1734 lines
65 KiB
Java
1734 lines
65 KiB
Java
/*
|
|
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.lang;
|
|
|
|
import dalvik.annotation.optimization.NeverInline;
|
|
import jdk.internal.math.FloatingDecimal;
|
|
import java.util.Arrays;
|
|
import java.util.Spliterator;
|
|
import java.util.stream.IntStream;
|
|
import java.util.stream.StreamSupport;
|
|
|
|
import static java.lang.String.COMPACT_STRINGS;
|
|
import static java.lang.String.UTF16;
|
|
import static java.lang.String.LATIN1;
|
|
import static java.lang.String.checkIndex;
|
|
import static java.lang.String.checkOffset;
|
|
|
|
/**
|
|
* A mutable sequence of characters.
|
|
* <p>
|
|
* Implements a modifiable string. At any point in time it contains some
|
|
* particular sequence of characters, but the length and content of the
|
|
* sequence can be changed through certain method calls.
|
|
*
|
|
* <p>Unless otherwise noted, passing a {@code null} argument to a constructor
|
|
* or method in this class will cause a {@link NullPointerException} to be
|
|
* thrown.
|
|
*
|
|
* @author Michael McCloskey
|
|
* @author Martin Buchholz
|
|
* @author Ulf Zibis
|
|
* @since 1.5
|
|
*/
|
|
abstract class AbstractStringBuilder implements Appendable, CharSequence {
|
|
// TODO: remove java.lang.Integer.getChars(int, int, char[]) once updated to byte[] from 11.
|
|
/**
|
|
* The value is used for character storage.
|
|
*/
|
|
byte[] value;
|
|
|
|
/**
|
|
* The id of the encoding used to encode the bytes in {@code value}.
|
|
*/
|
|
byte coder;
|
|
|
|
/**
|
|
* The count is the number of characters used.
|
|
*/
|
|
int count;
|
|
|
|
private static final byte[] EMPTYVALUE = new byte[0];
|
|
|
|
/**
|
|
* This no-arg constructor is necessary for serialization of subclasses.
|
|
*/
|
|
AbstractStringBuilder() {
|
|
value = EMPTYVALUE;
|
|
}
|
|
|
|
/**
|
|
* Creates an AbstractStringBuilder of the specified capacity.
|
|
*/
|
|
AbstractStringBuilder(int capacity) {
|
|
if (COMPACT_STRINGS) {
|
|
value = new byte[capacity];
|
|
coder = LATIN1;
|
|
} else {
|
|
value = StringUTF16.newBytesFor(capacity);
|
|
coder = UTF16;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compares the objects of two AbstractStringBuilder implementations lexicographically.
|
|
*
|
|
* @since 11
|
|
*/
|
|
int compareTo(AbstractStringBuilder another) {
|
|
if (this == another) {
|
|
return 0;
|
|
}
|
|
|
|
byte val1[] = value;
|
|
byte val2[] = another.value;
|
|
int count1 = this.count;
|
|
int count2 = another.count;
|
|
|
|
if (coder == another.coder) {
|
|
return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2)
|
|
: StringUTF16.compareTo(val1, val2, count1, count2);
|
|
}
|
|
return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2)
|
|
: StringUTF16.compareToLatin1(val1, val2, count1, count2);
|
|
}
|
|
|
|
/**
|
|
* Returns the length (character count).
|
|
*
|
|
* @return the length of the sequence of characters currently
|
|
* represented by this object
|
|
*/
|
|
@Override
|
|
// We don't want to inline this method to be able to perform String-related
|
|
// optimizations with intrinsics.
|
|
@NeverInline
|
|
public int length() {
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* Returns the current capacity. The capacity is the amount of storage
|
|
* available for newly inserted characters, beyond which an allocation
|
|
* will occur.
|
|
*
|
|
* @return the current capacity
|
|
*/
|
|
public int capacity() {
|
|
return value.length >> coder;
|
|
}
|
|
|
|
/**
|
|
* Ensures that the capacity is at least equal to the specified minimum.
|
|
* If the current capacity is less than the argument, then a new internal
|
|
* array is allocated with greater capacity. The new capacity is the
|
|
* larger of:
|
|
* <ul>
|
|
* <li>The {@code minimumCapacity} argument.
|
|
* <li>Twice the old capacity, plus {@code 2}.
|
|
* </ul>
|
|
* If the {@code minimumCapacity} argument is nonpositive, this
|
|
* method takes no action and simply returns.
|
|
* Note that subsequent operations on this object can reduce the
|
|
* actual capacity below that requested here.
|
|
*
|
|
* @param minimumCapacity the minimum desired capacity.
|
|
*/
|
|
public void ensureCapacity(int minimumCapacity) {
|
|
if (minimumCapacity > 0) {
|
|
ensureCapacityInternal(minimumCapacity);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For positive values of {@code minimumCapacity}, this method
|
|
* behaves like {@code ensureCapacity}, however it is never
|
|
* synchronized.
|
|
* If {@code minimumCapacity} is non positive due to numeric
|
|
* overflow, this method throws {@code OutOfMemoryError}.
|
|
*/
|
|
private void ensureCapacityInternal(int minimumCapacity) {
|
|
// overflow-conscious code
|
|
int oldCapacity = value.length >> coder;
|
|
if (minimumCapacity - oldCapacity > 0) {
|
|
value = Arrays.copyOf(value,
|
|
newCapacity(minimumCapacity) << coder);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The maximum size of array to allocate (unless necessary).
|
|
* Some VMs reserve some header words in an array.
|
|
* Attempts to allocate larger arrays may result in
|
|
* OutOfMemoryError: Requested array size exceeds VM limit
|
|
*/
|
|
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
|
|
|
|
/**
|
|
* Returns a capacity at least as large as the given minimum capacity.
|
|
* Returns the current capacity increased by the same amount + 2 if
|
|
* that suffices.
|
|
* Will not return a capacity greater than
|
|
* {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
|
|
* is greater than that.
|
|
*
|
|
* @param minCapacity the desired minimum capacity
|
|
* @throws OutOfMemoryError if minCapacity is less than zero or
|
|
* greater than (Integer.MAX_VALUE >> coder)
|
|
*/
|
|
private int newCapacity(int minCapacity) {
|
|
// overflow-conscious code
|
|
int oldCapacity = value.length >> coder;
|
|
int newCapacity = (oldCapacity << 1) + 2;
|
|
if (newCapacity - minCapacity < 0) {
|
|
newCapacity = minCapacity;
|
|
}
|
|
int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
|
|
return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
|
|
? hugeCapacity(minCapacity)
|
|
: newCapacity;
|
|
}
|
|
|
|
private int hugeCapacity(int minCapacity) {
|
|
int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
|
|
int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
|
|
if (UNSAFE_BOUND - minCapacity < 0) { // overflow
|
|
throw new OutOfMemoryError();
|
|
}
|
|
return (minCapacity > SAFE_BOUND)
|
|
? minCapacity : SAFE_BOUND;
|
|
}
|
|
|
|
/**
|
|
* If the coder is "isLatin1", this inflates the internal 8-bit storage
|
|
* to 16-bit <hi=0, low> pair storage.
