script-astra/Android/Sdk/sources/android-35/android/icu/text/SpoofChecker.java
localadmin 4380f00a78 init
2025-01-20 18:15:20 +03:00

2132 lines
90 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* GENERATED SOURCE. DO NOT MODIFY. */
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
***************************************************************************
* Copyright (C) 2008-2016 International Business Machines Corporation
* and others. All Rights Reserved.
***************************************************************************
*
* Unicode Spoof Detection
*/
package android.icu.text;
import java.io.IOException;
import java.io.LineNumberReader;
import java.io.Reader;
import java.nio.ByteBuffer;
import java.text.ParseException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.LinkedHashSet;
import java.util.Locale;
import java.util.MissingResourceException;
import java.util.Set;
import java.util.Vector;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import android.icu.impl.ICUBinary;
import android.icu.impl.ICUBinary.Authenticate;
import android.icu.impl.Utility;
import android.icu.lang.UCharacter;
import android.icu.lang.UCharacter.IdentifierType;
import android.icu.lang.UCharacterCategory;
import android.icu.lang.UProperty;
import android.icu.lang.UScript;
import android.icu.util.ULocale;
/**
* <p>
* This class, based on <a href="http://unicode.org/reports/tr36">Unicode Technical Report #36</a> and
* <a href="http://unicode.org/reports/tr39">Unicode Technical Standard #39</a>, has two main functions:
*
* <ol>
* <li>Checking whether two strings are visually <em>confusable</em> with each other, such as "desparejado" and
* "ԁеѕрагејаԁо".</li>
* <li>Checking whether an individual string is likely to be an attempt at confusing the reader (<em>spoof
* detection</em>), such as "pаypаl" spelled with Cyrillic 'а' characters.</li>
* </ol>
*
* <p>
* Although originally designed as a method for flagging suspicious identifier strings such as URLs,
* <code>SpoofChecker</code> has a number of other practical use cases, such as preventing attempts to evade bad-word
* content filters.
*
* <h2>Confusables</h2>
*
* <p>
* The following example shows how to use <code>SpoofChecker</code> to check for confusability between two strings:
*
* <pre>
* <code>
* SpoofChecker sc = new SpoofChecker.Builder().setChecks(SpoofChecker.CONFUSABLE).build();
* int result = sc.areConfusable("desparejado", "ԁеѕрагејаԁо");
* System.out.println(result != 0); // true
* </code>
* </pre>
*
* <p>
* <code>SpoofChecker</code> uses a builder paradigm: options are specified within the context of a lightweight
* {@link SpoofChecker.Builder} object, and upon calling {@link SpoofChecker.Builder#build}, expensive data loading
* operations are performed, and an immutable <code>SpoofChecker</code> is returned.
*
* <p>
* The first line of the example creates a <code>SpoofChecker</code> object with confusable-checking enabled; the second
* line performs the confusability test. For best performance, the instance should be created once (e.g., upon
* application startup), and the more efficient {@link SpoofChecker#areConfusable} method can be used at runtime.
*
* <p>
* If the paragraph direction used to display the strings is known, it should be passed to {@link SpoofChecker#areConfusable}:
*
* <pre>
* <code>
* // These strings look identical when rendered in a left-to-right context.
* // They look distinct in a right-to-left context.
* String s1 = "A1\u05D0"; // A1א
* String s2 = "A\u05D01"; // Aא1
*
* SpoofChecker sc = new SpoofChecker.Builder().setChecks(SpoofChecker.CONFUSABLE).build();
* int result = sc.areConfusable(Bidi.DIRECTION_LEFT_TO_RIGHT, s1, s2);
* System.out.println(result != 0); // true
* </code>
* </pre>
*
* <p>
* UTS 39 defines two strings to be <em>confusable</em> if they map to the same skeleton. A <em>skeleton</em> is a
* sequence of families of confusable characters, where each family has a single exemplar character.
* {@link SpoofChecker#getSkeleton} computes the skeleton for a particular string, so the following snippet is
* equivalent to the example above:
*
* <pre>
* <code>
* SpoofChecker sc = new SpoofChecker.Builder().setChecks(SpoofChecker.CONFUSABLE).build();
* boolean result = sc.getSkeleton("desparejado").equals(sc.getSkeleton("ԁеѕрагејаԁо"));
* System.out.println(result); // true
* </code>
* </pre>
*
* <p>
* If you need to check if a string is confusable with any string in a dictionary of many strings, rather than calling
* {@link SpoofChecker#areConfusable} many times in a loop, {@link SpoofChecker#getSkeleton} can be used instead, as
* shown below:
*
* <pre>
* // Setup:
* String[] DICTIONARY = new String[]{ "lorem", "ipsum" }; // example
* SpoofChecker sc = new SpoofChecker.Builder().setChecks(SpoofChecker.CONFUSABLE).build();
* HashSet&lt;String&gt; skeletons = new HashSet&lt;String&gt;();
* for (String word : DICTIONARY) {
* skeletons.add(sc.getSkeleton(word));
* }
*
* // Live Check:
* boolean result = skeletons.contains(sc.getSkeleton("1orern"));
* System.out.println(result); // true
* </pre>
*
* <p>
* <b>Note:</b> Since the Unicode confusables mapping table is frequently updated, confusable skeletons are <em>not</em>
* guaranteed to be the same between ICU releases. We therefore recommend that you always compute confusable skeletons
* at runtime and do not rely on creating a permanent, or difficult to update, database of skeletons.
*
* <h2>Spoof Detection</h2>
*
* <p>
* The following snippet shows a minimal example of using <code>SpoofChecker</code> to perform spoof detection on a
* string:
*
* <pre>
* SpoofChecker sc = new SpoofChecker.Builder()
* .setAllowedChars(SpoofChecker.RECOMMENDED.cloneAsThawed().addAll(SpoofChecker.INCLUSION))
* .setRestrictionLevel(SpoofChecker.RestrictionLevel.MODERATELY_RESTRICTIVE)
* .setChecks(SpoofChecker.ALL_CHECKS &~ SpoofChecker.CONFUSABLE)
* .build();
* boolean result = sc.failsChecks("pаypаl"); // with Cyrillic 'а' characters
* System.out.println(result); // true
* </pre>
*
* <p>
* As in the case for confusability checking, it is good practice to create one <code>SpoofChecker</code> instance at
* startup, and call the cheaper {@link SpoofChecker#failsChecks} online. In the second line, we specify the set of
* allowed characters to be those with type RECOMMENDED or INCLUSION, according to the recommendation in UTS 39. In the
* third line, the CONFUSABLE checks are disabled. It is good practice to disable them if you won't be using the
* instance to perform confusability checking.
*
* <p>
* To get more details on why a string failed the checks, use a {@link SpoofChecker.CheckResult}:
*
* <pre>
* <code>
* SpoofChecker sc = new SpoofChecker.Builder()
* .setAllowedChars(SpoofChecker.RECOMMENDED.cloneAsThawed().addAll(SpoofChecker.INCLUSION))
* .setRestrictionLevel(SpoofChecker.RestrictionLevel.MODERATELY_RESTRICTIVE)
* .setChecks(SpoofChecker.ALL_CHECKS &~ SpoofChecker.CONFUSABLE)
* .build();
* SpoofChecker.CheckResult checkResult = new SpoofChecker.CheckResult();
* boolean result = sc.failsChecks("pаypаl", checkResult);
* System.out.println(checkResult.checks); // 16
* </code>
* </pre>
*
* <p>
* The return value is a bitmask of the checks that failed. In this case, there was one check that failed:
* {@link SpoofChecker#RESTRICTION_LEVEL}, corresponding to the fifth bit (16). The possible checks are:
*
* <ul>
* <li><code>RESTRICTION_LEVEL</code>: flags strings that violate the
* <a href="http://unicode.org/reports/tr39/#Restriction_Level_Detection">Restriction Level</a> test as specified in UTS
* 39; in most cases, this means flagging strings that contain characters from multiple different scripts.</li>
* <li><code>INVISIBLE</code>: flags strings that contain invisible characters, such as zero-width spaces, or character
* sequences that are likely not to display, such as multiple occurrences of the same non-spacing mark.</li>
* <li><code>CHAR_LIMIT</code>: flags strings that contain characters outside of a specified set of acceptable
* characters. See {@link SpoofChecker.Builder#setAllowedChars} and {@link SpoofChecker.Builder#setAllowedLocales}.</li>
* <li><code>MIXED_NUMBERS</code>: flags strings that contain digits from multiple different numbering systems.</li>
* </ul>
*
* <p>
* These checks can be enabled independently of each other. For example, if you were interested in checking for only the
* INVISIBLE and MIXED_NUMBERS conditions, you could do:
*
* <pre>
* <code>
* SpoofChecker sc = new SpoofChecker.Builder()
* .setChecks(SpoofChecker.INVISIBLE | SpoofChecker.MIXED_NUMBERS)
* .build();
* boolean result = sc.failsChecks("8");
* System.out.println(result); // true
* </code>
* </pre>
*
* <p>
* <b>Note:</b> The Restriction Level is the most powerful of the checks. The full logic is documented in
* <a href="http://unicode.org/reports/tr39/#Restriction_Level_Detection">UTS 39</a>, but the basic idea is that strings
* are restricted to contain characters from only a single script, <em>except</em> that most scripts are allowed to have
* Latin characters interspersed. Although the default restriction level is <code>HIGHLY_RESTRICTIVE</code>, it is
* recommended that users set their restriction level to <code>MODERATELY_RESTRICTIVE</code>, which allows Latin mixed
* with all other scripts except Cyrillic, Greek, and Cherokee, with which it is often confusable. For more details on
* the levels, see UTS 39 or {@link SpoofChecker.RestrictionLevel}. The Restriction Level test is aware of the set of
* allowed characters set in {@link SpoofChecker.Builder#setAllowedChars}. Note that characters which have script code
* COMMON or INHERITED, such as numbers and punctuation, are ignored when computing whether a string has multiple
* scripts.
