while (i <= last) {
|
|
// Loop over pattern from right to left
|
|
for (int j = patternLength - 1; j >= 0; j--) {
|
|
int ch = seq.charAt(i+j);
|
|
if (ch != src[j]) {
|
|
// Shift search to the right by the maximum of the
|
|
// bad character shift and the good suffix shift
|
|
i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
|
|
continue NEXT;
|
|
}
|
|
}
|
|
// Entire pattern matched starting at i
|
|
matcher.first = i;
|
|
boolean ret = next.match(matcher, i + patternLength, seq);
|
|
if (ret) {
|
|
matcher.first = i;
|
|
matcher.groups[0] = matcher.first;
|
|
matcher.groups[1] = matcher.last;
|
|
return true;
|
|
}
|
|
i++;
|
|
}
|
|
// BnM is only used as the leading node in the unanchored case,
|
|
// and it replaced its Start() which always searches to the end
|
|
// if it doesn't find what it's looking for, so hitEnd is true.
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
boolean study(TreeInfo info) {
|
|
info.minLength += buffer.length;
|
|
info.maxValid = false;
|
|
return next.study(info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Supplementary support version of BnM(). Unpaired surrogates are
|
|
* also handled by this class.
|
|
*
|
|
static final class BnMS extends BnM {
|
|
int lengthInChars;
|
|
|
|
BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
|
|
super(src, lastOcc, optoSft, next);
|
|
for (int cp : buffer) {
|
|
lengthInChars += Character.charCount(cp);
|
|
}
|
|
}
|
|
boolean match(Matcher matcher, int i, CharSequence seq) {
|
|
int[] src = buffer;
|
|
int patternLength = src.length;
|
|
int last = matcher.to - lengthInChars;
|
|
|
|
// Loop over all possible match positions in text
|
|
NEXT: while (i <= last) {
|
|
// Loop over pattern from right to left
|
|
int ch;
|
|
for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
|
|
j > 0; j -= Character.charCount(ch), x--) {
|
|
ch = Character.codePointBefore(seq, i+j);
|
|
if (ch != src[x]) {
|
|
// Shift search to the right by the maximum of the
|
|
// bad character shift and the good suffix shift
|
|
int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
|
|
i += countChars(seq, i, n);
|
|
continue NEXT;
|
|
}
|
|
}
|
|
// Entire pattern matched starting at i
|
|
matcher.first = i;
|
|
boolean ret = next.match(matcher, i + lengthInChars, seq);
|
|
if (ret) {
|
|
matcher.first = i;
|
|
matcher.groups[0] = matcher.first;
|
|
matcher.groups[1] = matcher.last;
|
|
return true;
|
|
}
|
|
i += countChars(seq, i, 1);
|
|
}
|
|
matcher.hitEnd = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
@FunctionalInterface
|
|
static interface CharPredicate {
|
|
boolean is(int ch);
|
|
|
|
default CharPredicate and(CharPredicate p) {
|
|
return ch -> is(ch) && p.is(ch);
|
|
}
|
|
default CharPredicate union(CharPredicate p) {
|
|
return ch -> is(ch) || p.is(ch);
|
|
}
|
|
default CharPredicate union(CharPredicate p1,
|
|
CharPredicate p2) {
|
|
return ch -> is(ch) || p1.is(ch) || p2.is(ch);
|
|
}
|
|
default CharPredicate negate() {
|
|
return ch -> !is(ch);
|
|
}
|
|
}
|
|
|
|
static interface BmpCharPredicate extends CharPredicate {
|
|
|
|
default CharPredicate and(CharPredicate p) {
|
|
if (p instanceof BmpCharPredicate)
|
|
return (BmpCharPredicate)(ch -> is(ch) && p.is(ch));
|
|
return ch -> is(ch) && p.is(ch);
|
|
}
|
|
default CharPredicate union(CharPredicate p) {
|
|
if (p instanceof BmpCharPredicate)
|
|
return (BmpCharPredicate)(ch -> is(ch) || p.is(ch));
|
|
return ch -> is(ch) || p.is(ch);
|
|
}
|
|
static CharPredicate union(CharPredicate... predicates) {
|
|
CharPredicate cp = ch -> {
|
|
for (CharPredicate p : predicates) {
|
|
if (!p.is(ch))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
for (CharPredicate p : predicates) {
|
|
if (! (p instanceof BmpCharPredicate))
|
|
return cp;
|
|
}
|
|
return (BmpCharPredicate)cp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* matches a Perl vertical whitespace
|
|
*
|
|
static BmpCharPredicate VertWS() {
|
|
return cp -> (cp >= 0x0A && cp <= 0x0D) ||
|
|
cp == 0x85 || cp == 0x2028 || cp == 0x2029;
|
|
}
|
|
|
|
/**
|
|
* matches a Perl horizontal whitespace
|
|
*
|
|
static BmpCharPredicate HorizWS() {
|
|
return cp ->
|
|
cp == 0x09 || cp == 0x20 || cp == 0xa0 || cp == 0x1680 ||
|
|
cp == 0x180e || cp >= 0x2000 && cp <= 0x200a || cp == 0x202f ||
|
|
cp == 0x205f || cp == 0x3000;
|
|
}
|
|
|
|
/**
|
|
* for the Unicode category ALL and the dot metacharacter when
|
|
* in dotall mode.