|
|
*/
|
|
private void inflate() {
|
|
if (!isLatin1()) {
|
|
return;
|
|
}
|
|
byte[] buf = StringUTF16.newBytesFor(value.length);
|
|
StringLatin1.inflate(value, 0, buf, 0, count);
|
|
this.value = buf;
|
|
this.coder = UTF16;
|
|
}
|
|
|
|
/**
|
|
* Attempts to reduce storage used for the character sequence.
|
|
* If the buffer is larger than necessary to hold its current sequence of
|
|
* characters, then it may be resized to become more space efficient.
|
|
* Calling this method may, but is not required to, affect the value
|
|
* returned by a subsequent call to the {@link #capacity()} method.
|
|
*/
|
|
public void trimToSize() {
|
|
int length = count << coder;
|
|
if (length < value.length) {
|
|
value = Arrays.copyOf(value, length);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the length of the character sequence.
|
|
* The sequence is changed to a new character sequence
|
|
* whose length is specified by the argument. For every nonnegative
|
|
* index <i>k</i> less than {@code newLength}, the character at
|
|
* index <i>k</i> in the new character sequence is the same as the
|
|
* character at index <i>k</i> in the old sequence if <i>k</i> is less
|
|
* than the length of the old character sequence; otherwise, it is the
|
|
* null character {@code '\u005Cu0000'}.
|
|
*
|
|
* In other words, if the {@code newLength} argument is less than
|
|
* the current length, the length is changed to the specified length.
|
|
* <p>
|
|
* If the {@code newLength} argument is greater than or equal
|
|
* to the current length, sufficient null characters
|
|
* ({@code '\u005Cu0000'}) are appended so that
|
|
* length becomes the {@code newLength} argument.
|
|
* <p>
|
|
* The {@code newLength} argument must be greater than or equal
|
|
* to {@code 0}.
|
|
*
|
|
* @param newLength the new length
|
|
* @throws IndexOutOfBoundsException if the
|
|
* {@code newLength} argument is negative.
|
|
*/
|
|
public void setLength(int newLength) {
|
|
if (newLength < 0) {
|
|
throw new StringIndexOutOfBoundsException(newLength);
|
|
}
|
|
ensureCapacityInternal(newLength);
|
|
if (count < newLength) {
|
|
if (isLatin1()) {
|
|
StringLatin1.fillNull(value, count, newLength);
|
|
} else {
|
|
StringUTF16.fillNull(value, count, newLength);
|
|
}
|
|
}
|
|
count = newLength;
|
|
}
|
|
|
|
/**
|
|
* Returns the {@code char} value in this sequence at the specified index.
|
|
* The first {@code char} value is at index {@code 0}, the next at index
|
|
* {@code 1}, and so on, as in array indexing.
|
|
* <p>
|
|
* The index argument must be greater than or equal to
|
|
* {@code 0}, and less than the length of this sequence.
|
|
*
|
|
* <p>If the {@code char} value specified by the index is a
|
|
* <a href="Character.html#unicode">surrogate</a>, the surrogate
|
|
* value is returned.
|
|
*
|
|
* @param index the index of the desired {@code char} value.
|
|
* @return the {@code char} value at the specified index.
|
|
* @throws IndexOutOfBoundsException if {@code index} is
|
|
* negative or greater than or equal to {@code length()}.
|
|
*/
|
|
@Override
|
|
public char charAt(int index) {
|
|
checkIndex(index, count);
|
|
if (isLatin1()) {
|
|
return (char)(value[index] & 0xff);
|
|
}
|
|
return StringUTF16.charAt(value, index);
|
|
}
|
|
|
|
/**
|
|
* Returns the character (Unicode code point) at the specified
|
|
* index. The index refers to {@code char} values
|
|
* (Unicode code units) and ranges from {@code 0} to
|
|
* {@link #length()}{@code - 1}.
|
|
*
|
|
* <p> If the {@code char} value specified at the given index
|
|
* is in the high-surrogate range, the following index is less
|
|
* than the length of this sequence, and the
|
|
* {@code char} value at the following index is in the
|
|
* low-surrogate range, then the supplementary code point
|
|
* corresponding to this surrogate pair is returned. Otherwise,
|
|
* the {@code char} value at the given index is returned.
|
|
*
|
|
* @param index the index to the {@code char} values
|
|
* @return the code point value of the character at the
|
|
* {@code index}
|
|
* @throws IndexOutOfBoundsException if the {@code index}
|
|
* argument is negative or not less than the length of this
|
|
* sequence.
|
|
*/
|
|
public int codePointAt(int index) {
|
|
int count = this.count;
|
|
byte[] value = this.value;
|
|
checkIndex(index, count);
|
|
if (isLatin1()) {
|
|
return value[index] & 0xff;
|
|
}
|
|
return StringUTF16.codePointAtSB(value, index, count);
|
|
}
|
|
|
|
/**
|
|
* Returns the character (Unicode code point) before the specified
|
|
* index. The index refers to {@code char} values
|
|
* (Unicode code units) and ranges from {@code 1} to {@link
|
|
* #length()}.
|
|
*
|
|
* <p> If the {@code char} value at {@code (index - 1)}
|
|
* is in the low-surrogate range, {@code (index - 2)} is not
|
|
* negative, and the {@code char} value at {@code (index -
|
|
* 2)} is in the high-surrogate range, then the
|
|
* supplementary code point value of the surrogate pair is
|
|
* returned. If the {@code char} value at {@code index -
|
|
* 1} is an unpaired low-surrogate or a high-surrogate, the
|
|
* surrogate value is returned.
|
|
*
|
|
* @param index the index following the code point that should be returned
|
|
* @return the Unicode code point value before the given index.
|
|
* @throws IndexOutOfBoundsException if the {@code index}
|
|
* argument is less than 1 or greater than the length
|
|
* of this sequence.
|
|
*/
|
|
public int codePointBefore(int index) {
|
|
int i = index - 1;
|
|
if (i < 0 || i >= count) {
|
|
throw new StringIndexOutOfBoundsException(index);
|
|
}
|
|
if (isLatin1()) {
|
|
return value[i] & 0xff;
|
|
}
|
|
return StringUTF16.codePointBeforeSB(value, index);
|
|
}
|
|
|
|
/**
|
|
* Returns the number of Unicode code points in the specified text
|
|
* range of this sequence. The text range begins at the specified
|
|
* {@code beginIndex} and extends to the {@code char} at
|
|
* index {@code endIndex - 1}. Thus the length (in
|
|
* {@code char}s) of the text range is
|
|
* {@code endIndex-beginIndex}. Unpaired surrogates within
|
|
* this sequence count as one code point each.