*
* <h2>Advanced bidirectional usage</h2>
* If the paragraph direction with which the identifiers will be displayed is not known, there are
* multiple options for confusable detection depending on the circumstances.
*
* <p>
* In some circumstances, the only concern is confusion between identifiers displayed with the same
* paragraph direction.
*
* <p>
* An example is the case where identifiers are usernames prefixed with the @ symbol.
* That symbol will appear to the left in a left-to-right context, and to the right in a
* right-to-left context, so that an identifier displayed in a left-to-right context can never be
* confused with an identifier displayed in a right-to-left context:
* <ul>
* <li>
* The usernames "A1א" (A one aleph) and "Aא1" (A aleph 1)
* would be considered confusable, since they both appear as @A1א in a left-to-right context, and the
* usernames "אA_1" (aleph A underscore one) and "א1_A" (aleph one underscore A) would be considered
* confusable, since they both appear as A_1א@ in a right-to-left context.
* </li>
* <li>
* The username "Mark_" would not be considered confusable with the username "_Mark",
* even though the latter would appear as Mark_@ in a right-to-left context, and the
* former as @Mark_ in a left-to-right context.
* </li>
* </ul>
* <p>
* In that case, the caller should check for both LTR-confusability and RTL-confusability:
*
* <pre>
* <code>
* boolean confusableInEitherDirection =
* sc.areConfusable(Bidi.DIRECTION_LEFT_TO_RIGHT, id1, id2) ||
* sc.areConfusable(Bidi.DIRECTION_RIGHT_TO_LEFT, id1, id2);
* </code>
* </pre>
*
* If the bidiSkeleton is used, the LTR and RTL skeleta should be kept separately and compared, LTR
* with LTR and RTL with RTL.
*
* <p>
* In cases where confusability between the visual appearances of an identifier displayed in a
* left-to-right context with another identifier displayed in a right-to-left context is a concern,
* the LTR skeleton of one can be compared with the RTL skeleton of the other. However, this
* very broad definition of confusability may have unexpected results; for instance, it treats the
* ASCII identifiers "Mark_" and "_Mark" as confusable.
*
* <h2>Additional Information</h2>
*
* <p>
* A <code>SpoofChecker</code> instance may be used repeatedly to perform checks on any number of identifiers.
*
* <p>
* <b>Thread Safety:</b> The methods on <code>SpoofChecker</code> objects are thread safe. The test functions for
* checking a single identifier, or for testing whether two identifiers are potentially confusable, may called
* concurrently from multiple threads using the same <code>SpoofChecker</code> instance.
*
* @hide Only a subset of ICU is exposed in Android
*/
public class SpoofChecker {
/**
* Constants from UTS 39 for use in setRestrictionLevel.
*
* @hide Only a subset of ICU is exposed in Android
*/
public enum RestrictionLevel {
/**
* All characters in the string are in the identifier profile and all characters in the string are in the ASCII
* range.
*/
ASCII,
/**
* The string classifies as ASCII-Only, or all characters in the string are in the identifier profile and the
* string is single-script, according to the definition in UTS 39 section 5.1.
*/
SINGLE_SCRIPT_RESTRICTIVE,
/**
* The string classifies as Single Script, or all characters in the string are in the identifier profile and the
* string is covered by any of the following sets of scripts, according to the definition in UTS 39 section 5.1:
* <ul>
* <li>Latin + Han + Bopomofo (or equivalently: Latn + Hanb)</li>
* <li>Latin + Han + Hiragana + Katakana (or equivalently: Latn + Jpan)</li>
* <li>Latin + Han + Hangul (or equivalently: Latn +Kore)</li>
* </ul>
*/
HIGHLY_RESTRICTIVE,
/**
* The string classifies as Highly Restrictive, or all characters in the string are in the identifier profile
* and the string is covered by Latin and any one other Recommended or Aspirational script, except Cyrillic,
* Greek, and Cherokee.
*/
MODERATELY_RESTRICTIVE,
/**
* All characters in the string are in the identifier profile. Allow arbitrary mixtures of scripts, such as
* Ωmega, Teχ, HλLF-LIFE, Toys-Я-Us.
*/
MINIMALLY_RESTRICTIVE,
/**
* Any valid identifiers, including characters outside of the Identifier Profile, such as I♥NY.org
*/
UNRESTRICTIVE,
}
/**
* Security Profile constant from UTS 39 for use in {@link SpoofChecker.Builder#setAllowedChars}.
*/
public static final UnicodeSet INCLUSION =
new UnicodeSet().
applyIntPropertyValue(UProperty.IDENTIFIER_TYPE, IdentifierType.INCLUSION.ordinal()).
freeze();
/**
* Security Profile constant from UTS 39 for use in {@link SpoofChecker.Builder#setAllowedChars}.
*/
public static final UnicodeSet RECOMMENDED =
new UnicodeSet().
applyIntPropertyValue(UProperty.IDENTIFIER_TYPE, IdentifierType.RECOMMENDED.ordinal()).
freeze();
/**
* Constants for the kinds of checks that USpoofChecker can perform. These values are used both to select the set of
* checks that will be performed, and to report results from the check function.
*
*/
/**
* When performing the two-string {@link SpoofChecker#areConfusable} test, this flag in the return value indicates
* that the two strings are visually confusable and that they are from the same script, according to UTS 39 section
* 4.
*/
public static final int SINGLE_SCRIPT_CONFUSABLE = 1;
/**
* When performing the two-string {@link SpoofChecker#areConfusable} test, this flag in the return value indicates
* that the two strings are visually confusable and that they are <b>not</b> from the same script, according to UTS
* 39 section 4.
*/
public static final int MIXED_SCRIPT_CONFUSABLE = 2;
/**
* When performing the two-string {@link SpoofChecker#areConfusable} test, this flag in the return value indicates
* that the two strings are visually confusable and that they are not from the same script but both of them are
* single-script strings, according to UTS 39 section 4.
*/
public static final int WHOLE_SCRIPT_CONFUSABLE = 4;
/**
* Enable this flag in {@link SpoofChecker.Builder#setChecks} to turn on all types of confusables. You may set the
* checks to some subset of SINGLE_SCRIPT_CONFUSABLE, MIXED_SCRIPT_CONFUSABLE, or WHOLE_SCRIPT_CONFUSABLE to make
* {@link SpoofChecker#areConfusable} return only those types of confusables.
*/
public static final int CONFUSABLE = SINGLE_SCRIPT_CONFUSABLE | MIXED_SCRIPT_CONFUSABLE | WHOLE_SCRIPT_CONFUSABLE;
/**
* This flag is deprecated and no longer affects the behavior of SpoofChecker.
*
* @deprecated ICU 58 Any case confusable mappings were removed from UTS 39; the corresponding ICU API was
* deprecated.
*/
@Deprecated
public static final int ANY_CASE = 8;
/**
* Check that an identifier satisfies the requirements for the restriction level specified in
* {@link SpoofChecker.Builder#setRestrictionLevel}. The default restriction level is
* {@link RestrictionLevel#HIGHLY_RESTRICTIVE}.
*/
public static final int RESTRICTION_LEVEL = 16;
/**
* Check that an identifier contains only characters from a single script (plus chars from the common and inherited
* scripts.) Applies to checks of a single identifier check only.
*
* @deprecated ICU 51 Use RESTRICTION_LEVEL
*/
@Deprecated
public static final int SINGLE_SCRIPT = RESTRICTION_LEVEL;
/**
* Check an identifier for the presence of invisible characters, such as zero-width spaces, or character sequences
* that are likely not to display, such as multiple occurrences of the same non-spacing mark. This check does not
* test the input string as a whole for conformance to any particular syntax for identifiers.
*/
public static final int INVISIBLE = 32;
/**
* Check that an identifier contains only characters from a specified set of acceptable characters. See
* {@link Builder#setAllowedChars} and {@link Builder#setAllowedLocales}. Note that a string that fails this check
* will also fail the {@link #RESTRICTION_LEVEL} check.
*/
public static final int CHAR_LIMIT = 64;
/**
* Check that an identifier does not mix numbers from different numbering systems. For more information, see UTS 39
* section 5.3.
*/
public static final int MIXED_NUMBERS = 128;
/**
* Check that an identifier does not have a combining character following a character in which that
* combining character would be hidden; for example 'i' followed by a U+0307 combining dot.
* <p>
* More specifically, the following characters are forbidden from preceding a U+0307:
* <ul>
* <li>Those with the Soft_Dotted Unicode property (which includes 'i' and 'j')</li>
* <li>Latin lowercase letter 'l'</li>
* <li>Dotless 'i' and 'j' ('ı' and 'ȷ', U+0131 and U+0237)</li>
* <li>Any character whose confusable prototype ends with such a character
* (Soft_Dotted, 'l', 'ı', or 'ȷ')</li>
* </ul>
* In addition, combining characters are allowed between the above characters and U+0307 except those
* with combining class 0 or combining class "Above" (230, same class as U+0307).
* <p>
* This list and the number of combing characters considered by this check may grow over time.
*/
public static final int HIDDEN_OVERLAY = 256;
// Update CheckResult.toString() when a new check is added.