|
|
*
|
|
static CharPredicate ALL() {
|
|
return ch -> true;
|
|
}
|
|
|
|
/**
|
|
* for the dot metacharacter when dotall is not enabled.
|
|
*
|
|
static CharPredicate DOT() {
|
|
return ch ->
|
|
(ch != '\n' && ch != '\r'
|
|
&& (ch|1) != '\u2029'
|
|
&& ch != '\u0085');
|
|
}
|
|
|
|
/**
|
|
* the dot metacharacter when dotall is not enabled but UNIX_LINES is enabled.
|
|
*
|
|
static CharPredicate UNIXDOT() {
|
|
return ch -> ch != '\n';
|
|
}
|
|
|
|
/**
|
|
* Indicate that matches a Supplementary Unicode character
|
|
*
|
|
static CharPredicate SingleS(int c) {
|
|
return ch -> ch == c;
|
|
}
|
|
|
|
/**
|
|
* A bmp/optimized predicate of single
|
|
*
|
|
static BmpCharPredicate Single(int c) {
|
|
return ch -> ch == c;
|
|
}
|
|
|
|
/**
|
|
* Case insensitive matches a given BMP character
|
|
*
|
|
static BmpCharPredicate SingleI(int lower, int upper) {
|
|
return ch -> ch == lower || ch == upper;
|
|
}
|
|
|
|
/**
|
|
* Unicode case insensitive matches a given Unicode character
|
|
*
|
|
static CharPredicate SingleU(int lower) {
|
|
return ch -> lower == ch ||
|
|
lower == Character.toLowerCase(Character.toUpperCase(ch));
|
|
}
|
|
|
|
private static boolean inRange(int lower, int ch, int upper) {
|
|
return lower <= ch && ch <= upper;
|
|
}
|
|
|
|
/**
|
|
* Characters within a explicit value range
|
|
*
|
|
static CharPredicate Range(int lower, int upper) {
|
|
if (upper < Character.MIN_HIGH_SURROGATE ||
|
|
lower > Character.MAX_LOW_SURROGATE &&
|
|
upper < Character.MIN_SUPPLEMENTARY_CODE_POINT)
|
|
return (BmpCharPredicate)(ch -> inRange(lower, ch, upper));
|
|
return ch -> inRange(lower, ch, upper);
|
|
}
|
|
|
|
/**
|
|
* Characters within a explicit value range in a case insensitive manner.
|
|
*
|
|
static CharPredicate CIRange(int lower, int upper) {
|
|
return ch -> inRange(lower, ch, upper) ||
|
|
ASCII.isAscii(ch) &&
|
|
(inRange(lower, ASCII.toUpper(ch), upper) ||
|
|
inRange(lower, ASCII.toLower(ch), upper));
|
|
}
|
|
|
|
static CharPredicate CIRangeU(int lower, int upper) {
|
|
return ch -> {
|
|
if (inRange(lower, ch, upper))
|
|
return true;
|
|
int up = Character.toUpperCase(ch);
|
|
return inRange(lower, up, upper) ||
|
|
inRange(lower, Character.toLowerCase(up), upper);
|
|
};
|
|
}
|
|
|
|
/**
|
|
* This must be the very first initializer.
|
|
*
|
|
static final Node accept = new Node();
|
|
|
|
static final Node lastAccept = new LastNode();
|
|
*/
|
|
// END Android-removed: Reimplement matching logic via ICU4C.
|
|
|
|
/**
|
|
* Creates a predicate that tests if this pattern is found in a given input
|
|
* string.
|
|
*
|
|
* @apiNote
|
|
* This method creates a predicate that behaves as if it creates a matcher
|
|
* from the input sequence and then calls {@code find}, for example a
|
|
* predicate of the form:
|
|
* <pre>{@code
|
|
* s -> matcher(s).find();
|
|
* }</pre>
|
|
*
|
|
* @return The predicate which can be used for finding a match on a
|
|
* subsequence of a string
|
|
* @since 1.8
|
|
* @see Matcher#find
|
|
*/
|
|
public Predicate<String> asPredicate() {
|
|
return s -> matcher(s).find();
|
|
}
|
|
|
|
/**
|
|
* Creates a predicate that tests if this pattern matches a given input string.
|
|
*
|
|
* @apiNote
|
|
* This method creates a predicate that behaves as if it creates a matcher
|
|
* from the input sequence and then calls {@code matches}, for example a
|
|
* predicate of the form:
|
|
* <pre>{@code
|
|
* s -> matcher(s).matches();
|
|
* }</pre>
|
|
*
|
|
* @return The predicate which can be used for matching an input string
|
|
* against this pattern.