|
|
*
|
|
* @param beginIndex the index to the first {@code char} of
|
|
* the text range.
|
|
* @param endIndex the index after the last {@code char} of
|
|
* the text range.
|
|
* @return the number of Unicode code points in the specified text
|
|
* range
|
|
* @throws IndexOutOfBoundsException if the
|
|
* {@code beginIndex} is negative, or {@code endIndex}
|
|
* is larger than the length of this sequence, or
|
|
* {@code beginIndex} is larger than {@code endIndex}.
|
|
*/
|
|
public int codePointCount(int beginIndex, int endIndex) {
|
|
if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
if (isLatin1()) {
|
|
return endIndex - beginIndex;
|
|
}
|
|
return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
|
|
}
|
|
|
|
/**
|
|
* Returns the index within this sequence that is offset from the
|
|
* given {@code index} by {@code codePointOffset} code
|
|
* points. Unpaired surrogates within the text range given by
|
|
* {@code index} and {@code codePointOffset} count as
|
|
* one code point each.
|
|
*
|
|
* @param index the index to be offset
|
|
* @param codePointOffset the offset in code points
|
|
* @return the index within this sequence
|
|
* @throws IndexOutOfBoundsException if {@code index}
|
|
* is negative or larger then the length of this sequence,
|
|
* or if {@code codePointOffset} is positive and the subsequence
|
|
* starting with {@code index} has fewer than
|
|
* {@code codePointOffset} code points,
|
|
* or if {@code codePointOffset} is negative and the subsequence
|
|
* before {@code index} has fewer than the absolute value of
|
|
* {@code codePointOffset} code points.
|
|
*/
|
|
public int offsetByCodePoints(int index, int codePointOffset) {
|
|
if (index < 0 || index > count) {
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return Character.offsetByCodePoints(this,
|
|
index, codePointOffset);
|
|
}
|
|
|
|
/**
|
|
* Characters are copied from this sequence into the
|
|
* destination character array {@code dst}. The first character to
|
|
* be copied is at index {@code srcBegin}; the last character to
|
|
* be copied is at index {@code srcEnd-1}. The total number of
|
|
* characters to be copied is {@code srcEnd-srcBegin}. The
|
|
* characters are copied into the subarray of {@code dst} starting
|
|
* at index {@code dstBegin} and ending at index:
|
|
* <pre>{@code
|
|
* dstbegin + (srcEnd-srcBegin) - 1
|
|
* }</pre>
|
|
*
|
|
* @param srcBegin start copying at this offset.
|
|
* @param srcEnd stop copying at this offset.
|
|
* @param dst the array to copy the data into.
|
|
* @param dstBegin offset into {@code dst}.
|
|
* @throws IndexOutOfBoundsException if any of the following is true:
|
|
* <ul>
|
|
* <li>{@code srcBegin} is negative
|
|
* <li>{@code dstBegin} is negative
|
|
* <li>the {@code srcBegin} argument is greater than
|
|
* the {@code srcEnd} argument.
|
|
* <li>{@code srcEnd} is greater than
|
|
* {@code this.length()}.
|
|
* <li>{@code dstBegin+srcEnd-srcBegin} is greater than
|
|
* {@code dst.length}
|
|
* </ul>
|
|
*/
|
|
public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
|
|
{
|
|
checkRangeSIOOBE(srcBegin, srcEnd, count); // compatible to old version
|
|
int n = srcEnd - srcBegin;
|
|
checkRange(dstBegin, dstBegin + n, dst.length);
|
|
if (isLatin1()) {
|
|
StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
|
|
} else {
|
|
StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The character at the specified index is set to {@code ch}. This
|
|
* sequence is altered to represent a new character sequence that is
|
|
* identical to the old character sequence, except that it contains the
|
|
* character {@code ch} at position {@code index}.
|
|
* <p>
|
|
* The index argument must be greater than or equal to
|
|
* {@code 0}, and less than the length of this sequence.
|
|
*
|
|
* @param index the index of the character to modify.
|
|
* @param ch the new character.
|
|
* @throws IndexOutOfBoundsException if {@code index} is
|
|
* negative or greater than or equal to {@code length()}.
|
|
*/
|
|
public void setCharAt(int index, char ch) {
|
|
checkIndex(index, count);
|
|
if (isLatin1() && StringLatin1.canEncode(ch)) {
|
|
value[index] = (byte)ch;
|
|
} else {
|
|
if (isLatin1()) {
|
|
inflate();
|
|
}
|
|
StringUTF16.putCharSB(value, index, ch);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code Object} argument.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(Object)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param obj an {@code Object}.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(Object obj) {
|
|
return append(String.valueOf(obj));
|
|
}
|
|
|
|
/**
|
|
* Appends the specified string to this character sequence.
|
|
* <p>
|
|
* The characters of the {@code String} argument are appended, in
|
|
* order, increasing the length of this sequence by the length of the
|
|
* argument. If {@code str} is {@code null}, then the four
|
|
* characters {@code "null"} are appended.
|
|
* <p>
|
|
* Let <i>n</i> be the length of this character sequence just prior to
|
|
* execution of the {@code append} method. Then the character at
|
|
* index <i>k</i> in the new character sequence is equal to the character
|
|
* at index <i>k</i> in the old character sequence, if <i>k</i> is less
|
|
* than <i>n</i>; otherwise, it is equal to the character at index
|
|
* <i>k-n</i> in the argument {@code str}.
|
|
*
|
|
* @param str a string.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(String str) {
|
|
if (str == null) {
|
|
return appendNull();
|
|
}
|
|
int len = str.length();
|
|
ensureCapacityInternal(count + len);
|
|
putStringAt(count, str);
|
|
count += len;
|
|
return this;
|
|
}
|
|
|
|
// Documentation in subclasses because of synchro difference
|
|
public AbstractStringBuilder append(StringBuffer sb) {
|
|
return this.append((AbstractStringBuilder)sb);
|
|
}
|
|
|
|
/**
|
|
* @since 1.8
|
|
*/
|
|
AbstractStringBuilder append(AbstractStringBuilder asb) {
|
|
if (asb == null) {
|
|
return appendNull();
|
|
}
|
|
int len = asb.length();
|
|
ensureCapacityInternal(count + len);
|
|
if (getCoder() != asb.getCoder()) {
|
|
inflate();
|
|
}
|
|
asb.getBytes(value, count, coder);
|
|
count += len;
|
|
return this;
|
|
}
|
|
|
|
// Documentation in subclasses because of synchro difference
|
|
@Override
|
|
public AbstractStringBuilder append(CharSequence s) {
|
|
if (s == null) {
|
|
return appendNull();
|
|
}
|
|
if (s instanceof String) {
|
|
return this.append((String)s);
|
|
}
|
|
if (s instanceof AbstractStringBuilder) {
|
|
return this.append((AbstractStringBuilder)s);
|
|
}
|
|
return this.append(s, 0, s.length());
|
|
}
|
|
|
|
private AbstractStringBuilder appendNull() {
|
|
ensureCapacityInternal(count + 4);
|
|
int count = this.count;
|
|
byte[] val = this.value;
|
|
if (isLatin1()) {
|
|
val[count++] = 'n';
|
|
val[count++] = 'u';
|
|
val[count++] = 'l';
|
|
val[count++] = 'l';
|
|
} else {
|
|
count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l');
|
|
}
|
|
this.count = count;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends a subsequence of the specified {@code CharSequence} to this
|
|
* sequence.
