281 lines
12 KiB
Java
281 lines
12 KiB
Java
/*
|
|
* Copyright (C) 2024 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package android.adservices.ondevicepersonalization;
|
|
|
|
import android.annotation.IntRange;
|
|
import android.annotation.NonNull;
|
|
import android.os.Parcelable;
|
|
|
|
import com.android.ondevicepersonalization.internal.util.AnnotationValidations;
|
|
import com.android.ondevicepersonalization.internal.util.ByteArrayParceledListSlice;
|
|
import com.android.ondevicepersonalization.internal.util.DataClass;
|
|
|
|
/**
|
|
* Parcelable version of {@link InferenceInput}.
|
|
*
|
|
* @hide
|
|
*/
|
|
@DataClass(genAidl = false, genBuilder = false)
|
|
public class InferenceInputParcel implements Parcelable {
|
|
/**
|
|
* The location of TFLite model. The model is usually store in REMOTE_DATA or LOCAL_DATA table.
|
|
*/
|
|
@NonNull private ModelId mModelId;
|
|
|
|
/** The delegate to run model inference. If not specified, CPU delegate is used by default. */
|
|
private @InferenceInput.Params.Delegate int mDelegate;
|
|
|
|
/**
|
|
* The number of threads available to the interpreter. Only set and take effective when input
|
|
* tensors are on CPU. Setting cpuNumThread to 0 has the effect to disable multithreading, which
|
|
* is equivalent to setting cpuNumThread to 1. If set to the value -1, the number of threads
|
|
* used will be implementation-defined and platform-dependent.
|
|
*/
|
|
private @IntRange(from = 1) int mCpuNumThread;
|
|
|
|
/** An array of input data. The inputs should be in the same order as inputs of the model. */
|
|
@NonNull private ByteArrayParceledListSlice mInputData;
|
|
|
|
/**
|
|
* The number of input examples. Adopter can set this field to run batching inference. The batch
|
|
* size is 1 by default.
|
|
*/
|
|
private int mBatchSize;
|
|
|
|
private @InferenceInput.Params.ModelType int mModelType =
|
|
InferenceInput.Params.MODEL_TYPE_TENSORFLOW_LITE;
|
|
|
|
/**
|
|
* The empty InferenceOutput representing the expected output structure. For TFLite, the
|
|
* inference code will verify whether this expected output structure matches model output
|
|
* signature.
|
|
*/
|
|
@NonNull private InferenceOutputParcel mExpectedOutputStructure;
|
|
|
|
/** @hide */
|
|
public InferenceInputParcel(@NonNull InferenceInput value) {
|
|
this(
|
|
new ModelId.Builder()
|
|
.setTableId(value.getParams().getKeyValueStore().getTableId())
|
|
.setKey(value.getParams().getModelKey())
|
|
.build(),
|
|
value.getParams().getDelegateType(),
|
|
value.getParams().getRecommendedNumThreads(),
|
|
ByteArrayParceledListSlice.create(value.getInputData()),
|
|
value.getBatchSize(),
|
|
value.getParams().getModelType(),
|
|
new InferenceOutputParcel(value.getExpectedOutputStructure()));
|
|
}
|
|
|
|
// Code below generated by codegen v1.0.23.
|
|
//
|
|
// DO NOT MODIFY!
|
|
// CHECKSTYLE:OFF Generated code
|
|
//
|
|
// To regenerate run:
|
|
// $ codegen
|
|
// $ANDROID_BUILD_TOP/packages/modules/OnDevicePersonalization/framework/java/android/adservices/ondevicepersonalization/InferenceInputParcel.java
|
|
//
|
|
// To exclude the generated code from IntelliJ auto-formatting enable (one-time):
|
|
// Settings > Editor > Code Style > Formatter Control
|
|
// @formatter:off
|
|
|
|
/**
|
|
* Creates a new InferenceInputParcel.
|
|
*
|
|
* @param modelId The location of TFLite model. The model is usually store in REMOTE_DATA or
|
|
* LOCAL_DATA table.
|
|
* @param delegate The delegate to run model inference. If not specified, CPU delegate is used
|
|
* by default.
|
|
* @param cpuNumThread The number of threads available to the interpreter. Only set and take
|
|
* effective when input tensors are on CPU. Setting cpuNumThread to 0 has the effect to
|
|
* disable multithreading, which is equivalent to setting cpuNumThread to 1. If set to the
|
|
* value -1, the number of threads used will be implementation-defined and
|
|
* platform-dependent.