/**
* Enable all spoof checks.
*/
public static final int ALL_CHECKS = 0xFFFFFFFF;
// Used for checking for ASCII-Only restriction level
static final UnicodeSet ASCII = new UnicodeSet(0, 0x7F).freeze();
/**
* private constructor: a SpoofChecker has to be built by the builder
*/
private SpoofChecker() {
}
/**
* SpoofChecker Builder. To create a SpoofChecker, first instantiate a SpoofChecker.Builder, set the desired
* checking options on the builder, then call the build() function to create a SpoofChecker instance.
*
* @hide Only a subset of ICU is exposed in Android
*/
public static class Builder {
int fChecks; // Bit vector of checks to perform.
SpoofData fSpoofData;
final UnicodeSet fAllowedCharsSet = new UnicodeSet(0, 0x10ffff); // The UnicodeSet of allowed characters.
// for this Spoof Checker. Defaults to all chars.
final Set<ULocale> fAllowedLocales = new LinkedHashSet<>(); // The list of allowed locales.
private RestrictionLevel fRestrictionLevel;
/**
* Constructor: Create a default Unicode Spoof Checker Builder, configured to perform all checks except for
* LOCALE_LIMIT and CHAR_LIMIT. Note that additional checks may be added in the future, resulting in the changes
* to the default checking behavior.
*/
public Builder() {
fChecks = ALL_CHECKS;
fSpoofData = null;
fRestrictionLevel = RestrictionLevel.HIGHLY_RESTRICTIVE;
}
/**
* Constructor: Create a Spoof Checker Builder, and set the configuration from an existing SpoofChecker.
*
* @param src
* The existing checker.
*/
public Builder(SpoofChecker src) {
fChecks = src.fChecks;
fSpoofData = src.fSpoofData; // For the data, we will either use the source data
// as-is, or drop the builder's reference to it
// and generate new data, depending on what our
// caller does with the builder.
fAllowedCharsSet.set(src.fAllowedCharsSet);
fAllowedLocales.addAll(src.fAllowedLocales);
fRestrictionLevel = src.fRestrictionLevel;
}
/**
* Create a SpoofChecker with current configuration.
*
* @return SpoofChecker
*/
public SpoofChecker build() {
// TODO: Make this data loading be lazy (see #12696).
if (fSpoofData == null) {
// read binary file
fSpoofData = SpoofData.getDefault();
}
// Copy all state from the builder to the new SpoofChecker.
// Make sure that everything is either cloned or copied, so
// that subsequent re-use of the builder won't modify the built
// SpoofChecker.
//
// One exception to this: the SpoofData is just assigned.
// If the builder subsequently needs to modify fSpoofData
// it will create a new SpoofData object first.
SpoofChecker result = new SpoofChecker();
result.fChecks = this.fChecks;
result.fSpoofData = this.fSpoofData;
result.fAllowedCharsSet = (UnicodeSet) (this.fAllowedCharsSet.clone());
result.fAllowedCharsSet.freeze();
result.fAllowedLocales = new HashSet<>(this.fAllowedLocales);
result.fRestrictionLevel = this.fRestrictionLevel;
return result;
}
/**
* Specify the source form of the spoof data Spoof Checker. The inputs correspond to the Unicode data file
* confusables.txt as described in Unicode UAX 39. The syntax of the source data is as described in UAX 39 for
* these files, and the content of these files is acceptable input.
*
* @param confusables
* the Reader of confusable characters definitions, as found in file confusables.txt from
* unicode.org.
* @throws ParseException
* To report syntax errors in the input.
*/
public Builder setData(Reader confusables) throws ParseException, IOException {
// Compile the binary data from the source (text) format.
// Drop the builder's reference to any pre-existing data, which may
// be in use in an already-built checker.
fSpoofData = new SpoofData();
ConfusabledataBuilder.buildConfusableData(confusables, fSpoofData);
return this;
}
/**
* Deprecated as of ICU 58; use {@link SpoofChecker.Builder#setData(Reader confusables)} instead.
*
* @param confusables
* the Reader of confusable characters definitions, as found in file confusables.txt from
* unicode.org.
* @param confusablesWholeScript
* No longer supported.
* @throws ParseException
* To report syntax errors in the input.
*
* @deprecated ICU 58
*/
@Deprecated
public Builder setData(Reader confusables, Reader confusablesWholeScript) throws ParseException, IOException {
setData(confusables);
return this;
}
/**
* Specify the bitmask of checks that will be performed by {@link SpoofChecker#failsChecks}. Calling this method
* overwrites any checks that may have already been enabled. By default, all checks are enabled.
*
* To enable specific checks and disable all others,
* OR together only the bit constants for the desired checks.
* For example, to fail strings containing characters outside of
* the set specified by {@link #setAllowedChars} and
* also strings that contain digits from mixed numbering systems:
*
* <pre>
* {@code
* builder.setChecks(SpoofChecker.CHAR_LIMIT | SpoofChecker.MIXED_NUMBERS);
* }
* </pre>
*
* To disable specific checks and enable all others,
* start with ALL_CHECKS and "AND away" the not-desired checks.
* For example, if you are not planning to use the {@link SpoofChecker#areConfusable} functionality,
* it is good practice to disable the CONFUSABLE check:
*
* <pre>
* {@code
* builder.setChecks(SpoofChecker.ALL_CHECKS & ~SpoofChecker.CONFUSABLE);
* }
* </pre>
*
* Note that methods such as {@link #setAllowedChars}, {@link #setAllowedLocales}, and
* {@link #setRestrictionLevel} will enable certain checks when called. Those methods will OR the check they
* enable onto the existing bitmask specified by this method. For more details, see the documentation of those
* methods.
*
* @param checks
* The set of checks that this spoof checker will perform. The value is an 'or' of the desired
* checks.
* @return self
*/
public Builder setChecks(int checks) {
// Verify that the requested checks are all ones (bits) that
// are acceptable, known values.
if (0 != (checks & ~SpoofChecker.ALL_CHECKS)) {
throw new IllegalArgumentException("Bad Spoof Checks value.");
}
this.fChecks = (checks & SpoofChecker.ALL_CHECKS);
return this;
}
/**
* Limit characters that are acceptable in identifiers being checked to those normally used with the languages
* associated with the specified locales. Any previously specified list of locales is replaced by the new
* settings.
*
* A set of languages is determined from the locale(s), and from those a set of acceptable Unicode scripts is
* determined. Characters from this set of scripts, along with characters from the "common" and "inherited"
* Unicode Script categories will be permitted.
*
* Supplying an empty string removes all restrictions; characters from any script will be allowed.
*
* The {@link #CHAR_LIMIT} test is automatically enabled for this SpoofChecker when calling this function with a
* non-empty list of locales.
*
* The Unicode Set of characters that will be allowed is accessible via the {@link #getAllowedChars} function.
* setAllowedLocales() will <i>replace</i> any previously applied set of allowed characters.
*
* Adjustments, such as additions or deletions of certain classes of characters, can be made to the result of
* {@link #setAllowedChars} by fetching the resulting set with {@link #getAllowedChars}, manipulating it with
* the Unicode Set API, then resetting the spoof detectors limits with {@link #setAllowedChars}.
*
* @param locales
* A Set of ULocales, from which the language and associated script are extracted. If the locales Set
* is null, no restrictions will be placed on the allowed characters.
*
* @return self
*/
public Builder setAllowedLocales(Set<ULocale> locales) {
fAllowedCharsSet.clear();
for (ULocale locale : locales) {
// Add the script chars for this locale to the accumulating set
// of allowed chars.
addScriptChars(locale, fAllowedCharsSet);
}
// If our caller provided an empty list of locales, we disable the
// allowed characters checking
fAllowedLocales.clear();
if (locales.size() == 0) {
fAllowedCharsSet.add(0, 0x10ffff);
fChecks &= ~CHAR_LIMIT;
return this;
}
// Add all common and inherited characters to the set of allowed
// chars.
UnicodeSet tempSet = new UnicodeSet();
tempSet.applyIntPropertyValue(UProperty.SCRIPT, UScript.COMMON);
fAllowedCharsSet.addAll(tempSet);
tempSet.applyIntPropertyValue(UProperty.SCRIPT, UScript.INHERITED);
fAllowedCharsSet.addAll(tempSet);
// Store the updated spoof checker state.
fAllowedLocales.clear();
fAllowedLocales.addAll(locales);
fChecks |= CHAR_LIMIT;
return this;
}
/**
* Limit characters that are acceptable in identifiers being checked to those normally used with the languages
* associated with the specified locales. Any previously specified list of locales is replaced by the new
* settings.
*
* @param locales
* A Set of Locales, from which the language and associated script are extracted. If the locales Set
* is null, no restrictions will be placed on the allowed characters.
*
* @return self
*/
public Builder setAllowedJavaLocales(Set<Locale> locales) {
HashSet<ULocale> ulocales = new HashSet<>(locales.size());
for (Locale locale : locales) {
ulocales.add(ULocale.forLocale(locale));
}
return setAllowedLocales(ulocales);
}
// Add (union) to the UnicodeSet all of the characters for the scripts
// used for the specified locale. Part of the implementation of
// setAllowedLocales.
private void addScriptChars(ULocale locale, UnicodeSet allowedChars) {
int scripts[] = UScript.getCode(locale);
if (scripts != null) {
UnicodeSet tmpSet = new UnicodeSet();
for (int i = 0; i < scripts.length; i++) {
tmpSet.applyIntPropertyValue(UProperty.SCRIPT, scripts[i]);
allowedChars.addAll(tmpSet);
}
}
// else it's an unknown script.