|
|
* <p>
|
|
* Characters of the argument {@code s}, starting at
|
|
* index {@code start}, are appended, in order, to the contents of
|
|
* this sequence up to the (exclusive) index {@code end}. The length
|
|
* of this sequence is increased by the value of {@code end - start}.
|
|
* <p>
|
|
* Let <i>n</i> be the length of this character sequence just prior to
|
|
* execution of the {@code append} method. Then the character at
|
|
* index <i>k</i> in this character sequence becomes equal to the
|
|
* character at index <i>k</i> in this sequence, if <i>k</i> is less than
|
|
* <i>n</i>; otherwise, it is equal to the character at index
|
|
* <i>k+start-n</i> in the argument {@code s}.
|
|
* <p>
|
|
* If {@code s} is {@code null}, then this method appends
|
|
* characters as if the s parameter was a sequence containing the four
|
|
* characters {@code "null"}.
|
|
*
|
|
* @param s the sequence to append.
|
|
* @param start the starting index of the subsequence to be appended.
|
|
* @param end the end index of the subsequence to be appended.
|
|
* @return a reference to this object.
|
|
* @throws IndexOutOfBoundsException if
|
|
* {@code start} is negative, or
|
|
* {@code start} is greater than {@code end} or
|
|
* {@code end} is greater than {@code s.length()}
|
|
*/
|
|
@Override
|
|
public AbstractStringBuilder append(CharSequence s, int start, int end) {
|
|
if (s == null) {
|
|
s = "null";
|
|
}
|
|
checkRange(start, end, s.length());
|
|
int len = end - start;
|
|
ensureCapacityInternal(count + len);
|
|
appendChars(s, start, end);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code char} array
|
|
* argument to this sequence.
|
|
* <p>
|
|
* The characters of the array argument are appended, in order, to
|
|
* the contents of this sequence. The length of this sequence
|
|
* increases by the length of the argument.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(char[])},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param str the characters to be appended.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(char[] str) {
|
|
int len = str.length;
|
|
ensureCapacityInternal(count + len);
|
|
appendChars(str, 0, len);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of a subarray of the
|
|
* {@code char} array argument to this sequence.
|
|
* <p>
|
|
* Characters of the {@code char} array {@code str}, starting at
|
|
* index {@code offset}, are appended, in order, to the contents
|
|
* of this sequence. The length of this sequence increases
|
|
* by the value of {@code len}.
|
|
* <p>
|
|
* The overall effect is exactly as if the arguments were converted
|
|
* to a string by the method {@link String#valueOf(char[],int,int)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param str the characters to be appended.
|
|
* @param offset the index of the first {@code char} to append.
|
|
* @param len the number of {@code char}s to append.
|
|
* @return a reference to this object.
|
|
* @throws IndexOutOfBoundsException
|
|
* if {@code offset < 0} or {@code len < 0}
|
|
* or {@code offset+len > str.length}
|
|
*/
|
|
public AbstractStringBuilder append(char str[], int offset, int len) {
|
|
int end = offset + len;
|
|
checkRange(offset, end, str.length);
|
|
ensureCapacityInternal(count + len);
|
|
appendChars(str, offset, end);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code boolean}
|
|
* argument to the sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(boolean)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param b a {@code boolean}.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(boolean b) {
|
|
ensureCapacityInternal(count + (b ? 4 : 5));
|
|
int count = this.count;
|
|
byte[] val = this.value;
|
|
if (isLatin1()) {
|
|
if (b) {
|
|
val[count++] = 't';
|
|
val[count++] = 'r';
|
|
val[count++] = 'u';
|
|
val[count++] = 'e';
|
|
} else {
|
|
val[count++] = 'f';
|
|
val[count++] = 'a';
|
|
val[count++] = 'l';
|
|
val[count++] = 's';
|
|
val[count++] = 'e';
|
|
}
|
|
} else {
|
|
if (b) {
|
|
count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e');
|
|
} else {
|
|
count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e');
|
|
}
|
|
}
|
|
this.count = count;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code char}
|
|
* argument to this sequence.
|
|
* <p>
|
|
* The argument is appended to the contents of this sequence.
|
|
* The length of this sequence increases by {@code 1}.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(char)},
|
|
* and the character in that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param c a {@code char}.
|
|
* @return a reference to this object.
|
|
*/
|
|
@Override
|
|
public AbstractStringBuilder append(char c) {
|
|
ensureCapacityInternal(count + 1);
|
|
if (isLatin1() && StringLatin1.canEncode(c)) {
|
|
value[count++] = (byte)c;
|
|
} else {
|
|
if (isLatin1()) {
|
|
inflate();
|
|
}
|
|
StringUTF16.putCharSB(value, count++, c);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code int}
|
|
* argument to this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(int)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param i an {@code int}.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(int i) {
|
|
int count = this.count;
|
|
int spaceNeeded = count + Integer.stringSize(i);
|
|
ensureCapacityInternal(spaceNeeded);
|
|
if (isLatin1()) {
|
|
Integer.getChars(i, spaceNeeded, value);
|
|
} else {
|
|
StringUTF16.getChars(i, count, spaceNeeded, value);
|
|
}
|
|
this.count = spaceNeeded;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code long}
|
|
* argument to this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(long)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param l a {@code long}.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(long l) {
|
|
int count = this.count;
|
|
int spaceNeeded = count + Long.stringSize(l);
|
|
ensureCapacityInternal(spaceNeeded);
|
|
if (isLatin1()) {
|
|
Long.getChars(l, spaceNeeded, value);
|
|
} else {
|
|
StringUTF16.getChars(l, count, spaceNeeded, value);
|
|
}
|
|
this.count = spaceNeeded;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code float}
|
|
* argument to this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(float)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param f a {@code float}.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(float f) {
|
|
FloatingDecimal.appendTo(f,this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code double}
|
|
* argument to this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the argument were converted
|
|
* to a string by the method {@link String#valueOf(double)},
|
|
* and the characters of that string were then
|
|
* {@link #append(String) appended} to this character sequence.
|
|
*
|
|
* @param d a {@code double}.