|
|
* @since 11
|
|
* @see Matcher#matches
|
|
*/
|
|
public Predicate<String> asMatchPredicate() {
|
|
return s -> matcher(s).matches();
|
|
}
|
|
|
|
/**
|
|
* Creates a stream from the given input sequence around matches of this
|
|
* pattern.
|
|
*
|
|
* <p> The stream returned by this method contains each substring of the
|
|
* input sequence that is terminated by another subsequence that matches
|
|
* this pattern or is terminated by the end of the input sequence. The
|
|
* substrings in the stream are in the order in which they occur in the
|
|
* input. Trailing empty strings will be discarded and not encountered in
|
|
* the stream.
|
|
*
|
|
* <p> If this pattern does not match any subsequence of the input then
|
|
* the resulting stream has just one element, namely the input sequence in
|
|
* string form.
|
|
*
|
|
* <p> When there is a positive-width match at the beginning of the input
|
|
* sequence then an empty leading substring is included at the beginning
|
|
* of the stream. A zero-width match at the beginning however never produces
|
|
* such empty leading substring.
|
|
*
|
|
* <p> If the input sequence is mutable, it must remain constant during the
|
|
* execution of the terminal stream operation. Otherwise, the result of the
|
|
* terminal stream operation is undefined.
|
|
*
|
|
* @param input
|
|
* The character sequence to be split
|
|
*
|
|
* @return The stream of strings computed by splitting the input
|
|
* around matches of this pattern
|
|
* @see #split(CharSequence)
|
|
* @since 1.8
|
|
*/
|
|
public Stream<String> splitAsStream(final CharSequence input) {
|
|
class MatcherIterator implements Iterator<String> {
|
|
private Matcher matcher;
|
|
// The start position of the next sub-sequence of input
|
|
// when current == input.length there are no more elements
|
|
private int current;
|
|
// null if the next element, if any, needs to obtained
|
|
private String nextElement;
|
|
// > 0 if there are N next empty elements
|
|
private int emptyElementCount;
|
|
|
|
public String next() {
|
|
if (!hasNext())
|
|
throw new NoSuchElementException();
|
|
|
|
if (emptyElementCount == 0) {
|
|
String n = nextElement;
|
|
nextElement = null;
|
|
return n;
|
|
} else {
|
|
emptyElementCount--;
|
|
return "";
|
|
}
|
|
}
|
|
|
|
public boolean hasNext() {
|
|
if (matcher == null) {
|
|
matcher = matcher(input);
|
|
// If the input is an empty string then the result can only be a
|
|
// stream of the input. Induce that by setting the empty
|
|
// element count to 1
|
|
// Android-changed: Keep old behavior on Android 13 or below. http://b/286499139
|
|
// emptyElementCount = input.length() == 0 ? 1 : 0;
|
|
if (input.length() == 0
|
|
&& VMRuntime.getSdkVersion() >= VersionCodes.UPSIDE_DOWN_CAKE
|
|
&& Compatibility.isChangeEnabled(
|
|
SPLIT_AS_STREAM_RETURNS_SINGLE_EMPTY_STRING)) {
|
|
emptyElementCount = 1;
|
|
} else {
|
|
emptyElementCount = 0;
|
|
}
|
|
}
|
|
if (nextElement != null || emptyElementCount > 0)
|
|
return true;
|
|
|
|
if (current == input.length())
|
|
return false;
|
|
|
|
// Consume the next matching element
|
|
// Count sequence of matching empty elements
|
|
while (matcher.find()) {
|
|
nextElement = input.subSequence(current, matcher.start()).toString();
|
|
current = matcher.end();
|
|
if (!nextElement.isEmpty()) {
|
|
return true;
|
|
} else if (current > 0) { // no empty leading substring for zero-width
|
|
// match at the beginning of the input
|
|
emptyElementCount++;
|
|
}
|
|
}
|
|
|
|
// Consume last matching element
|
|
nextElement = input.subSequence(current, input.length()).toString();
|
|
current = input.length();
|
|
if (!nextElement.isEmpty()) {
|
|
return true;
|
|
} else {
|
|
// Ignore a terminal sequence of matching empty elements
|
|
emptyElementCount = 0;
|
|
nextElement = null;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
|
|
new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
|
|
}
|
|
|
|
// Android-added: Backward-compatible flag for splitAsStream() API.
|
|
/**
|
|
* Since Android 14, {@link Pattern#splitAsStream(CharSequence)} return a stream of a single
|
|
* empty String as described in the API documentation. Previously, given an empty string input,
|
|
* the method returns an empty stream.
|
|
*
|
|
* This flag is enabled for apps targeting Android 14+.
|
|
*
|
|
* @hide
|
|
*/
|
|
@ChangeId
|
|
@EnabledSince(targetSdkVersion = VersionCodes.UPSIDE_DOWN_CAKE)
|
|
public static final long SPLIT_AS_STREAM_RETURNS_SINGLE_EMPTY_STRING = 288845345L;
|
|
|
|
}
|