// Maybe they asked for the script of "zxx", which refers to no linguistic content.
// Maybe they asked for the script of a newer locale that we don't know in the older version of ICU.
}
/**
* Limit the acceptable characters to those specified by a Unicode Set. Any previously specified character limit
* is replaced by the new settings. This includes limits on characters that were set with the
* setAllowedLocales() function. Note that the RESTRICTED set is useful.
*
* The {@link #CHAR_LIMIT} test is automatically enabled for this SpoofChecker by this function.
*
* @param chars
* A Unicode Set containing the list of characters that are permitted. The incoming set is cloned by
* this function, so there are no restrictions on modifying or deleting the UnicodeSet after calling
* this function. Note that this clears the allowedLocales set.
* @return self
*/
public Builder setAllowedChars(UnicodeSet chars) {
fAllowedCharsSet.set(chars);
fAllowedLocales.clear();
fChecks |= CHAR_LIMIT;
return this;
}
/**
* Set the loosest restriction level allowed for strings. The default if this is not called is
* {@link RestrictionLevel#HIGHLY_RESTRICTIVE}. Calling this method enables the {@link #RESTRICTION_LEVEL} and
* {@link #MIXED_NUMBERS} checks, corresponding to Sections 5.1 and 5.2 of UTS 39. To customize which checks are
* to be performed by {@link SpoofChecker#failsChecks}, see {@link #setChecks}.
*
* @param restrictionLevel
* The loosest restriction level allowed.
* @return self
*/
public Builder setRestrictionLevel(RestrictionLevel restrictionLevel) {
fRestrictionLevel = restrictionLevel;
fChecks |= RESTRICTION_LEVEL | MIXED_NUMBERS;
return this;
}
/*
* *****************************************************************************
* Internal classes for compiling confusable data into its binary (runtime) form.
* *****************************************************************************
*/
// ---------------------------------------------------------------------
//
// buildConfusableData Compile the source confusable data, as defined by
// the Unicode data file confusables.txt, into the binary
// structures used by the confusable detector.
//
// The binary structures are described in uspoof_impl.h
//
// 1. parse the data, making a hash table mapping from a codepoint to a String.
//
// 2. Sort all of the strings encountered by length, since they will need to
// be stored in that order in the final string table.
// TODO: Sorting these strings by length is no longer needed since the removal of
// the string lengths table. This logic can be removed to save processing time
// when building confusables data.
//
// 3. Build a list of keys (UChar32s) from the mapping table. Sort the
// list because that will be the ordering of our runtime table.
//
// 4. Generate the run time string table. This is generated before the key & value
// table because we need the string indexes when building those tables.
//
// 5. Build the run-time key and value table. These are parallel tables, and
// are built at the same time
// class ConfusabledataBuilder
// An instance of this class exists while the confusable data is being built from source.
// It encapsulates the intermediate data structures that are used for building.
// It exports one static function, to do a confusable data build.
private static class ConfusabledataBuilder {
private Hashtable<Integer, SPUString> fTable;
private UnicodeSet fKeySet; // A set of all keys (UChar32s) that go into the
// four mapping tables.
// The compiled data is first assembled into the following four collections,
// then output to the builder's SpoofData object.
private StringBuffer fStringTable;
private ArrayList<Integer> fKeyVec;
private ArrayList<Integer> fValueVec;
private SPUStringPool stringPool;
private Pattern fParseLine;
private Pattern fParseHexNum;
private int fLineNum;
ConfusabledataBuilder() {
fTable = new Hashtable<>();
fKeySet = new UnicodeSet();
fKeyVec = new ArrayList<>();
fValueVec = new ArrayList<>();
stringPool = new SPUStringPool();
}
void build(Reader confusables, SpoofData dest) throws ParseException, java.io.IOException {
StringBuffer fInput = new StringBuffer();
// Convert the user input data from UTF-8 to char (UTF-16)
LineNumberReader lnr = new LineNumberReader(confusables);
do {
String line = lnr.readLine();
if (line == null) {
break;
}
fInput.append(line);
fInput.append('\n');
} while (true);
// Regular Expression to parse a line from Confusables.txt. The expression will match
// any line. What was matched is determined by examining which capture groups have a match.
// Capture Group 1: the source char
// Capture Group 2: the replacement chars
// Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated)
// Capture Group 7: A blank or comment only line.
// Capture Group 8: A syntactically invalid line. Anything that didn't match before.
// Example Line from the confusables.txt source file:
// "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... "
fParseLine = Pattern.compile("(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" + // Match the source char
"[ \\t]*([0-9A-Fa-f]+" + // Match the replacement char(s)
"(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" + // (continued)
"\\s*(?:(SL)|(SA)|(ML)|(MA))" + // Match the table type
"[ \\t]*(?:#.*?)?$" + // Match any trailing #comment
"|^([ \\t]*(?:#.*?)?)$" + // OR match empty lines or lines with only a #comment
"|^(.*?)$"); // OR match any line, which catches illegal lines.
// Regular expression for parsing a hex number out of a space-separated list of them.
// Capture group 1 gets the number, with spaces removed.
fParseHexNum = Pattern.compile("\\s*([0-9A-F]+)");
// Zap any Byte Order Mark at the start of input. Changing it to a space
// is benign given the syntax of the input.
if (fInput.charAt(0) == 0xfeff) {
fInput.setCharAt(0, (char) 0x20);
}
// Parse the input, one line per iteration of this loop.
Matcher matcher = fParseLine.matcher(fInput);
while (matcher.find()) {
fLineNum++;
if (matcher.start(7) >= 0) {
// this was a blank or comment line.
continue;
}
if (matcher.start(8) >= 0) {
// input file syntax error.
// status = U_PARSE_ERROR;
throw new ParseException(
"Confusables, line " + fLineNum + ": Unrecognized Line: " + matcher.group(8),
matcher.start(8));
}
// We have a good input line. Extract the key character and mapping
// string, and
// put them into the appropriate mapping table.
int keyChar = Integer.parseInt(matcher.group(1), 16);
if (keyChar > 0x10ffff) {
throw new ParseException(
"Confusables, line " + fLineNum + ": Bad code point: " + matcher.group(1),
matcher.start(1));
}
Matcher m = fParseHexNum.matcher(matcher.group(2));
StringBuilder mapString = new StringBuilder();
while (m.find()) {
int c = Integer.parseInt(m.group(1), 16);
if (c > 0x10ffff) {
throw new ParseException(
"Confusables, line " + fLineNum + ": Bad code point: " + Integer.toString(c, 16),
matcher.start(2));
}
mapString.appendCodePoint(c);
}
assert (mapString.length() >= 1);
// Put the map (value) string into the string pool
// This a little like a Java intern() - any duplicates will be
// eliminated.
SPUString smapString = stringPool.addString(mapString.toString());
// Add the char . string mapping to the table.
// For Unicode 8, the SL, SA and ML tables have been discontinued.
// All input data from confusables.txt is tagged MA.
fTable.put(keyChar, smapString);
fKeySet.add(keyChar);
}
// Input data is now all parsed and collected.
// Now create the run-time binary form of the data.
//
// This is done in two steps. First the data is assembled into vectors and strings,
// for ease of construction, then the contents of these collections are copied
// into the actual SpoofData object.
// Build up the string array, and record the index of each string therein
// in the (build time only) string pool.
// Strings of length one are not entered into the strings array.
// (Strings in the table are sorted by length)
stringPool.sort();
fStringTable = new StringBuffer();
int poolSize = stringPool.size();
int i;
for (i = 0; i < poolSize; i++) {
SPUString s = stringPool.getByIndex(i);
int strLen = s.fStr.length();
int strIndex = fStringTable.length();
if (strLen == 1) {
// strings of length one do not get an entry in the string table.
// Keep the single string character itself here, which is the same
// convention that is used in the final run-time string table index.
s.fCharOrStrTableIndex = s.fStr.charAt(0);
} else {
s.fCharOrStrTableIndex = strIndex;
fStringTable.append(s.fStr);
}
}
// Construct the compile-time Key and Value table.
//
// The keys in the Key table follow the format described in uspoof.h for the
// Cfu confusables data structure.
//
// Starting in ICU 58, each code point has exactly one entry in the data
// structure.
for (String keyCharStr : fKeySet) {
int keyChar = keyCharStr.codePointAt(0);
SPUString targetMapping = fTable.get(keyChar);
assert targetMapping != null;
// Throw a sane exception if trying to consume a long string. Otherwise,
// codePointAndLengthToKey will throw an assertion error.
if (targetMapping.fStr.length() > 256) {
throw new IllegalArgumentException("Confusable prototypes cannot be longer than 256 entries.");
}
int key = ConfusableDataUtils.codePointAndLengthToKey(keyChar, targetMapping.fStr.length());
int value = targetMapping.fCharOrStrTableIndex;
fKeyVec.add(key);
fValueVec.add(value);
}
// Put the assembled data into the destination SpoofData object.