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder append(double d) {
|
|
FloatingDecimal.appendTo(d,this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Removes the characters in a substring of this sequence.
|
|
* The substring begins at the specified {@code start} and extends to
|
|
* the character at index {@code end - 1} or to the end of the
|
|
* sequence if no such character exists. If
|
|
* {@code start} is equal to {@code end}, no changes are made.
|
|
*
|
|
* @param start The beginning index, inclusive.
|
|
* @param end The ending index, exclusive.
|
|
* @return This object.
|
|
* @throws StringIndexOutOfBoundsException if {@code start}
|
|
* is negative, greater than {@code length()}, or
|
|
* greater than {@code end}.
|
|
*/
|
|
public AbstractStringBuilder delete(int start, int end) {
|
|
int count = this.count;
|
|
if (end > count) {
|
|
end = count;
|
|
}
|
|
checkRangeSIOOBE(start, end, count);
|
|
int len = end - start;
|
|
if (len > 0) {
|
|
shift(end, -len);
|
|
this.count = count - len;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Appends the string representation of the {@code codePoint}
|
|
* argument to this sequence.
|
|
*
|
|
* <p> The argument is appended to the contents of this sequence.
|
|
* The length of this sequence increases by
|
|
* {@link Character#charCount(int) Character.charCount(codePoint)}.
|
|
*
|
|
* <p> The overall effect is exactly as if the argument were
|
|
* converted to a {@code char} array by the method
|
|
* {@link Character#toChars(int)} and the character in that array
|
|
* were then {@link #append(char[]) appended} to this character
|
|
* sequence.
|
|
*
|
|
* @param codePoint a Unicode code point
|
|
* @return a reference to this object.
|
|
* @throws IllegalArgumentException if the specified
|
|
* {@code codePoint} isn't a valid Unicode code point
|
|
*/
|
|
public AbstractStringBuilder appendCodePoint(int codePoint) {
|
|
if (Character.isBmpCodePoint(codePoint)) {
|
|
return append((char)codePoint);
|
|
}
|
|
return append(Character.toChars(codePoint));
|
|
}
|
|
|
|
/**
|
|
* Removes the {@code char} at the specified position in this
|
|
* sequence. This sequence is shortened by one {@code char}.
|
|
*
|
|
* <p>Note: If the character at the given index is a supplementary
|
|
* character, this method does not remove the entire character. If
|
|
* correct handling of supplementary characters is required,
|
|
* determine the number of {@code char}s to remove by calling
|
|
* {@code Character.charCount(thisSequence.codePointAt(index))},
|
|
* where {@code thisSequence} is this sequence.
|
|
*
|
|
* @param index Index of {@code char} to remove
|
|
* @return This object.
|
|
* @throws StringIndexOutOfBoundsException if the {@code index}
|
|
* is negative or greater than or equal to
|
|
* {@code length()}.
|
|
*/
|
|
public AbstractStringBuilder deleteCharAt(int index) {
|
|
checkIndex(index, count);
|
|
shift(index + 1, -1);
|
|
count--;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Replaces the characters in a substring of this sequence
|
|
* with characters in the specified {@code String}. The substring
|
|
* begins at the specified {@code start} and extends to the character
|
|
* at index {@code end - 1} or to the end of the
|
|
* sequence if no such character exists. First the
|
|
* characters in the substring are removed and then the specified
|
|
* {@code String} is inserted at {@code start}. (This
|
|
* sequence will be lengthened to accommodate the
|
|
* specified String if necessary.)
|
|
*
|
|
* @param start The beginning index, inclusive.
|
|
* @param end The ending index, exclusive.
|
|
* @param str String that will replace previous contents.
|
|
* @return This object.
|
|
* @throws StringIndexOutOfBoundsException if {@code start}
|
|
* is negative, greater than {@code length()}, or
|
|
* greater than {@code end}.
|
|
*/
|
|
public AbstractStringBuilder replace(int start, int end, String str) {
|
|
int count = this.count;
|
|
if (end > count) {
|
|
end = count;
|
|
}
|
|
checkRangeSIOOBE(start, end, count);
|
|
int len = str.length();
|
|
int newCount = count + len - (end - start);
|
|
ensureCapacityInternal(newCount);
|
|
shift(end, newCount - count);
|
|
this.count = newCount;
|
|
putStringAt(start, str);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Returns a new {@code String} that contains a subsequence of
|
|
* characters currently contained in this character sequence. The
|
|
* substring begins at the specified index and extends to the end of
|
|
* this sequence.
|
|
*
|
|
* @param start The beginning index, inclusive.
|
|
* @return The new string.
|
|
* @throws StringIndexOutOfBoundsException if {@code start} is
|
|
* less than zero, or greater than the length of this object.
|
|
*/
|
|
public String substring(int start) {
|
|
return substring(start, count);
|
|
}
|
|
|
|
/**
|
|
* Returns a new character sequence that is a subsequence of this sequence.
|
|
*
|
|
* <p> An invocation of this method of the form
|
|
*
|
|
* <pre>{@code
|
|
* sb.subSequence(begin, end)}</pre>
|
|
*
|
|
* behaves in exactly the same way as the invocation
|
|
*
|
|
* <pre>{@code
|
|
* sb.substring(begin, end)}</pre>
|
|
*
|
|
* This method is provided so that this class can
|
|
* implement the {@link CharSequence} interface.
|
|
*
|
|
* @param start the start index, inclusive.
|
|
* @param end the end index, exclusive.
|
|
* @return the specified subsequence.
|
|
*
|
|
* @throws IndexOutOfBoundsException
|
|
* if {@code start} or {@code end} are negative,
|
|
* if {@code end} is greater than {@code length()},
|
|
* or if {@code start} is greater than {@code end}
|
|
* @spec JSR-51
|
|
*/
|
|
@Override
|
|
public CharSequence subSequence(int start, int end) {
|
|
return substring(start, end);
|
|
}
|
|
|
|
/**
|
|
* Returns a new {@code String} that contains a subsequence of
|
|
* characters currently contained in this sequence. The
|
|
* substring begins at the specified {@code start} and
|
|
* extends to the character at index {@code end - 1}.
|
|
*
|
|
* @param start The beginning index, inclusive.
|
|
* @param end The ending index, exclusive.
|
|
* @return The new string.
|
|
* @throws StringIndexOutOfBoundsException if {@code start}
|
|
* or {@code end} are negative or greater than
|
|
* {@code length()}, or {@code start} is
|
|
* greater than {@code end}.
|
|
*/
|
|
public String substring(int start, int end) {
|
|
checkRangeSIOOBE(start, end, count);
|
|
if (isLatin1()) {
|
|
return StringLatin1.newString(value, start, end - start);
|
|
}
|
|
return StringUTF16.newString(value, start, end - start);
|
|
}
|
|
|
|
private void shift(int offset, int n) {
|
|
System.arraycopy(value, offset << coder,
|
|
value, (offset + n) << coder, (count - offset) << coder);
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of a subarray of the {@code str}
|
|
* array argument into this sequence. The subarray begins at the
|
|
* specified {@code offset} and extends {@code len} {@code char}s.