|
|
* @param inputData An array of input data. The inputs should be in the same order as inputs of
|
|
* the model.
|
|
* @param batchSize The number of input examples. Adopter can set this field to run batching
|
|
* inference. The batch size is 1 by default.
|
|
* @param expectedOutputStructure The empty InferenceOutput representing the expected output
|
|
* structure. For TFLite, the inference code will verify whether this expected output
|
|
* structure matches model output signature.
|
|
*/
|
|
@DataClass.Generated.Member
|
|
public InferenceInputParcel(
|
|
@NonNull ModelId modelId,
|
|
@InferenceInput.Params.Delegate int delegate,
|
|
@IntRange(from = 1) int cpuNumThread,
|
|
@NonNull ByteArrayParceledListSlice inputData,
|
|
int batchSize,
|
|
@InferenceInput.Params.ModelType int modelType,
|
|
@NonNull InferenceOutputParcel expectedOutputStructure) {
|
|
this.mModelId = modelId;
|
|
AnnotationValidations.validate(NonNull.class, null, mModelId);
|
|
this.mDelegate = delegate;
|
|
AnnotationValidations.validate(InferenceInput.Params.Delegate.class, null, mDelegate);
|
|
this.mCpuNumThread = cpuNumThread;
|
|
AnnotationValidations.validate(IntRange.class, null, mCpuNumThread, "from", 1);
|
|
this.mInputData = inputData;
|
|
AnnotationValidations.validate(NonNull.class, null, mInputData);
|
|
this.mBatchSize = batchSize;
|
|
this.mModelType = modelType;
|
|
AnnotationValidations.validate(InferenceInput.Params.ModelType.class, null, mModelType);
|
|
this.mExpectedOutputStructure = expectedOutputStructure;
|
|
AnnotationValidations.validate(NonNull.class, null, mExpectedOutputStructure);
|
|
|
|
// onConstructed(); // You can define this method to get a callback
|
|
}
|
|
|
|
/**
|
|
* The location of TFLite model. The model is usually store in REMOTE_DATA or LOCAL_DATA table.
|
|
*/
|
|
@DataClass.Generated.Member
|
|
public @NonNull ModelId getModelId() {
|
|
return mModelId;
|
|
}
|
|
|
|
/** The delegate to run model inference. If not specified, CPU delegate is used by default. */
|
|
@DataClass.Generated.Member
|
|
public @InferenceInput.Params.Delegate int getDelegate() {
|
|
return mDelegate;
|
|
}
|
|
|
|
/**
|
|
* The number of threads available to the interpreter. Only set and take effective when input
|
|
* tensors are on CPU. Setting cpuNumThread to 0 has the effect to disable multithreading, which
|
|
* is equivalent to setting cpuNumThread to 1. If set to the value -1, the number of threads
|
|
* used will be implementation-defined and platform-dependent.
|
|
*/
|
|
@DataClass.Generated.Member
|
|
public @IntRange(from = 1) int getCpuNumThread() {
|
|
return mCpuNumThread;
|
|
}
|
|
|
|
/** An array of input data. The inputs should be in the same order as inputs of the model. */
|
|
@DataClass.Generated.Member
|
|
public @NonNull ByteArrayParceledListSlice getInputData() {
|
|
return mInputData;
|
|
}
|
|
|
|
/**
|
|
* The number of input examples. Adopter can set this field to run batching inference. The batch
|
|
* size is 1 by default.
|
|
*/
|
|
@DataClass.Generated.Member
|
|
public int getBatchSize() {
|
|
return mBatchSize;
|
|
}
|
|
|
|
@DataClass.Generated.Member
|
|
public @InferenceInput.Params.ModelType int getModelType() {
|
|
return mModelType;
|
|
}
|
|
|
|
/**
|
|
* The empty InferenceOutput representing the expected output structure. For TFLite, the
|
|
* inference code will verify whether this expected output structure matches model output
|
|
* signature.