// The Key Table
// While copying the keys to the output array,
// also sanity check that the keys are sorted.
int numKeys = fKeyVec.size();
dest.fCFUKeys = new int[numKeys];
int previousCodePoint = 0;
for (i = 0; i < numKeys; i++) {
int key = fKeyVec.get(i);
int codePoint = ConfusableDataUtils.keyToCodePoint(key);
// strictly greater because there can be only one entry per code point
assert codePoint > previousCodePoint;
dest.fCFUKeys[i] = key;
previousCodePoint = codePoint;
}
// The Value Table, parallels the key table
int numValues = fValueVec.size();
assert (numKeys == numValues);
dest.fCFUValues = new short[numValues];
i = 0;
for (int value : fValueVec) {
assert (value < 0xffff);
dest.fCFUValues[i++] = (short) value;
}
// The Strings Table.
dest.fCFUStrings = fStringTable.toString();
}
public static void buildConfusableData(Reader confusables, SpoofData dest)
throws java.io.IOException, ParseException {
ConfusabledataBuilder builder = new ConfusabledataBuilder();
builder.build(confusables, dest);
}
/*
* *****************************************************************************
* Internal classes for compiling confusable data into its binary (runtime) form.
* *****************************************************************************
*/
// SPUString
// Holds a string that is the result of one of the mappings defined
// by the confusable mapping data (confusables.txt from Unicode.org)
// Instances of SPUString exist during the compilation process only.
private static class SPUString {
String fStr; // The actual string.
int fCharOrStrTableIndex; // Index into the final runtime data for this string.
// (or, for length 1, the single string char itself,
// there being no string table entry for it.)
SPUString(String s) {
fStr = s;
fCharOrStrTableIndex = 0;
}
}
// Comparison function for ordering strings in the string pool.
// Compare by length first, then, within a group of the same length,
// by code point order.
private static class SPUStringComparator implements Comparator<SPUString> {
@Override
public int compare(SPUString sL, SPUString sR) {
int lenL = sL.fStr.length();
int lenR = sR.fStr.length();
if (lenL < lenR) {
return -1;
} else if (lenL > lenR) {
return 1;
} else {
return sL.fStr.compareTo(sR.fStr);
}
}
final static SPUStringComparator INSTANCE = new SPUStringComparator();
}
// String Pool A utility class for holding the strings that are the result of
// the spoof mappings. These strings will utimately end up in the
// run-time String Table.
// This is sort of like a sorted set of strings, except that ICU's anemic
// built-in collections don't support those, so it is implemented with a
// combination of a uhash and a Vector.
private static class SPUStringPool {
public SPUStringPool() {
fVec = new Vector<>();
fHash = new Hashtable<>();
}
public int size() {
return fVec.size();
}
// Get the n-th string in the collection.
public SPUString getByIndex(int index) {
SPUString retString = fVec.elementAt(index);
return retString;
}
// Add a string. Return the string from the table.
// If the input parameter string is already in the table, delete the
// input parameter and return the existing string.
public SPUString addString(String src) {
SPUString hashedString = fHash.get(src);
if (hashedString == null) {
hashedString = new SPUString(src);
fHash.put(src, hashedString);
fVec.addElement(hashedString);
}
return hashedString;
}
// Sort the contents; affects the ordering of getByIndex().
public void sort() {
Collections.sort(fVec, SPUStringComparator.INSTANCE);
}
private Vector<SPUString> fVec; // Elements are SPUString *
private Hashtable<String, SPUString> fHash; // Key: Value:
}
}
}
/**
* Get the Restriction Level that is being tested.
*
* @return The restriction level
* @deprecated This API is ICU internal only.
* @hide draft / provisional / internal are hidden on Android
*/
@Deprecated
public RestrictionLevel getRestrictionLevel() {
return fRestrictionLevel;
}
/**
* Get the set of checks that this Spoof Checker has been configured to perform.
*
* @return The set of checks that this spoof checker will perform.
*/
public int getChecks() {
return fChecks;
}
/**
* Get a read-only set of locales for the scripts that are acceptable in strings to be checked. If no limitations on
* scripts have been specified, an empty set will be returned.
*
* setAllowedChars() will reset the list of allowed locales to be empty.
*
* The returned set may not be identical to the originally specified set that is supplied to setAllowedLocales();
* the information other than languages from the originally specified locales may be omitted.
*
* @return A set of locales corresponding to the acceptable scripts.
*/
public Set<ULocale> getAllowedLocales() {
return Collections.unmodifiableSet(fAllowedLocales);
}
/**
* Get a set of {@link java.util.Locale} instances for the scripts that are acceptable in strings to be checked. If
* no limitations on scripts have been specified, an empty set will be returned.
*
* @return A set of locales corresponding to the acceptable scripts.
*/
public Set<Locale> getAllowedJavaLocales() {
HashSet<Locale> locales = new HashSet<>(fAllowedLocales.size());
for (ULocale uloc : fAllowedLocales) {
locales.add(uloc.toLocale());
}
return locales;
}
/**
* Get a UnicodeSet for the characters permitted in an identifier. This corresponds to the limits imposed by the Set
* Allowed Characters functions. Limitations imposed by other checks will not be reflected in the set returned by
* this function.
*
* The returned set will be frozen, meaning that it cannot be modified by the caller.
*
* @return A UnicodeSet containing the characters that are permitted by the CHAR_LIMIT test.
*/
public UnicodeSet getAllowedChars() {
return fAllowedCharsSet;
}
/**
* A struct-like class to hold the results of a Spoof Check operation. Tells which check(s) have failed.
*
* @hide Only a subset of ICU is exposed in Android
*/
public static class CheckResult {
/**
* Indicates which of the spoof check(s) have failed. The value is a bitwise OR of the constants for the tests
* in question: RESTRICTION_LEVEL, CHAR_LIMIT, and so on.
*
* @see Builder#setChecks
*/
public int checks;
/**
* The index of the first string position that failed a check.
*
* @deprecated ICU 51. No longer supported. Always set to zero.
*/
@Deprecated
public int position;
/**
* The numerics found in the string, if MIXED_NUMBERS was set; otherwise null. The set will contain the zero
* digit from each decimal number system found in the input string.
*/
public UnicodeSet numerics;
/**
* The restriction level that the text meets, if RESTRICTION_LEVEL is set; otherwise null.
*/
public RestrictionLevel restrictionLevel;
/**
* Default constructor
*/
public CheckResult() {
checks = 0;
position = 0;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("checks:");
if (checks == 0) {
sb.append(" none");
} else if (checks == ALL_CHECKS) {
sb.append(" all");
} else {
if ((checks & SINGLE_SCRIPT_CONFUSABLE) != 0) {
sb.append(" SINGLE_SCRIPT_CONFUSABLE");
}
if ((checks & MIXED_SCRIPT_CONFUSABLE) != 0) {
sb.append(" MIXED_SCRIPT_CONFUSABLE");
}
if ((checks & WHOLE_SCRIPT_CONFUSABLE) != 0) {
sb.append(" WHOLE_SCRIPT_CONFUSABLE");
}
if ((checks & ANY_CASE) != 0) {
sb.append(" ANY_CASE");
}
if ((checks & RESTRICTION_LEVEL) != 0) {
sb.append(" RESTRICTION_LEVEL");
}
if ((checks & INVISIBLE) != 0) {
sb.append(" INVISIBLE");
}
if ((checks & CHAR_LIMIT) != 0) {
sb.append(" CHAR_LIMIT");
}
if ((checks & MIXED_NUMBERS) != 0) {
sb.append(" MIXED_NUMBERS");
}
}
sb.append(", numerics: ").append(numerics.toPattern(false));
sb.append(", position: ").append(position);
sb.append(", restrictionLevel: ").append(restrictionLevel);
return sb.toString();
}
}
/**
* Check the specified string for possible security issues. The text to be checked will typically be an identifier
* of some sort. The set of checks to be performed was specified when building the SpoofChecker.
*
* @param text
* A String to be checked for possible security issues.
* @param checkResult
* Output parameter, indicates which specific tests failed. May be null if the information is not wanted.
* @return True there any issue is found with the input string.
*/
public boolean failsChecks(String text, CheckResult checkResult) {
int length = text.length();
int result = 0;
if (checkResult != null) {
checkResult.position = 0;
checkResult.numerics = null;
checkResult.restrictionLevel = null;
}
if (0 != (this.fChecks & RESTRICTION_LEVEL)) {
RestrictionLevel textRestrictionLevel = getRestrictionLevel(text);
if (textRestrictionLevel.compareTo(fRestrictionLevel) > 0) {
result |= RESTRICTION_LEVEL;
}
if (checkResult != null) {
checkResult.restrictionLevel = textRestrictionLevel;
}
}
if (0 != (this.fChecks & MIXED_NUMBERS)) {
UnicodeSet numerics = new UnicodeSet();
getNumerics(text, numerics);
if (numerics.size() > 1) {
result |= MIXED_NUMBERS;
}
if (checkResult != null) {
checkResult.numerics = numerics;
}
}
if (0 != (this.fChecks & HIDDEN_OVERLAY)) {
int index = findHiddenOverlay(text);
if (index != -1) {
result |= HIDDEN_OVERLAY;
}
}
if (0 != (this.fChecks & CHAR_LIMIT)) {
int i;
int c;
for (i = 0; i < length;) {
// U16_NEXT(text, i, length, c);
c = Character.codePointAt(text, i);
i = Character.offsetByCodePoints(text, i, 1);
if (!this.fAllowedCharsSet.contains(c)) {
result |= CHAR_LIMIT;
break;
}
}
}
if (0 != (this.fChecks & INVISIBLE)) {
// This check needs to be done on NFD input
String nfdText = nfdNormalizer.normalize(text);
// scan for more than one occurrence of the same non-spacing mark
// in a sequence of non-spacing marks.
int i;
int c;
int firstNonspacingMark = 0;
boolean haveMultipleMarks = false;
UnicodeSet marksSeenSoFar = new UnicodeSet(); // Set of combining marks in a
// single combining sequence.
for (i = 0; i < length;) {
c = Character.codePointAt(nfdText, i);
i = Character.offsetByCodePoints(nfdText, i, 1);
if (Character.getType(c) != UCharacterCategory.NON_SPACING_MARK) {
firstNonspacingMark = 0;
if (haveMultipleMarks) {
marksSeenSoFar.clear();
haveMultipleMarks = false;
}
continue;
}
if (firstNonspacingMark == 0) {
firstNonspacingMark = c;
continue;
}
if (!haveMultipleMarks) {
marksSeenSoFar.add(firstNonspacingMark);
haveMultipleMarks = true;
}
if (marksSeenSoFar.contains(c)) {
// report the error, and stop scanning.