|
|
* The characters of the subarray are inserted into this sequence at
|
|
* the position indicated by {@code index}. The length of this
|
|
* sequence increases by {@code len} {@code char}s.
|
|
*
|
|
* @param index position at which to insert subarray.
|
|
* @param str A {@code char} array.
|
|
* @param offset the index of the first {@code char} in subarray to
|
|
* be inserted.
|
|
* @param len the number of {@code char}s in the subarray to
|
|
* be inserted.
|
|
* @return This object
|
|
* @throws StringIndexOutOfBoundsException if {@code index}
|
|
* is negative or greater than {@code length()}, or
|
|
* {@code offset} or {@code len} are negative, or
|
|
* {@code (offset+len)} is greater than
|
|
* {@code str.length}.
|
|
*/
|
|
public AbstractStringBuilder insert(int index, char[] str, int offset,
|
|
int len)
|
|
{
|
|
checkOffset(index, count);
|
|
checkRangeSIOOBE(offset, offset + len, str.length);
|
|
ensureCapacityInternal(count + len);
|
|
shift(index, len);
|
|
count += len;
|
|
putCharsAt(index, str, offset, offset + len);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code Object}
|
|
* argument into this character sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(Object)},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param obj an {@code Object}.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, Object obj) {
|
|
return insert(offset, String.valueOf(obj));
|
|
}
|
|
|
|
/**
|
|
* Inserts the string into this character sequence.
|
|
* <p>
|
|
* The characters of the {@code String} argument are inserted, in
|
|
* order, into this sequence at the indicated offset, moving up any
|
|
* characters originally above that position and increasing the length
|
|
* of this sequence by the length of the argument. If
|
|
* {@code str} is {@code null}, then the four characters
|
|
* {@code "null"} are inserted into this sequence.
|
|
* <p>
|
|
* The character at index <i>k</i> in the new character sequence is
|
|
* equal to:
|
|
* <ul>
|
|
* <li>the character at index <i>k</i> in the old character sequence, if
|
|
* <i>k</i> is less than {@code offset}
|
|
* <li>the character at index <i>k</i>{@code -offset} in the
|
|
* argument {@code str}, if <i>k</i> is not less than
|
|
* {@code offset} but is less than {@code offset+str.length()}
|
|
* <li>the character at index <i>k</i>{@code -str.length()} in the
|
|
* old character sequence, if <i>k</i> is not less than
|
|
* {@code offset+str.length()}
|
|
* </ul><p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param str a string.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, String str) {
|
|
checkOffset(offset, count);
|
|
if (str == null) {
|
|
str = "null";
|
|
}
|
|
int len = str.length();
|
|
ensureCapacityInternal(count + len);
|
|
shift(offset, len);
|
|
count += len;
|
|
putStringAt(offset, str);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code char} array
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The characters of the array argument are inserted into the
|
|
* contents of this sequence at the position indicated by
|
|
* {@code offset}. The length of this sequence increases by
|
|
* the length of the argument.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(char[])},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param str a character array.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, char[] str) {
|
|
checkOffset(offset, count);
|
|
int len = str.length;
|
|
ensureCapacityInternal(count + len);
|
|
shift(offset, len);
|
|
count += len;
|
|
putCharsAt(offset, str, 0, len);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified {@code CharSequence} into this sequence.
|
|
* <p>
|
|
* The characters of the {@code CharSequence} argument are inserted,
|
|
* in order, into this sequence at the indicated offset, moving up
|
|
* any characters originally above that position and increasing the length
|
|
* of this sequence by the length of the argument s.
|
|
* <p>
|
|
* The result of this method is exactly the same as if it were an
|
|
* invocation of this object's
|
|
* {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
|
|
* method.
|
|
*
|
|
* <p>If {@code s} is {@code null}, then the four characters
|
|
* {@code "null"} are inserted into this sequence.
|
|
*
|
|
* @param dstOffset the offset.
|
|
* @param s the sequence to be inserted
|
|
* @return a reference to this object.
|
|
* @throws IndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
|
|
if (s == null) {
|
|
s = "null";
|
|
}
|
|
if (s instanceof String) {
|
|
return this.insert(dstOffset, (String)s);
|
|
}
|
|
return this.insert(dstOffset, s, 0, s.length());
|
|
}
|
|
|
|
/**
|
|
* Inserts a subsequence of the specified {@code CharSequence} into
|
|
* this sequence.
|
|
* <p>
|
|
* The subsequence of the argument {@code s} specified by
|
|
* {@code start} and {@code end} are inserted,
|
|
* in order, into this sequence at the specified destination offset, moving
|
|
* up any characters originally above that position. The length of this
|
|
* sequence is increased by {@code end - start}.
|
|
* <p>
|
|
* The character at index <i>k</i> in this sequence becomes equal to:
|
|
* <ul>
|
|
* <li>the character at index <i>k</i> in this sequence, if
|
|
* <i>k</i> is less than {@code dstOffset}
|
|
* <li>the character at index <i>k</i>{@code +start-dstOffset} in
|
|
* the argument {@code s}, if <i>k</i> is greater than or equal to
|
|
* {@code dstOffset} but is less than {@code dstOffset+end-start}
|
|
* <li>the character at index <i>k</i>{@code -(end-start)} in this
|
|
* sequence, if <i>k</i> is greater than or equal to
|
|
* {@code dstOffset+end-start}
|
|
* </ul><p>
|
|
* The {@code dstOffset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
* <p>The start argument must be nonnegative, and not greater than
|
|
* {@code end}.
|
|
* <p>The end argument must be greater than or equal to
|
|
* {@code start}, and less than or equal to the length of s.
|
|
*
|
|
* <p>If {@code s} is {@code null}, then this method inserts
|
|
* characters as if the s parameter was a sequence containing the four
|
|
* characters {@code "null"}.
|
|
*
|
|
* @param dstOffset the offset in this sequence.
|
|
* @param s the sequence to be inserted.
|
|
* @param start the starting index of the subsequence to be inserted.
|
|
* @param end the end index of the subsequence to be inserted.
|
|
* @return a reference to this object.
|
|
* @throws IndexOutOfBoundsException if {@code dstOffset}
|
|
* is negative or greater than {@code this.length()}, or
|
|
* {@code start} or {@code end} are negative, or
|
|
* {@code start} is greater than {@code end} or
|
|
* {@code end} is greater than {@code s.length()}
|
|
*/
|
|
public AbstractStringBuilder insert(int dstOffset, CharSequence s,
|
|
int start, int end)
|
|
{
|
|
if (s == null) {
|
|
s = "null";
|
|
}
|
|
checkOffset(dstOffset, count);
|
|
checkRange(start, end, s.length());
|
|
int len = end - start;
|
|
ensureCapacityInternal(count + len);
|
|
shift(dstOffset, len);
|
|
count += len;
|
|
putCharsAt(dstOffset, s, start, end);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code boolean}
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(boolean)},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param b a {@code boolean}.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, boolean b) {
|
|
return insert(offset, String.valueOf(b));
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code char}
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(char)},
|
|
* and the character in that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param c a {@code char}.