|
|
*/
|
|
@DataClass.Generated.Member
|
|
public @NonNull InferenceOutputParcel getExpectedOutputStructure() {
|
|
return mExpectedOutputStructure;
|
|
}
|
|
|
|
@Override
|
|
@DataClass.Generated.Member
|
|
public void writeToParcel(@NonNull android.os.Parcel dest, int flags) {
|
|
// You can override field parcelling by defining methods like:
|
|
// void parcelFieldName(Parcel dest, int flags) { ... }
|
|
|
|
dest.writeTypedObject(mModelId, flags);
|
|
dest.writeInt(mDelegate);
|
|
dest.writeInt(mCpuNumThread);
|
|
dest.writeTypedObject(mInputData, flags);
|
|
dest.writeInt(mBatchSize);
|
|
dest.writeInt(mModelType);
|
|
dest.writeTypedObject(mExpectedOutputStructure, flags);
|
|
}
|
|
|
|
@Override
|
|
@DataClass.Generated.Member
|
|
public int describeContents() {
|
|
return 0;
|
|
}
|
|
|
|
/** @hide */
|
|
@SuppressWarnings({"unchecked", "RedundantCast"})
|
|
@DataClass.Generated.Member
|
|
protected InferenceInputParcel(@NonNull android.os.Parcel in) {
|
|
// You can override field unparcelling by defining methods like:
|
|
// static FieldType unparcelFieldName(Parcel in) { ... }
|
|
|
|
ModelId modelId = (ModelId) in.readTypedObject(ModelId.CREATOR);
|
|
int delegate = in.readInt();
|
|
int cpuNumThread = in.readInt();
|
|
ByteArrayParceledListSlice inputData =
|
|
(ByteArrayParceledListSlice) in.readTypedObject(ByteArrayParceledListSlice.CREATOR);
|
|
int batchSize = in.readInt();
|
|
int modelType = in.readInt();
|
|
InferenceOutputParcel expectedOutputStructure =
|
|
(InferenceOutputParcel) in.readTypedObject(InferenceOutputParcel.CREATOR);
|
|
|
|
this.mModelId = modelId;
|
|
AnnotationValidations.validate(NonNull.class, null, mModelId);
|
|
this.mDelegate = delegate;
|
|
AnnotationValidations.validate(InferenceInput.Params.Delegate.class, null, mDelegate);
|
|
this.mCpuNumThread = cpuNumThread;
|
|
AnnotationValidations.validate(IntRange.class, null, mCpuNumThread, "from", 1);
|
|
this.mInputData = inputData;
|
|
AnnotationValidations.validate(NonNull.class, null, mInputData);
|
|
this.mBatchSize = batchSize;
|
|
this.mModelType = modelType;
|
|
AnnotationValidations.validate(InferenceInput.Params.ModelType.class, null, mModelType);
|
|
this.mExpectedOutputStructure = expectedOutputStructure;
|
|
AnnotationValidations.validate(NonNull.class, null, mExpectedOutputStructure);
|
|
|
|
// onConstructed(); // You can define this method to get a callback
|
|
}
|
|
|
|
@DataClass.Generated.Member
|
|
public static final @NonNull Parcelable.Creator<InferenceInputParcel> CREATOR =
|
|
new Parcelable.Creator<InferenceInputParcel>() {
|
|
@Override
|
|
public InferenceInputParcel[] newArray(int size) {
|
|
return new InferenceInputParcel[size];
|
|
}
|
|
|
|
@Override
|
|
public InferenceInputParcel createFromParcel(@NonNull android.os.Parcel in) {
|
|
return new InferenceInputParcel(in);
|
|
}
|
|
};
|
|
|
|
@DataClass.Generated(
|
|
time = 1708579683131L,
|
|
codegenVersion = "1.0.23",
|
|
sourceFile =
|
|
"packages/modules/OnDevicePersonalization/framework/java/android/adservices/ondevicepersonalization/InferenceInputParcel.java",
|
|
inputSignatures =
|
|
"private @android.annotation.NonNull android.adservices.ondevicepersonalization.ModelId mModelId\nprivate @android.adservices.ondevicepersonalization.InferenceInput.Params.Delegate int mDelegate\nprivate @android.annotation.IntRange int mCpuNumThread\nprivate @android.annotation.NonNull com.android.ondevicepersonalization.internal.util.ByteArrayParceledListSlice mInputData\nprivate int mBatchSize\nprivate @android.adservices.ondevicepersonalization.InferenceInput.Params.ModelType int mModelType\nprivate @android.annotation.NonNull android.adservices.ondevicepersonalization.InferenceOutputParcel mExpectedOutputStructure\nclass InferenceInputParcel extends java.lang.Object implements [android.os.Parcelable]\n@com.android.ondevicepersonalization.internal.util.DataClass(genAidl=false, genBuilder=false)")
|
|
@Deprecated
|
|
private void __metadata() {}
|
|
|
|
// @formatter:on
|
|
// End of generated code
|
|
|
|
}
|