// No need to find more than the first failure.
result |= INVISIBLE;
break;
}
marksSeenSoFar.add(c);
}
}
if (checkResult != null) {
checkResult.checks = result;
}
return (0 != result);
}
/**
* Check the specified string for possible security issues. The text to be checked will typically be an identifier
* of some sort. The set of checks to be performed was specified when building the SpoofChecker.
*
* @param text
* A String to be checked for possible security issues.
* @return True there any issue is found with the input string.
*/
public boolean failsChecks(String text) {
return failsChecks(text, null);
}
/**
* Check whether two specified strings are visually confusable. The types of confusability to be tested - single
* script, mixed script, or whole script - are determined by the check options set for the SpoofChecker.
*
* The tests to be performed are controlled by the flags SINGLE_SCRIPT_CONFUSABLE MIXED_SCRIPT_CONFUSABLE
* WHOLE_SCRIPT_CONFUSABLE At least one of these tests must be selected.
*
* ANY_CASE is a modifier for the tests. Select it if the identifiers may be of mixed case. If identifiers are case
* folded for comparison and display to the user, do not select the ANY_CASE option.
*
*
* @param s1
* The first of the two strings to be compared for confusability.
* @param s2
* The second of the two strings to be compared for confusability.
* @return Non-zero if s1 and s1 are confusable. If not 0, the value will indicate the type(s) of confusability
* found, as defined by spoof check test constants.
*/
public int areConfusable(String s1, String s2) {
//
// See section 4 of UTS #39 for the algorithm for checking whether two strings are confusable,
// and for definitions of the types (single, whole, mixed-script) of confusables.
// We only care about a few of the check flags. Ignore the others.
// If no tests relevant to this function have been specified, signal an error.
// TODO: is this really the right thing to do? It's probably an error on
// the caller's part, but logically we would just return 0 (no error).
if ((this.fChecks & CONFUSABLE) == 0) {
throw new IllegalArgumentException("No confusable checks are enabled.");
}
// Compute the skeletons and check for confusability.
String s1Skeleton = getSkeleton(s1);
String s2Skeleton = getSkeleton(s2);
if (!s1Skeleton.equals(s2Skeleton)) {
return 0;
}
// If we get here, the strings are confusable. Now we just need to set the flags for the appropriate classes
// of confusables according to UTS 39 section 4.
// Start by computing the resolved script sets of s1 and s2.
ScriptSet s1RSS = new ScriptSet();
getResolvedScriptSet(s1, s1RSS);
ScriptSet s2RSS = new ScriptSet();
getResolvedScriptSet(s2, s2RSS);
// Turn on all applicable flags
int result = 0;
if (s1RSS.intersects(s2RSS)) {
result |= SINGLE_SCRIPT_CONFUSABLE;
} else {
result |= MIXED_SCRIPT_CONFUSABLE;
if (!s1RSS.isEmpty() && !s2RSS.isEmpty()) {
result |= WHOLE_SCRIPT_CONFUSABLE;
}
}
// Turn off flags that the user doesn't want
return result & fChecks;
}
/**
* Check whether two specified strings are visually when displayed in a paragraph with the given direction.
* The types of confusability to be tested—single script, mixed script, or whole script—are determined by the check options set for the SpoofChecker.
*
* The tests to be performed are controlled by the flags SINGLE_SCRIPT_CONFUSABLE MIXED_SCRIPT_CONFUSABLE
* WHOLE_SCRIPT_CONFUSABLE At least one of these tests must be selected.
*
* ANY_CASE is a modifier for the tests. Select it if the identifiers may be of mixed case. If identifiers are case
* folded for comparison and display to the user, do not select the ANY_CASE option.
*
*
* @param direction The paragraph direction with which the identifiers are displayed.
* Must be either {@link Bidi#DIRECTION_LEFT_TO_RIGHT} or {@link Bidi#DIRECTION_RIGHT_TO_LEFT}.
* @param s1
* The first of the two strings to be compared for confusability.
* @param s2
* The second of the two strings to be compared for confusability.
* @return Non-zero if s1 and s1 are confusable. If not 0, the value will indicate the type(s) of confusability
* found, as defined by spoof check test constants.
* @hide draft / provisional / internal are hidden on Android
*/
public int areConfusable(int direction, CharSequence s1, CharSequence s2) {
//
// See section 4 of UTS #39 for the algorithm for checking whether two strings are confusable,
// and for definitions of the types (single, whole, mixed-script) of confusables.
// We only care about a few of the check flags. Ignore the others.
// If no tests relevant to this function have been specified, signal an error.
// TODO: is this really the right thing to do? It's probably an error on
// the caller's part, but logically we would just return 0 (no error).
if ((this.fChecks & CONFUSABLE) == 0) {
throw new IllegalArgumentException("No confusable checks are enabled.");
}
// Compute the skeletons and check for confusability.
String s1Skeleton = getBidiSkeleton(direction, s1);
String s2Skeleton = getBidiSkeleton(direction, s2);
if (!s1Skeleton.equals(s2Skeleton)) {
return 0;
}
// If we get here, the strings are confusable. Now we just need to set the flags for the appropriate classes
// of confusables according to UTS 39 section 4.
// Start by computing the resolved script sets of s1 and s2.
ScriptSet s1RSS = new ScriptSet();
getResolvedScriptSet(s1, s1RSS);
ScriptSet s2RSS = new ScriptSet();
getResolvedScriptSet(s2, s2RSS);
// Turn on all applicable flags
int result = 0;
if (s1RSS.intersects(s2RSS)) {
result |= SINGLE_SCRIPT_CONFUSABLE;
} else {
result |= MIXED_SCRIPT_CONFUSABLE;
if (!s1RSS.isEmpty() && !s2RSS.isEmpty()) {
result |= WHOLE_SCRIPT_CONFUSABLE;
}
}
// Turn off flags that the user doesn't want
result &= fChecks;
return result;
}
/**
* Get the "bidiSkeleton" for an identifier string and a direction.
* Skeletons are a transformation of the input string;
* Two identifiers are LTR-confusable if their LTR bidiSkeletons are identical;
* they are RTL-confusable if their RTL bidiSkeletons are identical.
* See Unicode Technical Standard #39 for additional information:
* https://www.unicode.org/reports/tr39/#Confusable_Detection.
*
* Using skeletons directly makes it possible to quickly check whether an identifier is confusable with any of some
* large set of existing identifiers, by creating an efficiently searchable collection of the skeletons.
*
* Skeletons are computed using the algorithm and data described in UTS #39.
*
* @param direction The paragraph direction with which the string is displayed.
* Must be either {@link Bidi#DIRECTION_LEFT_TO_RIGHT} or {@link Bidi#DIRECTION_RIGHT_TO_LEFT}.
* @param str The input string whose bidiSkeleton will be generated.
* @return The output skeleton string.
*
* @hide draft / provisional / internal are hidden on Android
*/
public String getBidiSkeleton(int direction, CharSequence str) {
if (direction != Bidi.DIRECTION_LEFT_TO_RIGHT && direction != Bidi.DIRECTION_RIGHT_TO_LEFT) {
throw new IllegalArgumentException("direction should be DIRECTION_LEFT_TO_RIGHT or DIRECTION_RIGHT_TO_LEFT");
}
Bidi bidi = new Bidi(str.toString(), direction);
return getSkeleton(bidi.writeReordered(Bidi.KEEP_BASE_COMBINING | Bidi.DO_MIRRORING));
}
/**
* Get the "skeleton" for an identifier string. Skeletons are a transformation of the input string; Two strings are
* confusable if their skeletons are identical. See Unicode UAX 39 for additional information.
*
* Using skeletons directly makes it possible to quickly check whether an identifier is confusable with any of some
* large set of existing identifiers, by creating an efficiently searchable collection of the skeletons.
*
* Skeletons are computed using the algorithm and data described in Unicode UAX 39.
*
* @param str
* The input string whose skeleton will be generated.
* @return The output skeleton string.
*/
public String getSkeleton(CharSequence str) {
// Apply the skeleton mapping to the NFD normalized input string
// Accumulate the skeleton, possibly unnormalized, in a String.
String nfdId = nfdNormalizer.normalize(str);
int normalizedLen = nfdId.length();
StringBuilder skelSB = new StringBuilder();
for (int inputIndex = 0; inputIndex < normalizedLen;) {
int c = Character.codePointAt(nfdId, inputIndex);
inputIndex += Character.charCount(c);
if (!UCharacter.hasBinaryProperty(c, UProperty.DEFAULT_IGNORABLE_CODE_POINT)) {
this.fSpoofData.confusableLookup(c, skelSB);
}
}
String skelStr = skelSB.toString();
skelStr = nfdNormalizer.normalize(skelStr);
return skelStr;
}
/**
* Calls {@link SpoofChecker#getSkeleton(CharSequence id)}. Starting with ICU 55, the "type" parameter has been
* ignored, and starting with ICU 58, this function has been deprecated.