|
|
* @return a reference to this object.
|
|
* @throws IndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, char c) {
|
|
checkOffset(offset, count);
|
|
ensureCapacityInternal(count + 1);
|
|
shift(offset, 1);
|
|
count += 1;
|
|
if (isLatin1() && StringLatin1.canEncode(c)) {
|
|
value[offset] = (byte)c;
|
|
} else {
|
|
if (isLatin1()) {
|
|
inflate();
|
|
}
|
|
StringUTF16.putCharSB(value, offset, c);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the second {@code int}
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(int)},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param i an {@code int}.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, int i) {
|
|
return insert(offset, String.valueOf(i));
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code long}
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(long)},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param l a {@code long}.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, long l) {
|
|
return insert(offset, String.valueOf(l));
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code float}
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(float)},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param f a {@code float}.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, float f) {
|
|
return insert(offset, String.valueOf(f));
|
|
}
|
|
|
|
/**
|
|
* Inserts the string representation of the {@code double}
|
|
* argument into this sequence.
|
|
* <p>
|
|
* The overall effect is exactly as if the second argument were
|
|
* converted to a string by the method {@link String#valueOf(double)},
|
|
* and the characters of that string were then
|
|
* {@link #insert(int,String) inserted} into this character
|
|
* sequence at the indicated offset.
|
|
* <p>
|
|
* The {@code offset} argument must be greater than or equal to
|
|
* {@code 0}, and less than or equal to the {@linkplain #length() length}
|
|
* of this sequence.
|
|
*
|
|
* @param offset the offset.
|
|
* @param d a {@code double}.
|
|
* @return a reference to this object.
|
|
* @throws StringIndexOutOfBoundsException if the offset is invalid.
|
|
*/
|
|
public AbstractStringBuilder insert(int offset, double d) {
|
|
return insert(offset, String.valueOf(d));
|
|
}
|
|
|
|
/**
|
|
* Returns the index within this string of the first occurrence of the
|
|
* specified substring.
|
|
*
|
|
* <p>The returned index is the smallest value {@code k} for which:
|
|
* <pre>{@code
|
|
* this.toString().startsWith(str, k)
|
|
* }</pre>
|
|
* If no such value of {@code k} exists, then {@code -1} is returned.
|
|
*
|
|
* @param str the substring to search for.
|
|
* @return the index of the first occurrence of the specified substring,
|
|
* or {@code -1} if there is no such occurrence.
|
|
*/
|
|
public int indexOf(String str) {
|
|
return indexOf(str, 0);
|
|
}
|
|
|
|
/**
|
|
* Returns the index within this string of the first occurrence of the
|
|
* specified substring, starting at the specified index.
|
|
*
|
|
* <p>The returned index is the smallest value {@code k} for which:
|
|
* <pre>{@code
|
|
* k >= Math.min(fromIndex, this.length()) &&
|
|
* this.toString().startsWith(str, k)
|
|
* }</pre>
|
|
* If no such value of {@code k} exists, then {@code -1} is returned.
|
|
*
|
|
* @param str the substring to search for.
|
|
* @param fromIndex the index from which to start the search.
|
|
* @return the index of the first occurrence of the specified substring,
|
|
* starting at the specified index,
|
|
* or {@code -1} if there is no such occurrence.
|
|
*/
|
|
public int indexOf(String str, int fromIndex) {
|
|
return String.indexOf(value, coder, count, str, fromIndex);
|
|
}
|
|
|
|
/**
|
|
* Returns the index within this string of the last occurrence of the
|
|
* specified substring. The last occurrence of the empty string "" is
|
|
* considered to occur at the index value {@code this.length()}.
|
|
*
|
|
* <p>The returned index is the largest value {@code k} for which:
|
|
* <pre>{@code
|
|
* this.toString().startsWith(str, k)
|
|
* }</pre>
|
|
* If no such value of {@code k} exists, then {@code -1} is returned.
|
|
*
|
|
* @param str the substring to search for.
|
|
* @return the index of the last occurrence of the specified substring,
|
|
* or {@code -1} if there is no such occurrence.
|
|
*/
|
|
public int lastIndexOf(String str) {
|
|
return lastIndexOf(str, count);
|
|
}
|
|
|
|
/**
|
|
* Returns the index within this string of the last occurrence of the
|
|
* specified substring, searching backward starting at the specified index.
|
|
*
|
|
* <p>The returned index is the largest value {@code k} for which:
|
|
* <pre>{@code
|
|
* k <= Math.min(fromIndex, this.length()) &&
|
|
* this.toString().startsWith(str, k)
|
|
* }</pre>
|
|
* If no such value of {@code k} exists, then {@code -1} is returned.
|
|
*
|
|
* @param str the substring to search for.
|
|
* @param fromIndex the index to start the search from.
|
|
* @return the index of the last occurrence of the specified substring,
|
|
* searching backward from the specified index,
|
|
* or {@code -1} if there is no such occurrence.
|
|
*/
|
|
public int lastIndexOf(String str, int fromIndex) {
|
|
return String.lastIndexOf(value, coder, count, str, fromIndex);
|
|
}
|
|
|
|
/**
|
|
* Causes this character sequence to be replaced by the reverse of
|
|
* the sequence. If there are any surrogate pairs included in the
|
|
* sequence, these are treated as single characters for the
|
|
* reverse operation. Thus, the order of the high-low surrogates
|
|
* is never reversed.
|
|
*
|
|
* Let <i>n</i> be the character length of this character sequence
|
|
* (not the length in {@code char} values) just prior to
|
|
* execution of the {@code reverse} method. Then the
|
|
* character at index <i>k</i> in the new character sequence is
|
|
* equal to the character at index <i>n-k-1</i> in the old
|
|
* character sequence.
|
|
*
|
|
* <p>Note that the reverse operation may result in producing
|
|
* surrogate pairs that were unpaired low-surrogates and
|
|
* high-surrogates before the operation. For example, reversing
|
|
* "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
|
|
* a valid surrogate pair.
|
|
*
|
|
* @return a reference to this object.
|
|
*/
|
|
public AbstractStringBuilder reverse() {
|
|
byte[] val = this.value;
|
|
int count = this.count;
|
|
int coder = this.coder;
|
|
int n = count - 1;
|
|
if (COMPACT_STRINGS && coder == LATIN1) {
|
|
for (int j = (n-1) >> 1; j >= 0; j--) {
|
|
int k = n - j;
|
|
byte cj = val[j];
|
|
val[j] = val[k];
|
|
val[k] = cj;
|
|
}
|
|
} else {
|
|
StringUTF16.reverse(val, count);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representing the data in this sequence.