*
* @param type
* No longer supported. Prior to ICU 55, was used to specify the mapping table SL, SA, ML, or MA.
* @param id
* The input identifier whose skeleton will be generated.
* @return The output skeleton string.
*
* @deprecated ICU 58
*/
@Deprecated
public String getSkeleton(int type, String id) {
return getSkeleton(id);
}
/**
* Equality function. Return true if the two SpoofChecker objects incorporate the same confusable data and have
* enabled the same set of checks.
*
* @param other
* the SpoofChecker being compared with.
* @return true if the two SpoofCheckers are equal.
*/
@Override
public boolean equals(Object other) {
if (!(other instanceof SpoofChecker)) {
return false;
}
SpoofChecker otherSC = (SpoofChecker) other;
if (fSpoofData != otherSC.fSpoofData && fSpoofData != null && !fSpoofData.equals(otherSC.fSpoofData)) {
return false;
}
if (fChecks != otherSC.fChecks) {
return false;
}
if (fAllowedLocales != otherSC.fAllowedLocales && fAllowedLocales != null
&& !fAllowedLocales.equals(otherSC.fAllowedLocales)) {
return false;
}
if (fAllowedCharsSet != otherSC.fAllowedCharsSet && fAllowedCharsSet != null
&& !fAllowedCharsSet.equals(otherSC.fAllowedCharsSet)) {
return false;
}
if (fRestrictionLevel != otherSC.fRestrictionLevel) {
return false;
}
return true;
}
/**
* Overrides {@link Object#hashCode()}.
*/
@Override
public int hashCode() {
return fChecks
^ fSpoofData.hashCode()
^ fAllowedLocales.hashCode()
^ fAllowedCharsSet.hashCode()
^ fRestrictionLevel.ordinal();
}
/**
* Computes the augmented script set for a code point, according to UTS 39 section 5.1.
*/
private static void getAugmentedScriptSet(int codePoint, ScriptSet result) {
result.clear();
UScript.getScriptExtensions(codePoint, result);
// Section 5.1 step 1
if (result.get(UScript.HAN)) {
result.set(UScript.HAN_WITH_BOPOMOFO);
result.set(UScript.JAPANESE);
result.set(UScript.KOREAN);
}
if (result.get(UScript.HIRAGANA)) {
result.set(UScript.JAPANESE);
}
if (result.get(UScript.KATAKANA)) {
result.set(UScript.JAPANESE);
}
if (result.get(UScript.HANGUL)) {
result.set(UScript.KOREAN);
}
if (result.get(UScript.BOPOMOFO)) {
result.set(UScript.HAN_WITH_BOPOMOFO);
}
// Section 5.1 step 2
if (result.get(UScript.COMMON) || result.get(UScript.INHERITED)) {
result.setAll();
}
}
/**
* Computes the resolved script set for a string, according to UTS 39 section 5.1.
*/
private void getResolvedScriptSet(CharSequence input, ScriptSet result) {
getResolvedScriptSetWithout(input, UScript.CODE_LIMIT, result);
}
/**
* Computes the resolved script set for a string, omitting characters having the specified script. If
* UScript.CODE_LIMIT is passed as the second argument, all characters are included.
*/
private void getResolvedScriptSetWithout(CharSequence input, int script, ScriptSet result) {
result.setAll();
ScriptSet temp = new ScriptSet();
for (int utf16Offset = 0; utf16Offset < input.length();) {
int codePoint = Character.codePointAt(input, utf16Offset);
utf16Offset += Character.charCount(codePoint);
// Compute the augmented script set for the character
getAugmentedScriptSet(codePoint, temp);
// Intersect the augmented script set with the resolved script set, but only if the character doesn't
// have the script specified in the function call
if (script == UScript.CODE_LIMIT || !temp.get(script)) {
result.and(temp);
}
}
}
/**
* Computes the set of numerics for a string, according to UTS 39 section 5.3.
*/
private void getNumerics(String input, UnicodeSet result) {
result.clear();
for (int utf16Offset = 0; utf16Offset < input.length();) {
int codePoint = Character.codePointAt(input, utf16Offset);
utf16Offset += Character.charCount(codePoint);
// Store a representative character for each kind of decimal digit
if (UCharacter.getType(codePoint) == UCharacterCategory.DECIMAL_DIGIT_NUMBER) {
// Store the zero character as a representative for comparison.
// Unicode guarantees it is codePoint - value
result.add(codePoint - UCharacter.getNumericValue(codePoint));
}
}
}
/**
* Computes the restriction level of a string, according to UTS 39 section 5.2.
*/
private RestrictionLevel getRestrictionLevel(String input) {
// Section 5.2 step 1:
if (!fAllowedCharsSet.containsAll(input)) {
return RestrictionLevel.UNRESTRICTIVE;
}
// Section 5.2 step 2:
if (ASCII.containsAll(input)) {
return RestrictionLevel.ASCII;
}
// Section 5.2 steps 3:
ScriptSet resolvedScriptSet = new ScriptSet();
getResolvedScriptSet(input, resolvedScriptSet);
// Section 5.2 step 4:
if (!resolvedScriptSet.isEmpty()) {
return RestrictionLevel.SINGLE_SCRIPT_RESTRICTIVE;
}
// Section 5.2 step 5:
ScriptSet resolvedNoLatn = new ScriptSet();
getResolvedScriptSetWithout(input, UScript.LATIN, resolvedNoLatn);
// Section 5.2 step 6:
if (resolvedNoLatn.get(UScript.HAN_WITH_BOPOMOFO) || resolvedNoLatn.get(UScript.JAPANESE)
|| resolvedNoLatn.get(UScript.KOREAN)) {
return RestrictionLevel.HIGHLY_RESTRICTIVE;
}
// Section 5.2 step 7:
if (!resolvedNoLatn.isEmpty() && !resolvedNoLatn.get(UScript.CYRILLIC) && !resolvedNoLatn.get(UScript.GREEK)
&& !resolvedNoLatn.get(UScript.CHEROKEE)) {
return RestrictionLevel.MODERATELY_RESTRICTIVE;
}
// Section 5.2 step 8:
return RestrictionLevel.MINIMALLY_RESTRICTIVE;
}
int findHiddenOverlay(String input) {
boolean sawLeadCharacter = false;
StringBuilder sb = new StringBuilder();
for (int i=0; i<input.length();) {
int cp = input.codePointAt(i);
if (sawLeadCharacter && cp == 0x0307) {
return i;
}
int combiningClass = UCharacter.getCombiningClass(cp);
// Skip over characters except for those with combining class 0 (non-combining characters) or with
// combining class 230 (same class as U+0307)
assert UCharacter.getCombiningClass(0x0307) == 230;
if (combiningClass == 0 || combiningClass == 230) {
sawLeadCharacter = isIllegalCombiningDotLeadCharacter(cp, sb);
}
i += UCharacter.charCount(cp);
}
return -1;
}
boolean isIllegalCombiningDotLeadCharacterNoLookup(int cp) {
return cp == 'i' || cp == 'j' || cp == 'ı' || cp == 'ȷ' || cp == 'l' ||
UCharacter.hasBinaryProperty(cp, UProperty.SOFT_DOTTED);
}
boolean isIllegalCombiningDotLeadCharacter(int cp, StringBuilder sb) {
if (isIllegalCombiningDotLeadCharacterNoLookup(cp)) {
return true;
}
sb.setLength(0);
fSpoofData.confusableLookup(cp, sb);
int finalCp = UCharacter.codePointBefore(sb, sb.length());
if (finalCp != cp && isIllegalCombiningDotLeadCharacterNoLookup(finalCp)) {
return true;
}
return false;
}
// Data Members
private int fChecks; // Bit vector of checks to perform.
private SpoofData fSpoofData;
private Set<ULocale> fAllowedLocales; // The Set of allowed locales.
private UnicodeSet fAllowedCharsSet; // The UnicodeSet of allowed characters.
private RestrictionLevel fRestrictionLevel;
private static Normalizer2 nfdNormalizer = Normalizer2.getNFDInstance();
// Confusable Mappings Data Structures, version 2.0
//
// This description and the corresponding implementation are to be kept
// in-sync with the copy in icu4c uspoof_impl.h.
//
// For the confusable data, we are essentially implementing a map,
// key: a code point
// value: a string. Most commonly one char in length, but can be more.
//
// The keys are stored as a sorted array of 32 bit ints.
// bits 0-23 a code point value
// bits 24-31 length of value string, in UChars (between 1 and 256 UChars).
// The key table is sorted in ascending code point order. (not on the
// 32 bit int value, the flag bits do not participate in the sorting.)
//
// Lookup is done by means of a binary search in the key table.
//
// The corresponding values are kept in a parallel array of 16 bit ints.
// If the value string is of length 1, it is literally in the value array.
// For longer strings, the value array contains an index into the strings
// table.
//
// String Table:
// The strings table contains all of the value strings (those of length two or greater)
// concatenated together into one long char (UTF-16) array.
//
// There is no nul character or other mark between adjacent strings.
//
//----------------------------------------------------------------------------
//
// Changes from format version 1 to format version 2:
// 1) Removal of the whole-script confusable data tables.
// 2) Removal of the SL/SA/ML/MA and multi-table flags in the key bitmask.
// 3) Expansion of string length value in the key bitmask from 2 bits to 8 bits.
// 4) Removal of the string lengths table since 8 bits is sufficient for the
// lengths of all entries in confusables.txt.