|
|
* A new {@code String} object is allocated and initialized to
|
|
* contain the character sequence currently represented by this
|
|
* object. This {@code String} is then returned. Subsequent
|
|
* changes to this sequence do not affect the contents of the
|
|
* {@code String}.
|
|
*
|
|
* @return a string representation of this sequence of characters.
|
|
*/
|
|
@Override
|
|
public abstract String toString();
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
* @since 9
|
|
*/
|
|
@Override
|
|
public IntStream chars() {
|
|
// Reuse String-based spliterator. This requires a supplier to
|
|
// capture the value and count when the terminal operation is executed
|
|
return StreamSupport.intStream(
|
|
() -> {
|
|
// The combined set of field reads are not atomic and thread
|
|
// safe but bounds checks will ensure no unsafe reads from
|
|
// the byte array
|
|
byte[] val = this.value;
|
|
int count = this.count;
|
|
byte coder = this.coder;
|
|
return coder == LATIN1
|
|
? new StringLatin1.CharsSpliterator(val, 0, count, 0)
|
|
: new StringUTF16.CharsSpliterator(val, 0, count, 0);
|
|
},
|
|
Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
* @since 9
|
|
*/
|
|
@Override
|
|
public IntStream codePoints() {
|
|
// Reuse String-based spliterator. This requires a supplier to
|
|
// capture the value and count when the terminal operation is executed
|
|
return StreamSupport.intStream(
|
|
() -> {
|
|
// The combined set of field reads are not atomic and thread
|
|
// safe but bounds checks will ensure no unsafe reads from
|
|
// the byte array
|
|
byte[] val = this.value;
|
|
int count = this.count;
|
|
byte coder = this.coder;
|
|
return coder == LATIN1
|
|
? new StringLatin1.CharsSpliterator(val, 0, count, 0)
|
|
: new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
|
|
},
|
|
Spliterator.ORDERED,
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* Needed by {@code String} for the contentEquals method.
|
|
*/
|
|
final byte[] getValue() {
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Invoker guarantees it is in UTF16 (inflate itself for asb), if two
|
|
* coders are different and the dstBegin has enough space
|
|
*
|
|
* @param dstBegin the char index, not offset of byte[]
|
|
* @param coder the coder of dst[]
|
|
*/
|
|
void getBytes(byte dst[], int dstBegin, byte coder) {
|
|
if (this.coder == coder) {
|
|
System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
|
|
} else { // this.coder == LATIN && coder == UTF16
|
|
StringLatin1.inflate(value, 0, dst, dstBegin, count);
|
|
}
|
|
}
|
|
|
|
/* for readObject() */
|
|
void initBytes(char[] value, int off, int len) {
|
|
if (String.COMPACT_STRINGS) {
|
|
this.value = StringUTF16.compress(value, off, len);
|
|
if (this.value != null) {
|
|
this.coder = LATIN1;
|
|
return;
|
|
}
|
|
}
|
|
this.coder = UTF16;
|
|
this.value = StringUTF16.toBytes(value, off, len);
|
|
}
|
|
|
|
final byte getCoder() {
|
|
return COMPACT_STRINGS ? coder : UTF16;
|
|
}
|
|
|
|
final boolean isLatin1() {
|
|
return COMPACT_STRINGS && coder == LATIN1;
|
|
}
|
|
|
|
private final void putCharsAt(int index, char[] s, int off, int end) {
|
|
if (isLatin1()) {
|
|
byte[] val = this.value;
|
|
for (int i = off, j = index; i < end; i++) {
|
|
char c = s[i];
|
|
if (StringLatin1.canEncode(c)) {
|
|
val[j++] = (byte)c;
|
|
} else {
|
|
inflate();
|
|
StringUTF16.putCharsSB(this.value, j, s, i, end);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
StringUTF16.putCharsSB(this.value, index, s, off, end);
|
|
}
|
|
}
|
|
|
|
private final void putCharsAt(int index, CharSequence s, int off, int end) {
|
|
if (isLatin1()) {
|
|
byte[] val = this.value;
|
|
for (int i = off, j = index; i < end; i++) {
|
|
char c = s.charAt(i);
|
|
if (StringLatin1.canEncode(c)) {
|
|
val[j++] = (byte)c;
|
|
} else {
|
|
inflate();
|
|
StringUTF16.putCharsSB(this.value, j, s, i, end);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
StringUTF16.putCharsSB(this.value, index, s, off, end);
|
|
}
|
|
}
|
|
|
|
private final void putStringAt(int index, String str) {
|
|
if (getCoder() != str.coder()) {
|
|
inflate();
|
|
}
|
|
str.getBytes(value, index, coder);
|
|
}
|
|
|
|
private final void appendChars(char[] s, int off, int end) {
|
|
int count = this.count;
|
|
if (isLatin1()) {
|
|
byte[] val = this.value;
|
|
for (int i = off, j = count; i < end; i++) {
|
|
char c = s[i];
|
|
if (StringLatin1.canEncode(c)) {
|
|
val[j++] = (byte)c;
|
|
} else {
|
|
this.count = count = j;
|
|
inflate();
|
|
StringUTF16.putCharsSB(this.value, j, s, i, end);
|
|
this.count = count + end - i;
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
StringUTF16.putCharsSB(this.value, count, s, off, end);
|
|
}
|
|
this.count = count + end - off;
|
|
}
|
|
|
|
private final void appendChars(CharSequence s, int off, int end) {
|
|
if (isLatin1()) {
|
|
byte[] val = this.value;
|
|
for (int i = off, j = count; i < end; i++) {
|
|
char c = s.charAt(i);
|
|
if (StringLatin1.canEncode(c)) {
|
|
val[j++] = (byte)c;
|
|
} else {
|
|
count = j;
|
|
inflate();
|
|
StringUTF16.putCharsSB(this.value, j, s, i, end);
|
|
count += end - i;
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
StringUTF16.putCharsSB(this.value, count, s, off, end);
|
|
}
|
|
count += end - off;
|
|
}
|
|
|
|
/* IndexOutOfBoundsException, if out of bounds */
|
|
private static void checkRange(int start, int end, int len) {
|
|
if (start < 0 || start > end || end > len) {
|
|
throw new IndexOutOfBoundsException(
|
|
"start " + start + ", end " + end + ", length " + len);
|
|
}
|
|
}
|
|
|
|
/* StringIndexOutOfBoundsException, if out of bounds */
|
|
private static void checkRangeSIOOBE(int start, int end, int len) {
|
|
if (start < 0 || start > end || end > len) {
|
|
throw new StringIndexOutOfBoundsException(
|
|
"start " + start + ", end " + end + ", length " + len);
|
|
}
|
|
}
|
|
}
|