//
private static final class ConfusableDataUtils {
public static final int FORMAT_VERSION = 2; // version for ICU 58
public static final int keyToCodePoint(int key) {
return key & 0x00ffffff;
}
public static final int keyToLength(int key) {
return ((key & 0xff000000) >> 24) + 1;
}
public static final int codePointAndLengthToKey(int codePoint, int length) {
assert (codePoint & 0x00ffffff) == codePoint;
assert length <= 256;
return codePoint | ((length - 1) << 24);
}
}
// -------------------------------------------------------------------------------------
//
// SpoofData
//
// This class corresponds to the ICU SpoofCheck data.
//
// The data can originate with the Binary ICU data that is generated in ICU4C,
// or it can originate from source rules that are compiled in ICU4J.
//
// This class does not include the set of checks to be performed, but only
// data that is serialized into the ICU binary data.
//
// Because Java cannot easily wrap binary data like ICU4C, the binary data is
// copied into Java structures that are convenient for use by the run time code.
//
// ---------------------------------------------------------------------------------------
private static class SpoofData {
// The Confusable data, Java data structures for.
int[] fCFUKeys;
short[] fCFUValues;
String fCFUStrings;
private static final int DATA_FORMAT = 0x43667520; // "Cfu "
private static final class IsAcceptable implements Authenticate {
@Override
public boolean isDataVersionAcceptable(byte version[]) {
return version[0] == ConfusableDataUtils.FORMAT_VERSION || version[1] != 0 || version[2] != 0
|| version[3] != 0;
}
}
private static final IsAcceptable IS_ACCEPTABLE = new IsAcceptable();
private static final class DefaultData {
private static SpoofData INSTANCE = null;
private static IOException EXCEPTION = null;
static {
// Note: Although this is static, the Java runtime can delay execution of this block until
// the data is actually requested via SpoofData.getDefault().
try {
INSTANCE = new SpoofData(ICUBinary.getRequiredData("confusables.cfu"));
} catch (IOException e) {
EXCEPTION = e;
}
}
}
/**
* @return instance for Unicode standard data
*/
public static SpoofData getDefault() {
if (DefaultData.EXCEPTION != null) {
throw new MissingResourceException(
"Could not load default confusables data: " + DefaultData.EXCEPTION.getMessage(),
"SpoofChecker", "");
}
return DefaultData.INSTANCE;
}
// SpoofChecker Data constructor for use from data builder.
// Initializes a new, empty data area that will be populated later.
private SpoofData() {
}
// Constructor for use when creating from prebuilt default data.
// A ByteBuffer is what the ICU internal data loading functions provide.
private SpoofData(ByteBuffer bytes) throws java.io.IOException {
ICUBinary.readHeader(bytes, DATA_FORMAT, IS_ACCEPTABLE);
bytes.mark();
readData(bytes);
}
@Override
public boolean equals(Object other) {
if (!(other instanceof SpoofData)) {
return false;
}
SpoofData otherData = (SpoofData) other;
if (!Arrays.equals(fCFUKeys, otherData.fCFUKeys))
return false;
if (!Arrays.equals(fCFUValues, otherData.fCFUValues))
return false;
if (!Utility.sameObjects(fCFUStrings, otherData.fCFUStrings) && fCFUStrings != null
&& !fCFUStrings.equals(otherData.fCFUStrings))
return false;
return true;
}
@Override
public int hashCode() {
return Arrays.hashCode(fCFUKeys)
^ Arrays.hashCode(fCFUValues)
^ fCFUStrings.hashCode();
}
// Set the SpoofChecker data from pre-built binary data in a byte buffer.
// The binary data format is as described for ICU4C spoof data.
//
private void readData(ByteBuffer bytes) throws java.io.IOException {
int magic = bytes.getInt();
if (magic != 0x3845fdef) {
throw new IllegalArgumentException("Bad Spoof Check Data.");
}
@SuppressWarnings("unused")
int dataFormatVersion = bytes.getInt();
@SuppressWarnings("unused")
int dataLength = bytes.getInt();
int CFUKeysOffset = bytes.getInt();
int CFUKeysSize = bytes.getInt();
int CFUValuesOffset = bytes.getInt();
int CFUValuesSize = bytes.getInt();
int CFUStringTableOffset = bytes.getInt();
int CFUStringTableSize = bytes.getInt();
// We have now read the file header, and obtained the position for each
// of the data items. Now read each in turn, first seeking the
// input stream to the position of the data item.
bytes.reset();
ICUBinary.skipBytes(bytes, CFUKeysOffset);
fCFUKeys = ICUBinary.getInts(bytes, CFUKeysSize, 0);
bytes.reset();
ICUBinary.skipBytes(bytes, CFUValuesOffset);
fCFUValues = ICUBinary.getShorts(bytes, CFUValuesSize, 0);
bytes.reset();
ICUBinary.skipBytes(bytes, CFUStringTableOffset);
fCFUStrings = ICUBinary.getString(bytes, CFUStringTableSize, 0);
}
/**
* Append the confusable skeleton transform for a single code point to a StringBuilder. The string to be
* appended will between 1 and 18 characters as of Unicode 9.
*
* This is the heart of the confusable skeleton generation implementation.
*/
public void confusableLookup(int inChar, StringBuilder dest) {
// Perform a binary search.
// [lo, hi), i.e lo is inclusive, hi is exclusive.
// The result after the loop will be in lo.
int lo = 0;
int hi = length();
do {
int mid = (lo + hi) / 2;
if (codePointAt(mid) > inChar) {
hi = mid;
} else if (codePointAt(mid) < inChar) {
lo = mid;
} else {
// Found result. Break early.
lo = mid;
break;
}
} while (hi - lo > 1);
// Did we find an entry? If not, the char maps to itself.
if (codePointAt(lo) != inChar) {
dest.appendCodePoint(inChar);
return;
}
// Add the element to the string builder and return.
appendValueTo(lo, dest);
return;
}
/**
* Return the number of confusable entries in this SpoofData.
*
* @return The number of entries.
*/
public int length() {
return fCFUKeys.length;
}
/**
* Return the code point (key) at the specified index.
*
* @param index
* The index within the SpoofData.
* @return The code point.
*/
public int codePointAt(int index) {
return ConfusableDataUtils.keyToCodePoint(fCFUKeys[index]);
}
/**
* Append the confusable skeleton at the specified index to the StringBuilder dest.
*
* @param index
* The index within the SpoofData.
* @param dest
* The StringBuilder to which to append the skeleton.
*/
public void appendValueTo(int index, StringBuilder dest) {
int stringLength = ConfusableDataUtils.keyToLength(fCFUKeys[index]);
// Value is either a char (for strings of length 1) or
// an index into the string table (for longer strings)
short value = fCFUValues[index];
if (stringLength == 1) {
dest.append((char) value);
} else {
dest.append(fCFUStrings, value, value + stringLength);
}
}
}
// -------------------------------------------------------------------------------
//
// ScriptSet - Script code bit sets.
// Extends Java BitSet with input/output support and a few helper methods.
// Note: The I/O is not currently being used, so it has been commented out. If
// it is needed again, the code can be restored.
//
// -------------------------------------------------------------------------------
static class ScriptSet extends BitSet {
// Eclipse default value to quell warnings:
private static final long serialVersionUID = 1L;
// // The serialized version of this class can hold INT_CAPACITY * 32 scripts.
// private static final int INT_CAPACITY = 6;
// private static final long serialVersionUID = INT_CAPACITY;
// static {
// assert ScriptSet.INT_CAPACITY * Integer.SIZE <= UScript.CODE_LIMIT;
// }
//
// public ScriptSet() {
// }
//
// public ScriptSet(ByteBuffer bytes) throws java.io.IOException {
// for (int i = 0; i < INT_CAPACITY; i++) {
// int bits = bytes.getInt();
// for (int j = 0; j < Integer.SIZE; j++) {
// if ((bits & (1 << j)) != 0) {
// set(i * Integer.SIZE + j);
// }
// }
// }
// }
//
// public void output(DataOutputStream os) throws java.io.IOException {
// for (int i = 0; i < INT_CAPACITY; i++) {
// int bits = 0;
// for (int j = 0; j < Integer.SIZE; j++) {
// if (get(i * Integer.SIZE + j)) {
// bits |= (1 << j);
// }
// }
// os.writeInt(bits);
// }
// }
@android.compat.annotation.UnsupportedAppUsage(maxTargetSdk = 30, trackingBug = 170729553)
ScriptSet() {
}
@android.compat.annotation.UnsupportedAppUsage(maxTargetSdk = 30, trackingBug = 170729553)
public void and(int script) {
this.clear(0, script);
this.clear(script + 1, UScript.CODE_LIMIT);
}
@android.compat.annotation.UnsupportedAppUsage(maxTargetSdk = 30, trackingBug = 170729553)
public void setAll() {
this.set(0, UScript.CODE_LIMIT);
}
@android.compat.annotation.UnsupportedAppUsage(maxTargetSdk = 30, trackingBug = 170729553)
public boolean isFull() {
return cardinality() == UScript.CODE_LIMIT;
}
public void appendStringTo(StringBuilder sb) {
sb.append("{ ");
if (isEmpty()) {
sb.append("- ");
} else if (isFull()) {
sb.append("* ");
} else {
for (int script = 0; script < UScript.CODE_LIMIT; script++) {
if (get(script)) {
sb.append(UScript.getShortName(script));
sb.append(" ");
}
}
}
sb.append("}");
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("<ScriptSet ");
appendStringTo(sb);
sb.append(">");
return sb.toString();
}
}
}